
186

Additive structure

Masanori Sawa

Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan,
e-mail: discrete@jim.math.cm.is.nagoya-u.ac.jp

Keywords: balanced incomplete block (BIB) design; nested design;

incidence matrix; pairwise additive structure.

1 Definitions

A BIB design is a ordered pair $(V, B)$ with $v$ points $(|V|=v)$ and $b$ blocks of
size $k$ , each point appearing in exactly $r$ blocks, each pair of points appearing
in exactly A blocks, which is widely denoted by $\mathrm{B}(v, b, r, k, \lambda)$ , or $\mathrm{B}(v, k, \lambda)$

for short [10]. The value $r$ is called replication number and A coincidence
number. A BIB design originates in the design of experiments for statistical
analysis, but now it is of combinatorial interest as well. Let $N=(n_{ij})$

be a $v\mathrm{x}$ $b$ incidence matrix of a BIB design, where $n_{ij}=1$ or 0 for all
$\mathrm{i}$ $(=1,2, \ldots, v)$ and $j(=1,2, .,,, b)$ , according as the $\mathrm{i}\mathrm{t}\mathrm{h}$ point occurs in the

$j\mathrm{t}\mathrm{h}$ block or otherwise. Hence an incidence matrix $N$ satisfies the following
conditions: (i) $n_{ij}=0$ or 1 for all $\mathrm{i}$ , $j$ , $( \dot{\mathrm{x}}\mathrm{i})\sum_{j=1}^{b}n_{ij}=r$ for all $\mathrm{i}$ , (iii)

$\sum_{i=1}^{v}n_{\iota j}=k$ for all $j$ , $( \mathrm{i}\mathrm{v})\sum_{j=1}^{b}nijni’j=$ A for all $i$ , $\mathrm{i}’(\mathrm{i}\neq \mathrm{i}’)=1,2$ , $\ldots 7v$ .

Let $2\leq\ell\leq s$ . A set of $\ell \mathrm{B}(v, k, \lambda)$ design, say $\{(V, B_{i}) : \mathrm{i}=1, \ldots, P\}$

where $B_{i}=\{B_{j}^{(i)} : j=1, \ldots, b\}$, is said pairwise additive if there is a
numbering of blocks in each $B_{i}$ such that

(A) for any pair $\{h, h’\}\subset V$ , $(V, B(h,h’))$ is a $\mathrm{B}(v=sk,$ $k^{*}=2k$ , $\lambda^{*}=$

$2\mathrm{r}(2\mathrm{f}\mathrm{c} -- 1)/(sk-1))$ where $B(h,h’)=\{B_{j}^{(h)}\cup B_{j}^{(h’)} : j=1, \ldots, b\}$ .

When $\ell=s$ , such $s$ BIB designs are said to have additive struc ture. In this
case, it holds that for any $j$ , $\bigcup_{\dot{x}=1}^{s}B_{j}^{(i)}=V$ $(1.1)$ . The notion of additive
structure has been introduced by Matsubara et al. [11]. The same authors
[20] analyzed the existence of such structure and proposed its mathematical
applications. When $k=3$ and $\lambda=1$ , instead of additive structure, the term
compatibly minimal partition is used by Colbourn and Rosa [3]. It is easy to
state the condition (A) in terms of incidence matrices. Let $N_{i}$ be incidence
matrices of $\ell$ pairwise additive BIB designs with parameters $v$ , $b,r$ , $k_{\lrcorner}$ , $\lambda$ , then
Condition (A) is rewritten as
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$N_{i_{1}}+N_{i_{2}}$ is an incidence matrix of a $\mathrm{B}(v=sk,$ $k^{*}=2k$ , $\lambda^{*}=2r(2k-$

$1)/(sk-1))$ for any distinct $\mathrm{i}_{1}$ , $i_{2}\in\{1,2, \ldots, p\}$ ,

which makes the proof of Proposition 3.1 easy. Since $n_{ij}=0$ or 1 for all $i,j$ ,
if $\ell=s$ , then the relation (1.1) implies that $\sum_{i=1}^{s}N_{i}=JvXb$ , where JvXb
is the $v\mathrm{x}$ $b$ matrix all of whose elements are 1.

