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I would like to talk mainly about a survey of my papers
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40(1988) 393-414.
[2] Infinite families of 2- and 3-designs with parameters $v=p+1$ , $k=$ $(p -1)/2^{i}+1$ , where $p$

odd prime, $2^{e}\mathrm{T}(p-1)$ , $e\geq 2,1\leq \mathrm{i}\leq e$ , J.Combin.Designs $5(1997)$ 95-110.
[3] (with T.Meixner) A remark on the action of $PGL(2, q)$ and $PSL(2, q)$ on the projective

line, Hokkaido Math.J.26(1997) 203-209,

[4] Translations of the squares in a finite field and an infinite family of 3-designs Europ.J. Combin.
24(2003) 253-266.

1 Design construcion principle and some well-known examples

A well-known powerful method for constructing designs from groups:
“ $t$-homogeneous permutation group $arrow t$-design construction principle ”

$G$ : a $t$-homogeneous permutation group on a fin\’ite set $\Omega$ (that is, $\forall$ two $t$-subsets $T,T’$ of 0,
$\exists\sigma\in G$ such that $T^{\sigma}=T’$), $|\Omega|=v$ and
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$B\subset\Omega$ , $|B|=k\geq t$

$B^{G}$ , where

Though this is quite elem entary and simple–in fact}this is immediately shown only by
counting the number of $\{(T, C)|T\subset\Omega, |T|=t, T\subset C\in B^{G}\}$ in two ways–, by this princi-
pie we can construct various interesting designs if we take various appropriate $(\Omega, G)$ and $B$ .
Some well-known examples :

1 2 3
$G$ $PGL(n+1, q)$ $AGL(n, q)$ $PGL(2, q^{n})$

$\Omega$ $PG(n, q)$ $V(n, q)=AG(n, q)$ $\{\infty\}\cup GF(q^{n})$

$B$ an $i- \mathrm{d}\mathrm{i}\mathrm{m}.\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{j}.\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{s}\mathrm{p}$. an i-dim.aff.subsp. $\{\infty\}\cup GF(q)$

$(\Omega, B )$ $PG_{i}(n, q)$ $AG_{i}(n, q)$ $\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{t}^{2}\mathrm{s}$ circle geometry

$\mathrm{V}=V(n, q)$ $=K^{n}$ : $n- \mathrm{d}\mathrm{i}\mathrm{m}.\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}$ space over the finite field $K=GF(q)$
For $\mathrm{i}$ , $1\leq \mathrm{i}<n$ ,

space

Ex.l. The projective general linear group $PGL(n+1, q)$ acts 2-transitively on the projec-
tive space $\mathrm{P}=PG(r_{\iota}, q)$ and transitively on $\mathrm{P}_{i}$ , the set of all the i-dim.proj.subspaces. By the
principle we have

$PG_{i}(n_{i}q)$ $:=(\mathrm{P}, \mathrm{P}_{i})$ is a 2-$((q^{n+1} -1)/(\mathrm{g}-1), (q^{i+1}-1)/(q-1)$ , $N_{i-1}(n-1, q))$ design.

$\mathrm{E}\mathrm{x}.2$ . The affine general linear group $AGL(n, q)$ $:=\{x\mapsto xA+b|A\in GL(n, q), b\in V(n, q)\}$

acts $2$-transitively on the affine space $\mathrm{A}=AG(n,q)=V(n,q)$ and transitively on $\mathrm{A}_{i}$ , the set
of $\mathrm{a}\mathrm{l}\mathrm{i}$ the i-dim. affine subspaces. By the principle we have

$AG_{i}(n, q):=(\mathrm{A}, \mathrm{A}_{i})$ is a $2-(q^{n}, q^{i}, N_{i-1}(n-1,q))$ design. In particular
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$AG_{1}(n, q)$ is a $2-(q^{n}, q, 1)$ design.
Also, for $n\geq 3$ , $AGL\{n,$ $2$ ) acts 3-transitively on $\mathrm{A}=V(n,q)$ and so
$AG_{i}(n,2)$ is a $3-(2^{n}, 2^{i}, N_{i-2}(n-2,2))$ design, in particular,
$AG_{2}(n, 2)$ is a $3-(2^{n}, 4, 1)$ design.

