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1 Definitions

A BIB design is an ordered pair (V, B) with v points ({V| = v) and b blocks of
size k, each point appearing in exactly r blocks, each pair of points appearing
in exactly A blocks, which is widely denoted by B(v,b,7,k, A), or B{v, k, A)
for short [10]. The value r is called replication number and A coincidence
number. A BIB design originates in the design of experiments for statistical
analysis, but now it is of combinatorial interest as well. Let N = (niz)
be a v % b incidence matrix of a BIB design, where n;; = 1 or 0 for all
i(=1,2,..,v) and j (= 1,2,...,b), according as the ith point occurs in the
jth block or otherwise. Hence an incidence matrix IN satisfies the following
conditions: (i) ni;; = 0 or 1 for all 4,7, (i) Z?:l niy; = r for all 4, (iii)
SV i =k for all §, (iv) zgzl nignig = A forall 4,4 (1 #i) =1,2,..,v.

Let 2 < £ < s. A set of £ B(v,k,\) design, say {(V,B;) :i=1,...,¢}
where B; = {BJ@ 1 = 1,...,b}, is said pairwise additive if there is a
numbering of blocks in each B; such that

(A) for any pair {h,h'} C V, (V,Bppy) is a Blv = sk, k* = 2k, N =
2r(2k — 1)/(sk — 1)) where By, = (B UBY™) 1 j=1,...,b}.

When ¢ = s, such s BIB designs are said to have additive structure. In this
case, it holds that for any 7, Ji_4 Bj(-z) =V (1.1). The notion of additive
structure has been introduced by Matsubara et al. [11]. The same authors
[20] analyzed the existence of such structure and proposed its mathematical
applications. When k = 3 and A = 1, instead of additive structure, the term
compatibly minimal partition is used by Colbourn and Rosa [3]. It is easy to
state the condition (A) in terms of incidence matrices. Let IN; be incidence
matrices of £ pairwise additive BIB designs with parameters v, b, 7, k, A, then

Condition (A) is rewritten as



N;, + N, is an incidence matrix of a B(v = sk, k* = 2k, \* = 2r(2k —
1)/(sk — 1)) for any distinct 41,49 € {1,2,..., £},

which makes the proof of Proposition 3.1 easy. Since n;; = 0 or 1 for all 4, 7,
if £ = s, then the relation (1.1) implies that > . | N; = Jyxp, where Jx;
is the v X b matrix all of whose elements are 1.

Suppose that pairwise additive B(v = sk, b, 7, k, A) exist. Then, for any
{h, R} CV, (V,Bppy) is a BIB design with parameters

v¥=0,b" =br" =2, k" =2k, =2r(2k - 1)/(sk ~ 1).
Since A* must be a positive integer and (k — 1,2k — 1) = 1, it holds that
2A =0 mod (k—1). (1.2)

It follows from (1.2) pairwise additive symmetric BIB designs cannot exist
for s > 3 and k£ > 2. Furthermore, by using (1.2), characterizations of
parameters of BIB designs with pairwise additive structure can be made.
Especially, we find that it is combinatorially meaningful to focus on the
case that & > X, noting the following facts. If k£ is an odd integer, then by
(1.2), it holds that A > (k — 1)/2, and hence BIB designs with s(2A + 1)
points and blocks of size kK = 2\ + 1 are minimal among BIB designs with
pairwise additive structure. If k is an even integer, then similarily A > k—1,
and hence BIB designs with s(A + 1) points and blocks of size £ = A + 1
are minimal. Furthermore, by the well known relation of BIB designs that
A= (k—1)r/(sk—1),if (sk—1,k—1) = 1 and there exists a BIB design with
v points and blocks of size k, then it is a minimal possible design for given v
and k. Therefore, if (sk—1,2k~1) = 1, (V, B; ;)) generates a B(v, 2k, 2k—1)
minimal in terms of coincidence numbers among BIB designs with v = sk
points and blocks of size 2k. Thus, we will combinatorially focus on the
case that k = 2\ + 1 and k = X\ + 1. Pairwise additive BIB designs with
k=2\+1or k= XA+ 1 have the following parameters:

v=skb=s(sk—1),r=sk—1,kA=k-1, (1.3)

s(sk — 1) sk—1 k—1

—-—-—2—“",7'-— 5 ,k),)\—-—?. (14)

We note that the 2-copy of a BIB design with v = sk and k = 2A + 1 yields
a BIB design with v* = sk* and k¥ = X* + 1.

Two lists are given; one is a list of parameters s,v,b,7,k, A for which
additive BIB designs with & > X exist, and the other is a list of admissible
parameters of BIB designs for which the existence of additive BIB designs
is not known. In the latter, “Yes” shows the existence of the design, and 7

means that the existence is unknown.

v=sk b=
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Table 1. Additive BIB designs with s >3, v <100, 2 <k,r <20

and k£ > .

