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I would like to talk mainly about a survey of my papers
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1 Design construcion principle and some well-known examples

A well-known powerful method for constructing designs from groups:
“ {-homogeneous permutation group — t-design construction principle ?

G: a t-homogeneous permutation group on a finite set Q (that is, ¥V two t-subsets T, 7" of Q,

Jo € G such that 77 = T), || = v and
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BcQ, [Bl=k2>t
4
The pair (Q, B®) : t-(v,k, A) design with point set © and block set B®, where
B® ={B’|c € G} : set of the images of B under G,

k k
()l
A = | BG| -~ = "
;) o)
Gp = {0 € G| B’ = B} : setwise stabilizer of B in G.
(B is called a base block for the design (Q, BY))

Though this is quite elementary and simple—in fact,this is immediately shown only by
counting the number of {(T,C) | T € Q,|T| =t, T ¢ C € B¥} in two ways—, by this princi-
ple we can construct various interesting designs if we take various appropriate (Q, G) and B.
Some well-known examples :

1 2 3
G PGL(n+1,q) AGL(n,q) PGL(2,q%)
Q PG(n,q) V(n,g = AG(n,q) {00} UGF(q"™)
B an i-dim.proj.subsp. | an i-dim.aff.subsp. {c} UGF(q)
(Q, BY) PG;(n,q) AGi(n, q) Witt’s circle geometry

V=V(n,q) = K™ : n-dim.vector space over the finite fielld K = GF(qg)
Fori, 1 <i<mn,
Vi=Vi(n,q): set of all the i-dim. vector subspaces of V(n, g),

- et V[ C il VERKI C i)
Nifn,q): = [V = 1 = ,
S V=V G s
Ai={U+v|U €VyveV(nq)}: setof all the i-dim. affine subspaces of the affine space
A = AG(n,q) = V(n,q). |As| = ¢"*N;(n, q)

Ex.1. The projective general linear group PGL(n + 1,q) acts 2-transitively on the projec-
tive space P = PG(n, g) and transitively on P;, the set of all the i-dim.proj.subspaces. By the
principle we have

PGi(n,q) : = (P,Py) is a 2-((¢""! — 1) /(g — 1), (¢t = 1)/(g — 1), Ni—1(n — 1, g)) design.

Ex.2. The affine general linear group AGL(n,q) : = {z — xA+b| A € GL(n,q), b€ V(n, 0}
acts 2-transitively on the affine space A = AG(n,q) = V(n,q) and transitively on A;, the set
of all the -dim. affine subspaces. By the principle we have

AGi(n, q) »= (A, Ay) is a 2-(¢™, ¢, Nj—y(n — 1,q)) design. In particular,
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AGi(n,q) is a 2-(¢", g, 1) design.

Also, for n > 3, AGL(n,2) acts 3-transitively on A= V(n,q) and so
AG;(n,2) is a 3-(27, 2%, N;—2(n — 2,2)) design, in particular, '
AG2(n,2) is a 3-(27%,4, 1) design.

Ex.3. G = PGL(2,q") (res. PGL(2,q)) acts 3-transitively on the projective line Q@ ={oo} U
GF(¢"™) (res. B = {00} UGF(q)) and so by the principle we have

(€, BC) is a 3-(g™ + 1,q + 1,1) design, which is called Witt’s circle geometry, spherical
geometry or spherical design and denoted by CG(n, g) etc.

CG(n, q) is an extension of AG(n, g). CG(2,g) is called Miquelian ( Moebius or inversive)
plane.

Another well-known examples :

4 5
G ASL(1,9),q = —1(mod 4) PSL(2,11)
Q GF(q) {o0} UGF(11)
B (GF(g) \ {0})° {oo} U (GFOALN {0})
(Q, B%) | Paley design Mathieu-Witt design Wig
Ex.4. Let

g = p° : odd prime p power with g = —1 (mod 4), that is,g—1=2" odd.

K = GF(q) : finite fleld with ¢ elements.

Q= (K\{0))2={z?|2#0¢ K} : set of nonzero squares in K.

(i) The affine group G = ASL(1,q) :=={x— ax+b|a € Q,b € K} acts 2-homogeneously on
K.