Suppose that pairw ise additive $\mathrm{B}(v=sk_{2}b, r, k, \lambda)$ exist. Then, for any
$\{h, h’\}\subseteq V$ , $(V, B_{(h,h^{I})})$ is a BIB design with parameters

$v^{*}=v$ , $b^{*}=b$ , $r^{*}=2r$ , $k^{*}=2k$ , $\lambda^{*}=2r(2k-1)/(sk-1)$ .

Since $\lambda^{*}$ must be a positive integer and $(k-1,2k-1)$ $=1$ , it holds that

$2\lambda\equiv 0$ mod $(k-1)$ . (1.2)

It follows from (1.2) pairwise additive symmetric BIB designs cannot exist
for $s\geq 3$ and $k\geq 2$ . Furthermore, by using (1.2), characterizations of
parameters of BIB designs with pairw ise additive structure can be made.
Especially, we find that it is comb inatorially meaningful to focus on the
case that $k>\lambda$ , noting the following facts. If $k$ is an odd integer, then by
(1.2), it holds that A $\geq$ (A $・1$ ) $/2$ , and hence BIB designs with $s(2\lambda+1)$

points and blocks of size $k=2\lambda$ $+1$ are minimal among BIB designs with
pairwise additive structure. If $k$ is an even integer, then similarily A $\geq k-1$ ,
and hence BIB designs with $s(\lambda+1)$ points and blocks of size $k=\lambda+1$

are minimal. Furthermore, by the well known relation of BIB designs that
A $=(k-1)r/(sk-1)$ , if (sk-l, $k-1$ ) $=1$ and there exists a BIB design with
$v$ points and blocks of size $k$ , then it is a minimal possible design for given $v$

and $k$ . Therefore, if (sk-l, $2k.-1$ ) $=1$ , $(V, B(i,i/))$ generates a $\mathrm{B}(v, 2k, 2k-1)$

minimal in terms of coincidence numbers among BIB designs with $v=sk$

points and blocks of size $2k$ . Thus, we will combinatorially focus on the
case that $k=2\lambda+1$ and $k=\lambda+1$ . Pairwise additive BIB designs with
$k=2\lambda+1$ or $k=\lambda$ $+1$ have the following parameters:

$v=sk$ , $b=s(sk-1)$ , $r=sk-1$ , $k$ , $\lambda=k-1$ , (1.3)

$s(sk-1)$
$v=sk$ , $b=\overline{2}$ , $r= \frac{sk-1}{2}$ , $k$ , $\lambda=\frac{k-1}{2}$ . (1.4)

We note that the 2-copy of a BIB design with $v=sk$ and $k=2\lambda+1$ yields
a BIB design with $v^{*}=sk^{*}$ and $k^{*}=\lambda^{*}+1$ .

Two lists are given; one is a list of parameters $s$ , $v$ , $b$ , $r$ , $k$ , A for which
additive BIB designs with $k>$ A exist, and the other is a list of admissible
parameters of BIB designs for which the existence of additive BIB designs
is not known. In the latter, “Yes” shows the existence of the design, and ?
means that the existence is unknown
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Table 1. Additive BIB designs with s $\geq 3$ , v $\leq 1\mathrm{O}\mathrm{O}$ , $2\leq k$ , r $\leq 20$

and k $>\lambda$ .

Table 2. Unknown additive BIB designs with s $\geq 3$ , v $\leq 1\mathrm{O}\mathrm{O}$ ,
$2\leq k$ , r $\leq 20$ and k $>$ A.