Ex.3. $G=PGL(2, q^{n})(\mathrm{r}\mathrm{e}\mathrm{s}. PGL(2, q))$ acts 3-transitively on the projective line $\Omega=\{\infty\}\cup$

$GF(q^{n})(\mathrm{r}\mathrm{e}\mathrm{s}. B=\{\infty\}\cup GF(q))$ and so by the principle we have
$(\Omega, B^{G})$ is a 3-(q $+1$ , $q+1,1$) design, which is called Witt’s circle geometry, spherical
geometry or spherical design and denoted by $CG(n, q)$ etc.
$CG(n, q)$ is an extension of $AG_{1}(n, q)$ . $CG(2, q)$ is called Miquelian ( Moebius or inversive)
plane.

Another well-known examples :

4 5
$G$ $ASL(1, q)$ , $q\equiv-1$ (mod 4) $PSL(2, 11)$
$\Omega$ $GF(q)$ $\{\infty\}\cup GF(11)$

$B$ $(GF(q)\backslash \{0\})$ $\{\infty\}\cup(GF(11)\backslash \{0\})$

$(\Omega, B )$ Paley design Mathieu-Witt design $W_{12}$

Ex.4. Let
$q=p^{e}$ : odd prime $p$ power with $q\equiv-1$ (mod 4), that is, $q-1=2$ . odd.
$K=GF(q)$ : finite field with $q$ elements.
$Q=(K\backslash \{0\})^{2}=\{x^{2}|x\neq 0\in K\}$ : set of nonzero squares in $K$ .
( $\mathrm{i}_{/}^{\backslash }$ The afflne group $G=ASL(1, q):=\{x\mapsto ax+b|a\in Q, b\in K\}$ acts 2-homogeneously on

$K$ .
(ii) The pair $(K, Q^{G})$ is a symmetric 2-(g, $(q-1)/2$ , $(q-3)/4$) design, which is one of Hadamard

2-design called Paley design.
(iii) The block set : $Q^{G}=\{Q+i|\mathrm{i}\in K\}$ ,

the setwise stabilizer of $Q$ in $G$ : $G_{Q}=\{x\mapsto ax|a\in Q\}\cong Q$ .
(iv) For any $\mathrm{i}\neq j\in K$ ,

$|(Q+\mathrm{i})\cap(Q +j)|=|Q$ $\cap(Q+1)|=(q-3)/4$ .
Ex.5, (see T.Beth, Some remarks on D.R.Hughes’ construction of $M_{12}$ and its associated de-
sign, in “ Finite geometries and designs” London Math.S $\mathrm{o}\mathrm{a}\mathrm{L}\mathrm{e}\mathrm{c}\mathrm{t},\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{e}$

$49$ , 1981
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2 A Motivation, a Main Problem and Notation

Constructing the design (St, $B^{G}$) (determining $\lambda$) by the Principle : $\iota‘ t- \mathrm{h}\mathrm{o}\mathrm{m}\mathrm{o}.\mathrm{p}\mathrm{e}\mathrm{r}.\mathrm{g}\mathrm{p}.arrow$ #-design’’
is reduced to determining the subgroup $G_{B}$ . This may be not interesting as a group-theoretic
problem when most or all the subgroups of $G$ are known. However, suggested by above xam-
ples, especially ex.3-5, we can expect to obtain new (sometimes interesting) designs $(\Omega, B^{G})$ by
choosing appropriate subsets $B$ of $\Omega$ , even if a permutation group $(\Omega., G)$ is very simple and all
the subgroups of $G$ are known. We consider the following

Main Problem. What groups $(\Omega, G)$ and vhat subsets $B\subset\Omega$ yield interesting new de-
signs $(\Omega, B^{G})$ ? Particularly, in the case that $G$ is the linear fractional group $PGL(2, q)$ or
special linear fractional group $PSL(2, q)$ on the the projective line $\Omega=\{\infty\}\mathrm{U}GF(q)$ , what $q$

and what $B\subset\Omega$ yield interesting new designs $(\Omega, B^{G})$ ?