(ii) The pair (K, Q%) is a symmetric 2-(g, (g—1)/2, (¢—3)/4) design, which is one of Hadamard
2-design called Paley design.

(iii) The block set : Q° = {Q +1i|i € K},
the setwise stabilizer of QinG: Gg={z—ar|acQ} =Q.

(iv) Forany i # j € K,

(Q+)N@Q+N=1RN(Q+1)]=(g-3)/4

Ex.5. (see T.Beth, Some remarks on D.R.Hughes’ construction of Mi2 and its associated de-
sign, in “ Finite geometries and designs” London Math.Soc.Lect.Note 49, 1981)
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2 A Motivation, a Main Problem and Notation

Constructing the design (€, BY)(determining A) by the Principle : “#-homo.per.gp.— t-design”
is reduced to determining the subgroup Gg. This may be not interesting as a group-theoretic
problem when most or all the subgroups of G are known. However, suggested by above xam-
ples, especially ex.3-5, we can expect to obtain new (sometimes interesting) designs (2, B®) by
choosing appropriate subsets B of (2, even if a permutation group (Q, G) is very simple and all
the subgroups of G are known. We consider the following

Main Problem. What groups (2, G) and what subsets B C 2 yield interesting new de-
signs (2, BY) 7 Particularly, in the case that G is the linear fractional group PGL(2,q) or
special linear fractional group PSL(2,q) on the the projective line © = {oo} U GF(g), what ¢
and what B C Q yield interesting new designs (2, B) ?

Notation (We fix throughout this talk)
g =p° : odd prime p power
( In many cases we assume that ¢ = —1 (mod 4), that is, g—1 =2- 0dd.)
K = GF(q) : finite field with q elements
F = K\ {0} : nonzero elements in K
Q=F>={z?|2#0ec K} : set of nonzero squares in K
N = F\ Q : set of nonsquares in K
(Note that -1 e Nand N=-Q when g—1=2. odd.)
For i € K,
Vi = {00} U(Q +1), in particular V = {co} UQ.
1 = {0} U K : projective line over K
PGL(2,q) = {z — (az + b)/(cx + d) | a,b,¢,d € GF(q), ad— be # 0}
: linear fractional group on Q.
PSL(2,q) = {2+ (ax +b)/(cx + d) | a,b,c,d € GF(q), ad — be € Q}
: special linear fractional group on Q.

For B C Q with |B] > 3,
D(g, B) = (9, BPCL2a),
D(g, B) = (9, BPSL@29),

Note that

(1) PGL(2,q) acts 3-transitively (so 3-homogeneouly) on Q, and by the principle D(g, B)isa
3-design for any B C Q with |B| > 3.
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(2) PSL(2,q) acts 2-transitively (so 2-homogeneouly) on £, and by the principle D(g, B) is a
\ 2-design for any B C Q with |B} > 2.

(8) If g—~1=2-odd, PSL(2,q) acts 3-homogeneouly on Q, and by the principle D(g, B) is a
3-design for any B € Q with |B| > 3.

Main Problem. What ¢ and what B C  yield interesting new designs D(q, B), D{(¢, B) ?

3 Obtained results etc.

Suggested by Ex.4 and 5, We have the following two theorems. (these may possibly have been
already known explicitly or implicitly.)

Theorem 1 ([1] 1988)

Letg—1=2- odd and G = PSL(2,q).

+ (i) The setwise stabilizer of Vo in G : Gy, = {z—azx|a € Q} = Q,
(i5) D(g, Vo) = (Q,VF) is a 3-(¢ + 1, (g + 1)/2, (g + 1)(g — 3)/8) design,
(#43) The block set is

Ve ={Vilie K}U{Vi|ie K}U{V;AVj|i#jeK}U{ViAV;|i#je K},

where V; = Q\ V; and A denotes symmetric difference, namely
XAY = (X\YVYUX\X) for subsets X,Y of Q.
(iv) If D{g, Vo) is a 4-design, then g = 11 and it becomes a 5-(12,6,1) design,
namely the Mathieu-Witt design Whs.
{ D(11, Vo) is the very same as the design of Ex.5.)

Rough sketch of Theorem 1.
(i) is proved by standard permutaion group arguments and by using the well-known list of the
- subgroups of G = PSL(2,q).
(iii) Note that G = Goo U GoTGoo, where 7 : £ — —1/z, and examine the actions of G and
T to V;.