Some characterizations can be made for $k\leq$ A. For example, in case
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of $k=\lambda$ , pairwise additive BIB designs are either one of (i) 2-copies of
complete designs or (ii) 3-fold triple systems:

$v=2s$ , $b=2s(2s-1)$ , $r=2(2s-1)$ , $k=$ A $=2$ , $(3,2)$

$v=3(2\ell+1)$ , $b=3(2\ell+1)(3P+1)$ , $r=3(3P+1)$ , $k=$ A $=3$ , (3.3)

where $\ell\geq 1$ . We omit characterizations for the case because pairwise addi-
tive designs with $k<$ A have large parameters,

2 Links with perpendicular arrays

A perpendicular array, denoted by P\^A $(\#, s)$ , is a matrix with $g$ rows and
$d(\begin{array}{l}s2\end{array})$ columns such that every pair of an s-sei appears in exactly $d$ columns
among every two rows (see [1], [18]), where $g$ $\geq 1$ . $d$ is called index. When
$d=1$ , we suppress the index in the notation and write $\mathrm{P}\mathrm{A}(g, s)$ . Some
necessary conditions for perpendicular arrays can be obtained as follows.

Theorem 2.1 [8]. Suppose that 0 $\leq t’\leq t$ and $(\begin{array}{l}k’t\end{array})$ $\geq$ $(\begin{array}{l}kt\end{array})$ , then, a
P\^A $(\mathrm{t}, k, s)$ is also a $\mathrm{P}\mathrm{A}_{d’}(t’, k, s)$ , where

$d’=d$ $(\begin{array}{l}s-t’t-t\end{array})/(\begin{array}{l}tt\end{array})$ .

In case of $t=2$ and $t’=1$ , if $g\geq 3$ and there exists a $\mathrm{P}\mathrm{A}(g, s)$ , then
every element appears in each row of the PA equally, and hence $s$ must be
an odd integer. We can easily construct a perpendicular array with $g=2$

and the above property, so that combining these facts with the definition of
perpendicular arrays, we have the following.

Theorem 2.2 [20]. $g$ pairwise additive $\mathrm{B}(v=s, b=ds(s-1)/2,$ $r=$

$d(s-1)/2$ , $k=1$ , $d=0)$ is equivalent to a perpendicular array $\mathrm{P}\mathrm{A}_{d}(g, s)$ for
some $d\geq 1$ .

Especially, we note that when $g$ $=s$ , the notion of additive BIB designs
with $s$ points and $k=1$ is equivalent to that of a $\mathrm{P}\mathrm{A}_{d}(s, s)$ . It is well known
that there exists a $\mathrm{P}\mathrm{A}(s, s)$ for an odd prime power $s[15]$ . For $d\geq 2$ , some
results on the existence of a $\mathrm{P}\mathrm{A}_{d}(s, s)$ are known. We note that there are
some connections between $t$-designs and perpendicular arrays; for example,
if there exists a t- $(v, t+1, t)$ design, then there exists a $\mathrm{P}\mathrm{A}_{d_{1}}(t, t+1, v)$

where $d_{1}=d/(d, t+1)[9]$ . Many informations on perpendicular arrays are
available in literature [1], [4]
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3 Links with nested designs

Preece [16] introduced the concept of a nested BIB design for the design of
experiment in statistics. Many papers on this topics have been published.
A nested $\mathrm{B}(v;b_{1}, b_{2};k_{1}, k_{2})$ is a triple $(V, B_{1}, B_{2})$ with $v$ points $(|V|:=v)$

and two systems of blocks $(|B_{i}|:=b_{i})$ , $\mathrm{i}=1,2$ , such that (i) the first
system is nested within the second, i.e., each block in $B_{2}$ is partitioned into
$l$ subblocks of size $k_{1}$ and the resulting subblocks form $B_{1}$ , say, $b_{1}=lb_{2}$ and
$k_{2}=lk_{1}$ , (ii) $(V, B_{1})$ is a BIB design with $v$ points and $b_{1}$ blocks of $k_{1}$ points
each, (iii) $(V, B_{2})$ is a BIB design with $v$ points and &2 blocks of $k_{2}$ points
each. Similarly, Morgan et al. have reviewed and extended the concept of
nested BIB designs [13]. A multiply nested BIB design [13] is an $(m+1)-$