No. | s] v E r kA
1{3{ 6 15 5 2 1
21319 12 4 3 1
3131 9 24 8 3 2
413112 33 11 4 3
51318 51 17 6 5
613121 60 20 7 6
713127 39 13 9 4
8141 8 28 7 2 1
914112 44 11 3 2

1014116 60 15 4 3
11{5115 70 14 3 2
1215125 60 12 5 2
1318116 120 15 2 1
14,927 117 13 3 1

Table 2. Unknown additive BIB designs with s > 3, v < 100,
2<k,r<20and k> A\

No.| s| v b r k X|Existence
1y 3|15 42 14 5 4 Yes
21 3{21 30 10 7 3 Yes
31 3133 48 16 11 5 Yes
41 3139 57 19 13 6 ?
51 4120 76 19 b5 4 Yes
61 5110 45 9 2 1 Yes
7,515 3 7 3 1| Yes
8! 5720 95 19 4 3 Yes
9! 5136 & 17 7 3 Yes

10 612 66 11 2 1 Yes
114 6118 102 17 3 2 Yes
12 7114 91 13 2 1 Yes
3] 7121 70 10 3 1 Yes
4] 7121 140 20 3 2 Yes
15 7135 119 17 5 2 Yes
16 9718 183 17 2 1 Yes
17110720 190 19 2 1 Yes
18111133 176 16 3 1 Yes
19113139 247 19 3 1 Yes

Some characterizations can be made for £ < A. For example, in case



of k¥ = ), pairwise additive BIB designs are either one of (i} 2-copies of
complete designs or (ii) 3-fold triple systems:

(3.2)
(3.3)

I

I
Il

v = 2s, b=2s(2s—1), r=2(2s—-1), k
k

A
v=3(20+1), b=3(2+1)3¢+1), r=3(30+1), A

2,
3,
where ¢ > 1. We omit characterizations for the case because pairwise addi-
tive designs with & < A have large parameters.

2 Links with perpendicular arrays

A perpendicular array, denoted by PA4(g, s), is a matrix with g rows and
d (;) columns such that every pair of an s-set appears in exactly d columns
among every two rows (see (1], [18]), where g > 1. d is called index. When
d = 1, we suppress the index in the notation and write PA(g,s). Some
necessary conditions for perpendicular arrays can be obtained as follows.

Theorem 2.1 [8]. Suppose that 0 < ¢ < ¢ and (¥) > (}), then, a
PA4(t, k,s) is also a PAy(t', k, 5), where

7= (/o)

In case of t = 2 and ¢ = 1, if ¢ > 3 and there exists a PA(g,s), then
every element appears in each row of the PA equally, and hence s must be
an odd integer. We can easily construct a perpendicular array with g = 2
and the above property, so that combining these facts with the definition of
perpendicular arrays, we have the following.

Theorem 2.2 [20]. g pairwise additive B(v = s,b = ds(s — 1)/2,7 =
d(s—1)/2,k = 1,d = 0) is equivalent to a perpendicular array PA4(g, s) for
some d > 1.

Especially, we note that when g = s, the notion of additive BIB designs
with s points and k = 1 is equivalent to that of a PA4(s, s). It is well known
that there exists a PA(s,s) for an odd prime power s [15]. For d > 2, some
results on the existence of a PAy(s,s) are known. We note that there are
some connections between #-designs and perpendicular arrays; for example,
if there exists a t-(v,t + 1,t) design, then there exists a PAg, (f,t + 1,v)
where di = d/(d,t -+ 1) [9]. Many informations on perpendicular arrays are
available in literature [1], [4].
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3 Links with nested designs

Preece [16] introduced the concept of a nested BIB design for the design of
experiment in statistics. Many papers on this topics have been published.
A nested B{v; by, bo; k1, ko) is a triple (V, By, Bg) with v points (V| = v)
and two systems of blocks (|B;] := &), ¢ = 1,2, such that (i) the first
system is nested within the second, i.e., each block in By is partitioned into
[ subblocks of size k1 and the resulting subblocks form B;, say, b = {by and
kg = lky, (ii) (V, B1) is a BIB design with v points and b7 blocks of k; points
each, (iii) (V,Bs) is a BIB design with v points and by blocks of ky points
each. Similarly, Morgan et al. have reviewed and extended the concept of
nested BIB designs [13]. A multiply nested BIB design [13] is an (m + 1)-
tuple (V, By, Ba, ..., By,) with v points and m systems of blocks (|B;] = b;),
i =1,...,m, such that (i) the jth system is nested within the ¢th system,
i> 7, (i) for each ¢ (1 £ i < m), (V,B;) is a BIB design with v points, b;
blocks of k; points each. Such a design is denoted by MNB(v; b1, ba, ..., bm
; ki, k2, ..., km). The spectrum of nested BIB designs is available within
the scope of v < 16 and r < 30 [13]. Sawa et al. [20] have proposed a new
method of constructing nested (resolvable) BIB designs.