Notation (We fix throughout this talk)
$q=p^{e}$ : odd prime $p$ power

(In many cases we assume that $q\equiv-1$ (mod 4), that is, $q-1=2$ . odd.)
$K=GF(q)$ : ffnite field with $q$ elements
$F=K\backslash \{0\}$ : nonzero elements in $K$

$Q=F^{2}=\{x^{2}|x\neq 0\in K\}$ : set of nonzero squares in $K$

$N=F\backslash Q$ : set of nonsquares in $K$

(Note $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-1\in N$ and $N=-Q$ when $q-1=2$ . odd.)
For $\mathrm{i}\in K$ ,

$V_{\dot{\mathrm{t}}}=\{\infty\}\mathrm{u}(Q+\mathrm{i})$ , in particular $V_{0}=\{\infty\}\mathrm{U}Q$ .
$\Omega=\{\infty\}\cup K$ : projective line over $K$

$PGL(2, q)=\{x\vdasharrow(ax+b)/(cx+d)|a, b,c, d \in GF(q), ad-bc\neq 0\}$

:linear fractional group on $\Omega$ .
$PSL(2, q)=\{x\mapsto(ax+b)/(\mathrm{c}x+d)|a, b, c, d\in GF(q), ad -bc \in Q\}$

special linear fractional group on $\Omega$ .

For $B\subset\Omega$ with $|B|\geq 3$ ,
$\tilde{\mathrm{D}}(q, B)=(\Omega, B^{PGL(2,q)})$ ,
$\mathrm{D}(q, B)=(\Omega, B^{PSL(2,q)})$ ,

Note that
(1) $PGL(2, q)$ acts $3$-transitively (so 3-homogeneouly) on $\Omega$ , and by the principle $\tilde{\mathrm{D}}(q, B)$ is a

3-design for any $B\subset\Omega$ with $|B|\geq 3$ .
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(2) $PSL(2, q)$ acts $2$-transitively (so 2-homogeneouly) on $\Omega$ , and by the principle $\mathrm{D}(q, B)$ is a
2-design for any $B\subset\Omega$ with $|B|\geq 2$ .

(3) If $q-1=2$ . odd, $PSL(2, q)$ acts $3$-homogeneouly on $\Omega$ , and by the principle $\mathrm{D}(q, B)$ is a
3-design for any $B\subset\Omega$ with $|B|\geq 3$ .

Main Problem What q and what B $\subset\Omega$ yield interesting new designs $\mathrm{D}(q, B),\tilde{\mathrm{D}}(q,$B) ?

3 Obtained results etc.

Suggested by Ex.4 and 5, We have the following two theorems, (these may possibly have been
already known explicitly or implicitly.)

Theorem 1 ([1] 1988)
Let $q-1=2$ . odd and $G=PSL(2, q)$ .
(i) The setwise stabilizer of $V0$ in $G$ : $Gv_{0}=\{x\mapsto ax|a\in Q\}\cong Q$ ,
(it) $\mathrm{D}(q, V_{0})=(\Omega, V_{0}^{G})$ is $a$ 3-(g+l, $(q+1)/2$ , $(q+1)(q-3)/8$) designs
(iii) The block set is

$V_{0}^{G}=\{V_{i}|\mathrm{i}\in K\}\cup\{\overline{V_{i}}|\mathrm{i}\in K\}\cup\{V_{\dot{\mathrm{t}}}\triangle Vj|\acute{\iota}\neq\acute{J}\in K\}\cup$ { $V_{i}\triangle$ I4 $|i\neq j\in K$},

where $\overline{V_{i}}=\Omega\backslash V_{i}$ and $\triangle$ denotes symmetric difference, namely
$X\triangle Y:=(X\backslash Y)\cup(Y\backslash X)$ for subsets $X$, $Y$ of 0.