triple $(V, B_{1}, B_{2}, \ldots, B_{m})$ with $v$ points and $m$ systems of blocks $(|B_{i}|=b_{i})$ ,
$\mathrm{i}=1$ , $\ldots$ , $m$ , such that (i) the jth system is nested within the $\mathrm{i}\mathrm{t}\mathrm{h}$ system,
$\mathrm{i}>j$ , (ii) for each $\mathrm{i}(1\leq \mathrm{i}\leq m)$ , $(V, B_{i})$ is a BIB design with $v$ points, $b_{i}$

blocks of $k_{\dot{\mathrm{t}}}$ points each. Such a design is denoted by MNB $(v,\cdot b_{1},$ $b_{2}$ , . . ., $b_{m}$

; $k_{1}$ , $k_{2}$ , $\ldots$ , $k_{m}$ ). The spectrum of nested BIB designs is available within
the scope of $v\leq 16$ and $r\leq 30[13]$ . Sawa et al. [20] have proposed a new
method of constructing nested (resolvable) BIB designs.

Proposition 3.1 [20]. For $1\leq\ell\leq s$ , let $\{(V, B_{i}) : i=1, \ldots, l\}$ be aset of $\ell$

pairwise additive $\mathrm{B}(v=sk, k, \lambda)$ , where blocks in $B_{i}=\{B_{f}^{(i)} : j=1, \ldots) \ \}$

are ordered suitably. Let

$B_{R}= \{\bigcup_{\ell\in R}B_{j}^{(l)} : j=1, \ldots, b\}$

for $R$ $\subseteq\{1, \ldots,l\}$ , then $(V, B_{R})$ yields a $\mathrm{B}(v, gk, \lambda^{*})$ , where $g=|R|\leq p$ .

Proof. Let $N_{i}$ , $\mathrm{i}=1_{?}\ldots$ , $p$ , be incidence matrices of $(V, B_{i})$ with pairwise
additive structure, then $(N_{\mathrm{i}}+N_{j})(N_{i}+N_{j})^{T}=\lambda^{*}I+(r^{*}-\lambda^{*})J$ . Hence,
it holds that

$( \sum_{i\in R}N_{i})(\mathrm{I}N_{i})^{T}=\sum_{i\neq j}(N_{i}+N_{j})(N_{i}+N_{j})^{T}-(g-2)\sum_{ii,j\in R\in R}N_{i}N_{i}^{T}$

,

which completes the proof. $[]$

By using Proposition 3.1, if there exist pairwise additive BIB designs
with $v$ points and blocks of size $k$ each, then a sum of any $g$ incidence
matrices generates a BIB design with $v$ points and blocks of size $gk$ each.

Multiply nested BIB designs with $v=sk$ points can be also constructed
by use of Proposition 3.1.

Theorem 3.2 [20]. Let m $=\lfloor\log {}_{2}P\rfloor+1$ , where \lfloor x\rfloor means the greatest
integer y such that y $\leq x$ . If there exist $\ell$ pairwise additive $\mathrm{B}(v=sk,$k,$\lambda))$
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then an MNB($v;b_{1}=2^{m-1}b_{m}$ , $b_{2}=2^{m-2}b_{m}$ , . . . ’
$b_{m}$ ; $k_{1}$ , $k_{2}=2k_{1}$ , . . . ’

$k_{m}=2^{m-1}k_{1})$ can be constructed. In particular, when $p=s=2^{m-1}$ , a
resolvable multiply nested BIB design can be obtained.