Proposition 3.1 [20]. For 1 <£<s,let {(V,B;): i=1,...,f} beaset of £
pairwise additive B(v = sk, k, A), where blocks in B; = {BJ(-Z> s j=1,...,b}
are ordered suitably. Let

Br={JBY :j=1,..,0}
eR

for R {1,...,£}, then (V, Bgr) yields a B(v, gk, A*), where g = |R| < /4.

Proof. Let N;, i =1,...,¢, be incidence matrices of (V, B;) with pairwise
additive structure, then (IN; + N }(IN; + N ;)T = X*I + (r* — A*).J. Hence,
it holds that

QO _NHO_ N)T = (Ni+N)(Ni+Ny)T—(g-2)> N:N;7,
i€R i€R 4,j€R iE€R
i)
which completes the proof. [J
By using Proposition 3.1, if there exist pairwise additive BIB designs
with v points and blocks of size k each, then a sum of any ¢ incidence
matrices generates a BIB design with v points and blocks of size gk each.
Multiply nested BIB designs with v = sk points can be also constructed
by use of Proposition 3.1.

Theorem 3.2 [20]. Let m = [logyl]| + 1, where |z means the greatest
integer y such that y < z. If there exist £ pairwise additive B(v = sk, k, \),



then an MNB(”) by = 2m-—lbm7 b2 = 2m—2bm, teey bm ; ki) ky = 2kl; ceey
kn = 2™ k1) can be constructed. In particular, when £ = s = 271 4
resolvable multiply nested BIB design can be obtained.

4 Links with combinatorial geometries

Morgan [14] has constructed series of BIB designs by taking union of blocks
of symmetric BIB designs sutably. This method of constructing designs has
been referred as ‘the union method” by Rahilly {17]. The union method
is considered under the situation that each block of the resulting design is
composed of blocks each being not necessarily disjoint. In the sense, the
notion of additive designs are included in the union method, thinking about
Proposition 3.1.

Rahilly [17] also has focused on a parallelism, and took the union method.
Suppose that there exists a resolvable B(v = sk, k, A), (V,B), with 2 < £ <
s — 1. Rahilly has constructed BIB designs by taking the union of any £
blocks in each parallel class. Hence, we have the following result.

Theorem 4.1 [17]. If there exists a resolvable B(v = sk,b,r,k, A}, then
there exists a B(v = sk, 2k, \(}_)) + (r — A)(j3)) for 2 < £ < s — 1.

Using a parallelism in different way from Rahilly’s, we can get the fol-
lowing new result.

Theorem 4.2 [20]. If there exists a resolvable B{sk, b, 7, k, A) and a PA(g, s),
then there exists a B(sk, s(s — 1)r/2, (s — 1)¢r/2, Ck, M(¢k—1)/(k—1)) for
any 1<{<¢g<sandg>2.

As series of BIB designs with block size being a prime power, it is well
known that the set of ¢-flats in AG(n, s) forms a BIB design with v = s", k =

stand A = {?: 11} . By applying Theorems 4.1 and 4.2 each to the fact that
the well-known necessary conditions for a resolvable B(v = s™, k = s™, A)
with n > m are sufficient for any prime power s [23], series of BIB designs
with v = s points and blocks of size £s™ can be obtained. We observe that
when £ = 2, two resulting designs of these two theorems each are the same,
but when £ > 3, the resulting BIB design of Theorems 4.1 has much larger
coincidence number than that Theorem 4.2. For illustrative purpose, two
series of BIB designs, each of which is obtained by applying Theorems 4.1
and 4.2 to the Woelfel’s result with m =n —1 and A = (s" —1)/(s — 1), are

given.

Theorem 4.3 [17].- There exists a B(v = s™,k = s N = %(Zj) -+

<32 (373))-
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Theorem 4.4 [20]. There exists aB(v = 5",k = £s""1 X = {(£s""1-1)/2).

We note that when £ = 2, the resulting BIB designs have the minimal
coincidence numbers for given v = s® and k = s"~1. More generally, Jimbo
and Sawa have constructed [19] new series of BIB designs by AG(n, s)

Theoremn 4.5 [19]. There exists (i) a B(v = s", k =Is, A = (Is — 1){/2) for
any 2 <[ < s and s being any odd prime power (ii) a Blo =3" k=3[, A =
(31 = 1)1/2) for any 2 <1< 3" L.

For £ = 2, the minimalities of A for given v and k£ can be analyzed.

Mahmoodian and Shirdarreh [12] showed that Morgan’s BIB designs in
[14] are simple. Rahilly also investigated the simpleness of his designs [17].
Jimbo and Sawa have shown that the BIB designs in Theorem 4.5 are simple
for2<I<(p+1)/2.