(iv) If $\mathrm{D}(q, V\mathrm{o})$ is a 4-design, then $q=11$ and it becomes a 5-(12, 6, 1) design,
namely the Mathieu-Witt design $W_{12}$ .

$(\mathrm{D}(11, V_{0})$ is the very same as the design of Ex.5.)

Rough sketch of Theorem 1.
(i) is proved by standard permutaion group arguments and by using the well-known list of the
subgroups of $G=PSL(2, q)$ .
(iii) Note that $G=G_{\infty}\cup G_{\infty}\tau G_{\infty}$ , where $\tau$ : $x\mapsto-1/x$ , and examine the actions of $G_{\infty}$ and

$\tau$ to $V_{i}$ .

Remark for (ii), (iii). Note that the design $\mathrm{D}(q, V_{0})=(\Omega, V_{0}^{G})$ is different from the design
$(\Omega, \mathrm{B})$ with block set $\mathrm{B}$ $=$ { $V_{i}|$ a $\in K$ } $\cup$ $\{\overline{V_{i}}|\mathrm{i}\in K\}$ , which is an extension of the Paley design
$(K, Q^{G}\infty)$ , i.e. $\Omega\backslash \{\infty\}=K$ and $\{B\backslash \{\infty\}|\infty\in B\in \mathrm{B}\}=Q^{G}\infty$ .

Ex. $\mathrm{D}(23, V_{0})$ is a 3-(24, 12, 60) design. $\mathrm{D}(3^{3}, V_{0})$ is a 3-(28, 14, 84) design.
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It seem $\mathrm{s}$ that these designs are not found in the design table known till then.

Theorem 2, ([1] 1988) If $q=23$ , $G=PSL(2,23)$ and
$B=V_{0}\triangle V_{1}\triangle V_{4}=\{\infty, 1,13,14,18,19,20,22\}_{J}$

then $\mathrm{D}(23, B)$ is a 5-$(24, \mathrm{S}, 1)$ design, namely the Mathieu-Witt design $W_{24}$ .

Remark We can take another $B$ as a basis block. For example,
$B=V_{0}\triangle V_{1}\triangle V_{6}$ , $V_{0}\triangle V_{1}\triangle V_{15}$ , $V_{0}\triangle V1\triangle\overline{V_{-4}}$ .

Question: Which $B$ is the most natural ?

The above theorems lead us to two approaches :

Approach I. Under the condition “$(q-1)$ $=2$ . odd” and keeping the notation for $G$ , $Q$ , $V_{i}$

etc, take symmetric differences of three $V_{i}’ \mathrm{s}$ as a base block $B$ and consider designs $\mathrm{D}(q,$ $B1$,

somewhat systematically. Note that determining the value of $|V_{i}\triangle Vj\triangle V_{k}|$ is reduced to
determining the value of $|(Q+\mathrm{i})\cap(Q+j)\cap(Q+k)|$ or $|Q\cap(Q+1)\cap(Q+\mathrm{i})|$ .

Approach II. Remove the condition :“ q $-1=2$ . odd ”.

As for Approach $\mathrm{I}$ , we consider

Problem 1. Determine the value of $|Q\cap(Q+1)\cap(Q+\mathrm{i}\rangle$ | for i $\neq 0,1\in K$ (as precisely as
possible).

Problem 2, Set $B=V_{0}$ ts $V_{1}\triangle V_{i}(\mathrm{i}\neq 0,1\in K)$ and determine (the order of) the sta-
bilizer $G_{B}$ and the parameters of the 3-design $\mathrm{D}(q, B)$ (as precisely as possible).

We have obtained a few results in the case $\mathrm{i}=-1$ .

In the following (Theorem 3– Theorem 4),
Suppose that $q-1=2$ . odd and set
$V=V_{0}\triangle V_{1}\triangle V_{-1}$ , where $V_{i}=\{\infty\}\cup(Q+\acute{\iota})$ .