4 Links with combinatorial geometries

Morgan [14] has constructed series of BIB designs by taking union of blocks
of symmetric BIB designs sutably. This method of constructing designs has
been referred as ‘the union method” by Rahilly [17]. The union method
is considered under the situation that each block of the resulting design is
composed of blocks each being not necessarily disjoint. In the sense, the
notion of additive designs are included in the union method, thinking about
Proposition 3.1.

Rahilly [17] also has focused on a parallelism, and took the union method.
Suppose that there exists a resolvable $\mathrm{B}(v=sk, k, \lambda)$ , $(V_{)}B)$ , with $2\leq p\leq$

$s-$ $1$ . Rahilly has constructed BIB designs by taking the union of any $\ell$

blocks in each parallel class. Hence, we have the following result.

Theorem 4.1 [17]. If there exists a resolvable $\mathrm{B}(v=sk,$b, r, k,$\lambda)$ , then
there exists a $\mathrm{B}(v=sk, \ell k, \lambda(\begin{array}{l}t-1\ell-\mathrm{l}\end{array})+(r-\lambda)(\begin{array}{l}t-2\ell-2\end{array}))$ for $2\leq p\leq s$ -1.

Using a parallelism in different way from Rahilly’s, we can get the fol-
Jowing new result.

Theorem 4.2 [20]. If there exists a resolvable $\mathrm{B}(sk, b, r, k, \lambda)$ and a $\mathrm{P}\mathrm{A}(\#, s)$ ,
then there $\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{s}$ a $\mathrm{B}(sk, s(s-1)r/2$ , $(s-1)\ell r/2$ , $Pk$ , $\lambda P(\ell k -1)/(k-1))$ for
any $1\leq\ell\leq g\leq s$ and $g\geq 2$ .

As series of BIB designs with block size being a prime power, it is well
known that the set of $t$-flats in $\mathrm{A}\mathrm{G}(n, s)$ forms a BIB design with $v=s^{n}$ , $k=$

$s^{t}$ and $\lambda=[_{t-1}^{n-1}]_{q}$ . By applying Theorems 4.1 and 4.2 each to the fact that

the well-known necessary conditions for a resolvable $\mathrm{B}(v=s^{n}, k=s^{m}, \lambda)$

with $n>m$ are sufficient for any prime power $s[23]$ , series of BIB designs$\mathrm{n}\mathrm{s}$

with $v=s^{n}$ points and blocks of size $ps^{m}$ can be obtained. We observe that
when $P=2$ , two resulting designs of these two theorems each are the same,
but when $\ell\geq 3$ , the resulting BIB design of Theorems 4.1 has much larger
coincidence number than that Theorem 4.2. For illustrative purpose, two
series of BIB designs, each of which is obtained by applying Theorems 4.1
and 4.2 to the WoelfePs result $\mathrm{w}$ ith $m=n-1$ and A $=(s^{n}-1)/(s-1)$ , are
given.

Theorem 4.3 [17]. There exists a $\mathrm{B}(v=s^{n},$ k $=\ell s^{n-1}$ , $\lambda=\frac{s^{n}-1}{s-1}$ $(\begin{array}{l}s-1\ell-1\end{array})$ $+$

$\frac{s^{n}-s}{s-1}$ $(\begin{array}{l}s-2\ell-2\end{array})$ ).
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Theorem 4.4 [20]. There exists a $\mathrm{B}(v=s_{7}^{n}k=\ell s^{n-1}, \lambda=\ell(\ell s^{n-1}-1)/2)$ .

We note that when $\ell=2$ , the resulting BIB designs have the minimal
coincidence numbers for given $v=s^{n}$ and $k=s^{n-1}$ . More generally, Jimbo
and Sawa have constructed [19] new series of BIB designs by $\mathrm{A}\mathrm{G}(\mathrm{n}, s)$

Theorem 4.5 [19]. There exists (i) a $\mathrm{B}(v=s^{n}, k=Is, \lambda=(Is-1)1/2)$ for
any $2\leq l\leq s$ and $s$ being any odd prime power (ii) a $\mathrm{B}(v=3_{7}^{n}k=3l$ , A $=$

$(3l-1)l/2)$ for any $2\leq l\leq 3^{n-1}$ .