Theorem 4.6 [19]. Let s = p™ be an odd prime power. There exists a
simple Blv = §", k =1s, A= (ls - 1){/2) for any 2 <1< (p+1)/2.

In the last of this section, we introduce some results on the union method
of constructing designs with higher regular incidence structure.

Theorem 4.7 [6]. If (2m—+1, 3) = 1, then there exists a simple S3(3, 4, 2(2m+
1)}.

There are many results of constructing simple ¢-designs by using a paral-
lelism of a resolvable design. For example, see [21], [22].

5 Additive structure

Arguments in this section is all characteristic of the case that £ = 5. A
new method of constructing BIB designs is provided in Proposition 5.1. For
given v and k, minimalities of the resulting BIB designs, together with the
property of resolvablity, have been analyzed [20]. We will introduce one of
such constructions without proofs.

A difference matrix, denoted by D(g, \; s) := (dmn), based on a group
(G, *) of order s, is a g x As matrix satisfying the condition that for any « in
G, there exist exactly A columns in which z is represented by dy, * (dpry )
among the mth and m/th row of the matrix. A is called index. Necessarily,
the number of columns of D(g, A; s) is As. For D(g, A;s), a row with all
entries z for some z in G is possibly included, and there exist at most
one such a row [5]. Some existence results of difference matrices should be
referred to literatures [2], [5]. Here we use a difference matrix with more
conditions that (i) among two rows without a row of all z, if & and 8 appears



in the mth and m/th row precisely £ times, then § and o appears in the mth
and m/'th row precisely £ times (ii) a row with all entries z for some z in G is
possibly included. Such a difference matrix is called symmetric, and denoted
by SD{g, A;s). When g = s, we suppress the index A in the notation.

By use of SD(s, A), we have the following theorem.

Theorem 5.1 [20]. Let ¢ and d be integers with 2Ac =0 mod d(k —1). If
there exist additive B(v = sk, b, 7, k, A}, an SD(s, ¢) based on a group (G, %)
and a PA4(s, s), then there exist additive B(v* = s2k, b* = cs[(s+ 1)r — s)],
r* =c[(s+ 1)r —sA], k* = sk, \* = cr).

By the assumption of additive BIB designs, the condition that 2Ac =0
mod d(k — 1) is always satisfied for the case of d dividing c.

Corollary 5.2 [20]. Let s be an odd integer. If there exist additive B(v =
sk,b,r k,\), an s x s2 OA and a PA(s, s), then there exist additive B(v* =
2k, b* = s2[(s + 1)r — sA], * = s[(s + L)r — sA], k* = sk, \* = s7).

Proof. Obviously, an s x s? OA is regarded as an SD{s,s). O

The resulting BIB designs given in Corollary 5.2 have the large coinci-
dence numbers, thinking about the minimalities of pairwise additive BIB
designs. In order to get additive BIB designs with small coincidence num-
bers, the existence of symmetric difference matrices with small indices is
essentially required. It can be shown [20] from the definition of SD that
if there exists an SD(s,\) and s is an even integer, then A is also an even
integer. Concerning the arguments of the existence of symmetric difference
matrices, Sawa et al. [20] showed that when s is a prime power, there exists
an SD(s,2), and when s is an odd prime, there exists an SD(s, 1). For other
value X < 2, we cannot find whether there exists an SD(s, ). Since a D(s, 1)
generates an s x s2 OA, it may exist only for a prime power.

Theorem 5.3 [20]. If there exist additive B{v = sk,b, 7, k, A), then there
exist additive BIB designs with parameters
() v* = 5%k, b* = 2s[(s + L)r — sAl, 7% = 2[(s + 1)r — sA|, k" = sk, \" =2r
for a prime power s, and
(i) v* = 8%k, b* = s[(s + 1)r —sAL,r* = (s + 1)r — s\ k" = sk, A" =7
for an odd prime s.
Proof. Apply Theorem 5.1 and the facts mentioned above. [

In Theorem 5.3 (ii), we start from additive BIB designs with v points
and &k = A+ 1 or & = 2X\ + 1 respectively, and then additive BIB designs
with v* = sv points and k* = A* + 1 or k* = 2A* + 1 respectively, can be
constructed recursively.

193



184

6 Related unsolved problem

Firstly, there are many admissible parameters left, for which it is still un-
known that additive BIB designs exist or not.

Problem 1 Do BIB designs in Table 2 have additive structure?

Secondly, in order that we can get minimal additive BIB designs by using
Theorem 5.3, an SD(s, 1) is required. Unfortunately, Sawa et al. [20] cannot
find whether an SD(s, 1) exists or not for an odd prime power s = p", where
m > 2.

Problem 2 Does there exist an SD(s, 1) for an odd prime power s = p™
and m > 27
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