$\overline{V}=\Omega\backslash V$

$G=PSL(2, q)$

$H=G_{V}=G_{\overline{V}}$ : setwise stabilizer of $V$ or $\overline{V}$ in $G$

$\overline{V}^{C\prime}=\{\overline{V}^{\sigma}|\sigma\in G\}$ : set of the images $\mathrm{o}\mathrm{f}\overline{V}$ under all $\sigma\in G$
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Theorem 3 ( [4] 2003 ) For any $\mathrm{i}\neq 0\in K$,

$|Q\cap(Q+\mathrm{i})\cap(Q-\mathrm{i})|=\{$ $(q-3)/8(q-7)/8$ if $\mathit{2}\in Q$ ,
if $\mathit{2}\in N$.

Corollary 1 For any i $\neq 0\in K$ , we have the following values.
(1) The case $2\in Q$ .
$|Q\cap(Q+i)\cap(Q-i)|=|N\cap(N+i)\cap(N-i)|=(q-7)/8$.
$|N\cap(Q+\mathrm{i})\cap(Q-\mathrm{i})$ $|=|Q\cap(N+\mathrm{i})\cap(N-i)|=(q+1)/8$ .
$|Q\cap(Q-\vdash \mathrm{i})\cap(N-i)|=|N\cap(Q+\mathrm{i})\cap(N-\mathrm{i})|=\{$

$(q+1)/8$ if $i\in Q$ ,
$(q-7)/8$ if $i\in N$.

$|Q\cap$ $(Q-\mathrm{i})\cap(N+\mathrm{i})|=|N\cap(Q-\mathrm{i})\cap(N+\mathrm{i})|=\{$
$(q-7)/8$ if $i\in Q$ ,
$(q+1)/8$ if $i\in N$.

(1) The case $2\in N$ .
All the values are equal to $(q-3)/8$ .

Corollary 2 (1) If $2\in Q$ , then |V $|=|\overline{V}|=(q+1)/2$ .
(2) If $2\in N$ , then $|V|=(q+5)/2$ and $|\overline{V}|=(q-3)/2$ .

Theorem 4 ([4] 2003) Suppose $2\in N$ . Then the following hold.
(1) (i) The case $p\neq 3$ .

$H=\langle\tau, p\rangle$ , the subgroup generated by $\tau$ and $\rho_{f}$ which is the 4-group.
(ii) The case $p=3$ .

$H=\langle\tau, \rho, \pi\rangle$ , the subgroup generated by $\tau$ , $\rho$ and $\pi$ , which is isomorphic
to $A_{4}$ , the altematin.q group of degree 4.

He $re$ $\tau$ : $x\mapsto-1/x$ , $\rho:x\mapsto(x+1)/(x-1)$ and $\pi$ : $x\mapsto x+1$ ,

(2) The design $\mathrm{D}(q,\overline{V})=(\Omega,\overline{V}^{G})$ with point set $\Omega$ and block set $\overline{V}^{G}$ is
$a$ 3- $(\mathrm{q}+1, (q-3)/2$ , $\lambda)$ design, where

$\lambda=\{$ $(q-3)(q-5)(q-7)/(3\cdot 64)(q-3)(q-5)(q-7)/64$ for $p\neq 3$

for $p=3$ .

Remark. I do not know whether this design is interesting or not, but this is a new infinite
family of 3-designs. If $\mathrm{D}(q,\overline{V})$ is a 4-design, then $q=107$ and it may be a
4- $(10\mathrm{S}, 52,5.7\cdot 13 . 17)$ or a 5-(108, 52, 5 . 6 $\cdot$ 7 $\cdot$ 17) design. I do not know whether it is true
or not. But, this design cannot be a 6-design
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Rough sketch of proof of Theorem 3,

Let $\psi$ be the quadratic character of $K=GF(q)$ defined by

$\psi(x):=\{$

1for $x\in Q$ ,
$0-1$

for $x\in N$ ,
for $x=0$.