Remark for (ii), (lii). Note that the design D(g, Vo) =(Q, V) is different from the design
(Q,B) with block set B ={V; | i € K}U{V; | i € K}, which is an extension of the Paley design
(K,Q%), ie. Q\ {c0} = K and {B\ {o0} | 00 € B € B} = Q6.

Ex. D(23,Vp) is a 3-(24, 12, 60) design. D(3%,V}) is a 3-(28, 14, 84) design.
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It seems that these designs are not found in the design table known till then.

Theorem 2. ([1] 1988) Ifq=23,G = PSL(2,23) and
B=V AV AVy ={,1,13,14,18,19,20,22},
then D(23, B) is a 5-(24,8,1) design, namely the Mathieu-Witt design Woy.

Remark. We can take another B as a basis block. For example,
B=VWAV1AVs, OAVIAVIs, VWAVIAV 4
Question : Which B is the most natural 7

The above theorems lead us to two approaches :

Approach I. Under the condition “(g — 1) = 2- odd” and keeping the notation for G, Q,V;
etc., take symmetric differences of three V;'s as a base block B and consider designs D(g, B)
somewhat systematically. Note that determining the value of |V; A V; A V| is reduced to
determining the value of |[(Q + 1) N (Q + /) N(Q + k) or |QN(Q + 1) N(Q +1)|.

Approach II. Remove the condition :“g—1=2-o0dd ”.
As for Approach I, we consider

Problem 1. Determine the value of [QN(Q + 1) N (Q +4)| for i # 0,1 € K (as precisely as
possible).

Problem 2. Set B = G AVI AV, (i # 0,1 € K) and determine (the order of) the sta-
bilizer G5 and the parameters of the 3-design D(g, B) (as precisely as possible).

We have obtained a few results in the case § = —1.

In the following (Theorem 3 — Theorem 4),

Suppose that ¢ — 1 = 2- odd and set

V=V AVI AV_y, where V; = {o0} U (Q +1).

V=0\V :

G = PSL(2,q)

H =Gy = Gy : setwise stabilizer of V or V in G

7o {V7 | o0 € G}: set of the images of V under all 0 € G



Theorem 3 ([4] 2003) Foranyi#0€ K,

:Qn(Qw)m(Q—z’)l:{gigﬁ aen

Corollary 1 For any i # 0 € K, we have the following values.
(1) The case 2 € Q.

1ROQ+DHNQ -9 = NN(N+)NN ~4) |=
INA(@Q+DN(Q -9 = @NN+HNN —9) |=

[QN@+HNWN =) = N (Q@+ )N —1) |

g—T)/8.

(¢g+1)/8 ifieqQ,

Il
N e

1QN@Q-)NN+4) |=| NN (Q—-i)n (N +i)|= W—T/8 ifieq,

(2) The case2 € N.
All the values are equal to (g — 3)/8.

Corollary 2 (1) If 2€Q, then |V |=|V |=(g+1)/2.
(2)If 2€ N, then |V |=(¢g+5)/2 and | V |= (g - 3)/2.

Theorem 4 ([4] 2003)  Suppose 2 € N. Then the following hold.
(1) (i) The case p # 3.
H= (1, p), the subgroup generated by T and p, which is the 4-group.
(i) The case p = 3.

H=(1, p,m), the subgroup generaled by 7, p and m, which is isomorphic

to A4, the alternating group of degree 4.
Herer:zw— —1/z, prx— (z+1)/(c—1) and r:z—~ 2+ 1.

(2) The design D(q, V) = (Q, VC) with point set Q and block set VC is
a 3-(q+ 1,(q — 3)/2, \) design, where

A:{<q&a@—mw—ﬂvm forp#3
(q—3)g-5)g-7)/(3-64)  forp=3,

(g=7)/8 ifieN.

(g+1)/8 ifieN.
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Remark. I do not know whether this design is interesting or not, but this is a new infinite

family of 3-designs. If D(g, V) is a 4-design, then ¢ = 107 and it may be a

4-(108, 52, 5-7-13-17) or a 5-(108, 52, 5. 6- 7 - 17) design. I do not know whether it is true

or not. But, this design cannot be a 6-design.
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Rough sketch of proof of Theorem 3.
Let ¢ be the quadratic character of K = GF(q) defined by

1 forz € @,
PY(x) =4 =1 forz €N,
0 for x = 0.