For $P=2$ , the minimalities of A for given $v$ and $k$ can be analyzed.

Mahmoodian and Shirdarreh [12] showed that Morgan’s BIB designs in
[14] are simple. Rahilly also investigated the simpleness of his designs [17].
Jimbo and Sawa have shown that the BIB designs in Theorem 4.5 are simple
for $2\leq l\leq(p+1)/2$ .

Theorem 4.6 [19]. Let s $=p^{m}$ be an odd prime power. There exists a
simple B(v $=s^{n}$ , k $=ls$ , A $=(ls-1)l/2$) for any $2\leq l\leq(p+1)/2$ .

In the last of this section, we introduce some results on the union method
of constructing designs with higher regular incidence structure.

Theorem 4.7 [6]. If $(2m+1,3)=1$ , then there exists a simple $\mathrm{S}_{3}(3,4,2(2m+$

$1))$ .

There are many results of constructing simple $t$-designs by using a paral-
leiism of a resolvable design. For example, see [21], [22].

5 Additive structure

Arguments in this section is all characteristic of the case that $\ell=s$ . A
new method of constructing BIB designs is provided in Proposition 5,1. For
given $v$ and $k$ , minimalities of the resulting BIB designs, together with the
property of resolvablity, have been analyzed [20]. We will introduce one of
such constructions without proofs.

A difference matrix, denoted by $\mathrm{D}(g, \lambda,\cdot s):=(d_{mn})$ , based on a group
$(G, *)$ of order $s$ , is a $g\mathrm{x}$

$\lambda s$ matrix satisfying the condition that for any $x$ in
$G$ , there exist exactly A columns in which $x$ is represented by $d_{mn}*(d_{m}/_{n})^{-1}$

among the $m\mathrm{t}\mathrm{h}$ and $m’\mathrm{t}\mathrm{h}$ row of the matrix. A is called index. Necessarily,
the number of columns of $\mathrm{D}(g, \lambda;s)$ is $\lambda s$ . For $\mathrm{D}(g, \lambda;s)$ , a row with all
entries $x$ for some $x$ in $G$ is possibly included, and there exist at most
one such a row [5]. Some existence results of difference matrices should be
referred to literatures [2], [5]. Here we use a difference matrix with more
conditions that (i) among two rows without a row of all $x$ , if a and $\beta$ appear$\mathrm{s}$
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in the mth and $m’\mathrm{t}\mathrm{h}$ row precisely $\ell$ times, then $\beta$ and a appears in the mth
and $m’\mathrm{t}\mathrm{h}$ row precisely $\ell$ times (ii) a row with all entries $x$ for some $x$ in $G$ is
possibly included. Such a difference matrix is called symmetric, and denoted
by $\mathrm{S}\mathrm{D}(g, \lambda,\cdot s)$ . When $g=s$ , we suppress the index A in the notation.

By use of $\mathrm{S}\mathrm{D}(s, \lambda)$ , we have the following theorem.

Theorem 5.1 [20]. Let $c$ and $d$ be integers with $2\lambda c\equiv 0$ mod $d(k-1)$ . If
there exist additive $\mathrm{B}(v=sk, b,r, k, \lambda)$ , an $\mathrm{S}\mathrm{D}(s, c)$ based on a group $(G, *)$

and a $\mathrm{P}\mathrm{A}_{d}(s, s)$ , then there exist additive $\mathrm{B}(v^{*}=s^{2}k,$ $b^{*}=cs[(s+1)r-s\lambda]$ ,
$r^{*}=c[(s+1)r-s\lambda]$ , $k^{*}=sk$ , $\lambda^{*}=c7^{\cdot})$ .