To seek the values of

$\alpha_{i}:=|(Q+1)\cap(Q+\mathrm{i})\cap Q|$ , $\beta_{i}:=|(Q+1)\cap(Q+i)\cap N|$ for $\mathrm{i}\neq 0$ , $1\in K$

we consider

$\Psi_{i}:=\sum_{x\in K}\psi(x-1)\psi(x-\mathrm{i})\psi(-2x)=\psi(-2)\sum_{x\in K}\psi(x-1)\psi(x-\mathrm{i})\psi(x)$ .

We have relations among $\mathrm{a};$ , $\beta_{i}$ and $\Psi_{i}$ , that is, we can express $\alpha_{i}$ and $\beta_{i}$ by $\Psi_{i}$ . For example,
when $2\in Q$ , we have

$\alpha_{i}=(q-3-\Psi_{i})/8$ , $\beta_{i}=(q-3+\Psi_{i})/\mathrm{S}$ if $\mathrm{i}\in(Q+1)\cap N$

$\alpha_{i}=(q-7-\Psi_{i})/8$, $\beta_{i}=(q+1+\Psi_{i})/8$ otherwise.
Though it seems difficult that determining the precise value of $\Psi_{i}$ for general $i$ , we can precisely
evaluate $\Psi_{i)}\alpha_{i}$ and $\beta_{i}$ for $\mathrm{i}=-1$ . That is, we can easily show $\Psi_{-1}=0$ and the proof is done.
(Theorem 4 is proved by using Theorem 3 and the well-known list of the subgroups of $G=$

$PSL(2, q)$ , etc. and through somewhat detailed arguments.)

Remark 1. $\Psi_{-1}=\sum_{x\in K}\psi(x-1)\psi(x+1)\psi(-2x)$ is not the Jacobi sum :

$J_{0}( \psi, \psi, \psi)=\sum_{x_{1}+x_{2}+x\mathrm{s}=0}\psi(x_{1})\psi(x_{2})\psi(x_{3})$ .

( $\Psi_{-1}$ is a subsum of $\mathrm{J}_{0}$ ( $\psi$ , $\psi$ , $\psi$) $.$ ) It is known that $J_{0}(\psi_{:}\psi, \psi)=0$ [Lidl, Niederreiter, Finite
Fields, p.206, 5.20.Theorem,]

Remark 2. As mentioned in ‘sketch of proof of Theorem 3’, determining the value of
$\alpha_{i}=|Q\cap(Q+1)\cap(Q+\mathrm{i})|$ is reduced to determining the value of $\Psi_{i}$ , and so we can
say Problem 2 in the following form:

Problem $2’$ . Determine the vaIue of $\Psi_{i}$ for $\mathrm{i}\neq 0$ , $1\in K$ as precisely as possible. (We
have seen that $\Psi_{-1}=0$ and see that $\Psi_{i}$ is divisible by 4 for any $\mathrm{i}\neq 0$ , $1\in K.$ ) For what $\mathrm{i}$ can
we determine the precise value of $\Psi_{\acute{l}}$ ? What is the maximum or minimum of the values $\Psi_{i}$ ?
If we set $B_{i}=V0$ $1\mathrm{s}$ $V_{1}\triangle V_{i}$ , what $i$ yield interesting designs $(\Omega, B_{i}^{G})$ ?
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Remark 3. In [Berndt}Evans,Williams: Gauss and Jacobi gums, John Wiley Sons, 1998,
Theorem 6.3.2] a result containing the case $q=p$ in Theorem 3 and Corollary 1 is proved, by
making skillful use of basic facts about quadratic residues modulo $p$ . We proved Theorem 3
with $q=p^{e}$ , using the quadratic character $\psi$ of $K$ and $\Psi_{-1}$ , a kind of variation of Jacobi sum.
I owe partially the idea to Professor Tomio Kubota and I am deeply grateful to him.