To seek the values of
o= (@+1N@+)NQ|, L= (@Q@+F+DNQ+)NN]| fori#0,1eK

we consider

U=z~ Dyple — P(=22) = 9(=2) 3 ¥z ~ iz — ().
€K c€K
We have relations among a;, §; and ¥;, that is, we can express o; and 5; by ¥;. For example,
when 2 € Q, we have
= (g-3-1;)/8 Bi=(q-3+¥;)/8 ific(Q+1)NN
ai=(g—-7-9;)/8, Bi=(q¢+1+¥;)/8 otherwise.
Though it seems difficult that determining the precise value of ¥; for general 4, we can precisely
evaluate W¥;, o; and f; for ¢ = —1. That is, we can easily show ¥_; = 0 and the proof is done.
{(Theorem 4 is proved by using Theorem 3 and the well-known list of the subgroups of G =
PSE(2,q), etc. and through somewhat detailed arguments.)

" Remark 1. V.3 = ¥ i 9(x — 1)p(z + 1)9p(—22) is not the Jacobi sum :

Jo(l/%@/),w) = Z ¢($1)¢($2)w($3)
21+22+23=0
(¥-1 is & subsum of Jo(y,1,%).) It is known that Jo(¥,9,1) = 0 [Lidl, Niederreiter, Finite
Fields, p.206, 5.20.Theorem.]

Remark 2. As mentioned in ‘sketch of proof of Theorem 3, determining the value of
a =l @QN(Q+1)N(Q +1) | is reduced to determining the value of ¥;, and so we can
say Problem 2 in the following form:

Problem 2'. Determine the value of ¥; for i # 0,1 € K as precisely as possible. (We
have seen that ¥_; = 0 and see that ¥; is divisible by 4 for any i £ 0,1 € K .) For what 4 can

we determine the precise value of ¥; ? What is the maximum or minimum of the values ¥; 7
CIfweset B; = Vo A Vi AV;, what 4 yleld interesting designs (Q, B;%) 7
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. Remark 3. In [Berndt,Evans,Williams: Gauss and Jacobi sums, John Wiley Sons, 1998,
Theorem 6.3.2] a result containing the case ¢ = p in Theorem 3 and Corollary 1 is proved, by
making skillful use of basic facts about quadratic residues modulo p. We proved Theorem 3
with ¢ = p®, using the quadratic character ¢ of K and .1, a kind of variation of Jacobi sum.
I owe partially the idea to Professor Tomio Kubota and I am deeply grateful to him.

Remark 4. By Theorems 3, 4 and their proofs, we see that there is a relation among
(i) finite fields (translations of the squares in a finite field) ,

(il) number theory (multiplicative characters of finite fields),

(iii) (classical) permutaion groups, and

(iv) designs.

Such a relation seems interesting.

Remark 5. Theorem 4 does not deal with the case 2 € Q. This case seems to be some-
~ what difficult, and under investigation.

As for Approach II, we consider the following two problems.

Take G = PSL(2,q) or PGL(2,q).
Problem 3. Suppose that ¢ —1 = 2% odd, e > 2. For each 7,1 <1i < ¢, set
B; = {00} U F¥, where F = GF{qg) \ {0}
and determine the stabilizer Gp, and construct designs (2, BS) = D(qg, B;) or D(g, B;).

Problem 4. Let
p : any prime number, ¢ : a power of p
m: adivisorof g —1withl <m<g¢g—1.
U : a subgroup of order m of the cyclic group F = GF(q) \ {0} and set
B = {o0}UU.
Determine the stabilizer G'g and construct designs (2, B¢) = D(g, B) or D(q, B).

[2] (1997) gave an answer to Problem 3 for ¢ = p prime.
(3] (with T Meixner,1997) gave an answer to Problem 4.
(Their statements are slightly lengthy, and omitted here.)