By the assumption of additive BIB designs, the condition that $2\lambda c$ $\equiv 0$

mod $d(k-1)$ is always satisfied for the case of $d$ dividing $c$ .

Corollary 5.2 [20]. Let $s$ be an odd integer, If there exist additive $\mathrm{B}(v=$

$sk$ , $b$ , $r$ , $k$ , $\lambda)$ , an $s\mathrm{x}$
$s^{2}$ OA and a $\mathrm{P}\mathrm{A}(s, s)$ , then there exist additive $\mathrm{B}(v^{*}=$

$s^{2}k$ , $b^{*}=s^{2}[(s+1)r-s\lambda]$ , $r^{*}=s[(s+1)r-s\lambda]$ , $k^{*}=sk_{\backslash }\lambda^{*}=sr)$ .

Proof. Obviously, an $s\mathrm{x}$
$s^{2}$ OA is regarded as an $\mathrm{S}\mathrm{D}(s, s)$ . $[]$

The resulting BIB designs given in Corollary 5.2 have the large coinci-
dence numbers, thinking about the minimalities of pairwise additive BIB
designs. In order to get additive BIB designs with small coincidence num-
bers, the existence of symmetric difference matrices with small indices is
essentially required. It can be shown [20] from the definition of SD that
if there exists an $\mathrm{S}\mathrm{D}(s, \lambda)$ and $s$ is an even integer, then A is also an even
integer. Concerning the arguments of the existence of symmetric difference
matrices, Sawa et al. $\mathrm{L}\lceil 20$] showed that when $s$ is a prime power, there exists
an $\mathrm{S}\mathrm{D}(s, 2)$ , and when $s$ is an odd prime, there exists an $\mathrm{S}\mathrm{D}(s, 1)$ . For other
value A $\leq 2$ , we cannot find whether there exists an $\mathrm{S}\mathrm{D}(s, \lambda)$ . Since a $\mathrm{D}(s, 1)$

generates an $s\mathrm{x}$
$s^{2}\mathrm{O}\mathrm{A}$ , it may exist only for a prime power.

Theorem 5.3 [20]. If there exist additive $\mathrm{B}(v=sk,$b, r, k,$\lambda)$ , then there
exist additive BIB designs with parameters

(i) $v^{*}=s^{2}k$ , $b^{*}=2s[(s+1)r-s\lambda]$ , $\tau^{*}=2[(s+1)r-s\lambda]$ , $k^{*}=sk$ , $\lambda^{*}=2r$

for a prime power $s$ , and

(ii) $v^{*}=s^{2}k$ , $b^{*}=s[(s+1)r-s\lambda]$ , $r^{*}=(s+1)r-s\lambda$ , $k^{*}=sk$ , $\lambda^{*}=r$

for an odd prime $s$ .

Proof. Apply Theorem 5.1 and the facts mentioned above, $\square$

In Theorem 5.3 (ii), we start from additive BIB designs with $v$ points
and $k=\lambda+1$ or $k=2\lambda+1$ respectively, and then additive BIB designs

with $v^{*}=sv$ points and $k^{*}=\lambda^{*}+1$ or $k^{*}=2\lambda^{*}+1$ respectively, can be

constructed recursively
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6 Related unsolved problem

Firstly, there are many admissible parameters left, for which it is still un-
known that additive BIB designs exist or not.

Problem 1 Do BIB designs in Table 2 have additive structure?

Secondly, in order that we can get minimal additive BIB designs by using
Theorem 5.3, an $\mathrm{S}\mathrm{D}(s, 1)$ is required. Unfortunately, Sawa et al. [20] cannot
find whether an $\mathrm{S}\mathrm{D}(s, 1)$ exists or not for an odd prime power $s=p^{m}$ , where
$m\geq 2$ .

Problem 2 Does there exist an $\mathrm{S}\mathrm{D}(s, 1)$ for an odd prime power $s=p^{m}$

and $m\geq 2$?
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