Remark 4, By Theorems 3, 4 and their proofs, we see that there is a relation among
(i) finite fields (translations of the squares in a finite field) ,
(ii) number theory (multiplicative characters of finite fields),
(iii) (classical) permutaion groups, and
(iv) designs.
Such a relation seems interesting.

Rem ark 5. Theorem 4 does not deal with the case $2\in Q$ . This case seems to be some-
what difficult, and under investigation.

As for Approach $\mathrm{I}\mathrm{I}$ , we consider the following two problems,

Take $G=PSL(2, q)$ or $PGL(2, q)$ ,

Problem 3. Suppose that $q-1=2^{\epsilon}$ . odd, $e\geq 2$ . For each $\mathrm{i}$ , $1\leq \mathrm{i}\leq\epsilon$ , set
$B_{i}=\{\infty\}\cup F^{2^{i}}$ , where $F=GF(q)\backslash \{0\}$

and determine the stabilizer $G_{B_{\mathrm{t}}}$ and construct designs $(\Omega, B_{i}^{G})=\tilde{\mathrm{D}}(q, B_{\dot{\mathrm{t}}})$ or $\mathrm{D}(q, B_{i})$ .

Problem 4. Let
$p$ : any prime number, $q$ : a power of $p$

$m$ : a divisor of $q-1$ with $1<m<q-1$ .
$U$ : a subgroup of order $m$ of the cyclic group $F=GF(q)\backslash \{\mathrm{O}\}$ and set

$B=\{\infty\}\cup U$ .
Determine the stabilizer $G_{B}$ and construct designs $(\Omega, B^{G})=\tilde{\mathrm{D}}(q, B)$ or $\mathrm{D}(q, B)$ .

[2] (1997) gave an answer to Problem 3 for $q=p$ prime.
[3] (with T.M $\mathrm{e}\mathrm{i}\mathrm{x}\mathrm{n}\mathrm{e}\mathrm{r},1997$) gave an answer to Problem 4.

(Their statements are slightly lengthy, and omitted here,)

These papers provided some new designs. For example, in the case
$q=p=29$, $q-1=2^{2}\cdot 7$ ,

$\tilde{\mathrm{D}}(29, B_{1})$ is a 3- $(30, 15, 15\cdot 13)$ design,
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$\tilde{\mathrm{D}}$

(2 ) $B_{2})$ is a $3rightarrow(30,8,48)$ design,
$B=\{\infty\}\cup F^{7},\tilde{\mathrm{D}}(29, B)$ is a 3-(30, 5, $15\rangle$ design.

It seems that these designs are not found in the design table known till then (e.g. D.L.Kreher, t-
design, $t\geq 3$ , in : $CRC$ handbook of $comb_{i}natorial$ designs ($\mathrm{e}\mathrm{d}\mathrm{s}$ . C.J.Colbourn and $\mathrm{J}$.H.Dinitz) ,
47-66, CRC Press, 1996)

Problem 3 is contained in Problem 4, and so a result in [2] is a part of [3]. However, [2]
dealt with the following problem, too :

Problem 5. Set $G=PSL(2, q)$ in Problem 3. Then $G$ acts 2-homogeneously, but not 3-
homogeneously on 0. Hence, by the Principle, $\mathrm{D}(q, B_{i})$ in Problem 3 is a 2-design for any $i$ ,
but we do not see easily whether it is a 3-design or not.
When is $\mathrm{D}(q, B_{i})$ a 3-design ?

We had a partial answer to this problem;

Theorem 5 ([2] 1997)
Suppose that $p$ is a prime such that $p-1=2^{e}\cdot$ $m$ , where $\mathrm{e}$ $\geq 2$ and $m$ is odd. For each

$i$ , $1\leq i\leq e$ , set
$B_{i}=\{\infty\}\cup F^{2^{i}}$

(1) For any $\mathrm{i}$ , $1\leq i<e$ , $\mathrm{D}(p, B_{i})$ is not a 3-design,
(2) When $m=3_{1}\mathrm{D}(p, B_{e})$ is not a 3-design,
(3) Suppose that $(F^{2^{e}}-1)\cap Q\neq\emptyset$ and $(F^{2^{e}}-1)\cap N\neq\emptyset$ . Then

(i) When $m=5$ , $\mathrm{D}(p, B_{e})$ is a 3-(p+l, 6, 15) design.
(ii) When $m=7$, $\mathrm{D}(p_{\mathrm{J}}B_{e})$ is a 3-(p+l, 8, 24) design.
(I do not know why, but we find magic numbers 6, 12 ; 8, 24 here, too !)