These papers provided some new designs. For example, in the case
g=p=29, q—-1=2%.7,
D(29, By) is & 3-(30, 15, 15-13) design,
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D(29, Bs) is a 3-(30, 8, 48) design,

B = {o0} U F7,D(29, B) is a 3-(30, 5, 15) design.
It seems that these designs are not found in the design table known till then (e.g. D.L.Kreher, ¢-
Designs, ¢t > 3, in: CRC handbook of combinatorial designs (eds. C.J.Colbourn and J.H.Dinitz),
47-66, CRC Press, 1996)

Problem 3 is contained in Problem 4, and so a result in [2] is a part of [3]. However, [2]
dealt with the following problem, too :

Problem 5. Set G = PSL(2,q) in Problem 3. Then G acts 2-homogeneously, but not 3-
homogeneously on (2. Hence, by the Principle, D(g, B;) in Problem 3 is a 2-design for any 3,
but we do not see easily whether it is a 3-design or not.

When is D(g, B;) a 3-design ?

We had a partial answer to this problem:

Theorem 5 ([2] 1997)

Suppose that p is a prime such that p — 1 = 2° . m, where e > 2 and m is odd. For each
7,1 <4< e, set

B; = {co} U F?%

(1) For any 4,1 < ¢ < e, D{(p, B;) is not a 3-design.
(2) When m = 3, D(p, B,) is not a 3-design.
(3) Suppose that (F2° —1)NQ # 0 and (F* —1)N N # 0. Then

(1) When m =5, D(p, B.) is a 3-(p+ 1,6, 12) design.

(ii) When m = 7, D(p, Be) is a 3-(p + 1,8, 24) design.

(I do not know why, but we find magic numbers 6,12 ; 8,24 here, too! )

(iil) Any 3-design D{p, B,) for m = 5 or 7, is not a 4-design.
(4) When m = 5, the following are equivalent.

i) (F¥ ~1)NQ # 0 and (F¥ -1)NnN £¢

(i) 5 ¢ F*, that is, 5 is not a fourth power in GF(p).

(iif) 5P=D/% £ 1 in GF(p).

Ex. ) p=29,p-1=22.7,
D(29, By) is a 3-(30, 8, 24) design.
(It seems that this is not found in the design table known till then.)
({yp=41,p—1=23.5,
D(41, Bg) is a 3-(42, 6, 12) design.
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As for (3),(4) in Theorem 5, we have the following question in general:

Problem 6. Let g be a prime p power such that ¢ —1 = 2°-m , where e > 2 and m is
odd, and set F'= GF(g)\ {0},Q = F% N = F\ Q. Then

(%) (F¥ - 1)NQ#Pand (F¥ —1)NN£0 7
(Does F** — 1 contain both square and nonsquare elements in GF(g) impartially 7 )
(*) is equivalent to “ Each of equations

¥ —1 =192 and 2%° — 1 = ay?, where « is a primitive element of F'

has solutions z # 0 and y # 0 in GF(g).”

In what case is (%) true ?

(1) Professor T.Kubota kindly infomed me that (*) holds whenever m > 2¢ + 2, giving his
elegant proof which uses a Jacobi sum skillfully.

* (2) By his comments we also see the following:

(1) 5 is a fourth power in GF(p) if and only if p is of the form p = 22 + 100y? (2, y inte-
gers). (see e.g. Hasse, Bericht ueber neuere Untersuchungen--- Teil I1,1930, 2nd ed.
Physica-Verlag 1965, p.69)

(ii) In the case p = 40961, p—1=21%.5 p=23124100-20% and so 5 is a fourth power
in GF(p). Therefore (x) does not hold by Theorem 5 (4).

Here we can see an interesting connection among finite fields, number theory and designs,
too.

4 Something like Summary

I have taken the Principle : “t-homo. perm. gp. — t-design construction” as a Magic For-
" mula ( or Parrot-Cry, Baka no Hitotsu-oboe ?), and we have investegated some problems
on the basis of the Principle, and we see an interesting Connection among
(i) Finite Fields (translations of the squares in a finite field etc.)
(i) Number Theory (characters, Jacobi sum, biquadrétic residues etc.)
(iii) (Classical) Permutation Groups, and
(iv) Designs.

I hope that you are interested in such an approach and investigate it further from various
or appropriate new points of view that get nearer to the essence.