(ii\’i) Any $3$-design $\mathrm{D}(p, B_{e})$ for $m=5$ or 7, is not a 4-design.
(4) When $m=5$ , the following are equivalent,

(i) $(F^{2^{e}}-1)\cap Q\neq\emptyset$ and $(F^{2^{e}}-1)\cap N\neq$

(ii) $5\not\in F^{4}$ , that is, 5 is not a fourth power in $GF(p)$ .
(iii) 5 $\neq 1$ in $GF(p)$ .

Ex. (i) $p=29$ , $p-1=2^{2}\cdot 7$ ,
$\mathrm{D}(29, B_{2})$ is a 3-(30, 8, 24) design.
(It seems that this is not found in the design table known till then,)

(ii) $p=41$ , $p-1$ $=2^{3}\cdot 5$ ,
$\mathrm{D}(41, B_{3})$ is a 3-(42, 6, 12) design.
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As for (3),(4) in Theorem 5, we have the following question in general:

Problem 6. Let $q$ be a prime $p$ power such that $q-1=2^{e}\cdot$ $m$
) where $e$ $\geq 2$ and $m$ is

odd, and set $F=GF(q)\backslash \{0\}$ , $Q=F^{2}$ , $N=F\backslash Q$ . Then
$(*)$ $(F^{2^{e}}-1)\cap Q\neq\emptyset$ and $(F^{2^{e}}-1)\cap N\neq\emptyset$ ?

(Does $F^{2^{e}}-1$ contain both square and nonsquare elements in $GF(q)$ impartially 7)
$(*)$ is equivalent to “ Each of equations

$x^{2^{e}}-1=y^{2}$ and $x^{2^{e}}-1=\alpha y^{2}$ , where $\alpha$ is a primitive element of $F$

has solutions $x\neq 0$ and $y$ $\neq 0$ in $GF(q)$ .”
In what case is $(*)$ true ?

(1) Professor T.Kubota kindly infomed me that $(*)$ holds whenever $m>2^{e}+2_{\}}$ giving his
elegant proof which uses a Jacobi sum skillfully.

(2) By his comments we also see the following:
(i) 5 is a fourth power in $GF(p)$ if and only if $p$ is of the form $p=x^{2}+100y^{2}(x,$ $y$ inte-

gers). (see e.g. Hasse, Bericht ueber neuere Untersuchungen– Teil 11,1930, 2nd ed.
Physica-Verlag 1965, $\mathrm{p}.69$ )

(ii) In the case $p=40961$ , $p-1=2^{13}$ .5, $p=31^{2}+100\cdot$ $20^{2}$ , and so 5is afourth power
in $GF(p)$ . Therefore $(*)$ does not hold by Theorem 5(4).

Here we can see an interesting connection among finite fields, number theory and designs,
too.

4 Something like Summary

I have taken the Principle :“ $t$-homo. perm. $\mathrm{g}\mathrm{p}$ . $arrow t$-design construction” as a Magic For-
mula ( or Parrot-Cry, Baka no Hitotsu-oboe 7), and we have investegated some problems
on the basis of the Principle, and we see an interesting Connection among
(i) Finite Fields (translations of the squares in a finite field etc.)
(ii) Number Theory (characters, Jacobi sum, biquadratic residues etc.)
(iii) (Classical) Permutation Groups, and
(iv) $\mathrm{D}$ esigns.

I hope that you are interested in such an approach and investigate it further from various
or appropriate new points of view that get nearer to the essence


