An Assmus-Mattson Theorem for Matroids

Keisuke SHIROMOTO

Department of Information Systems
Aichi Prefectural University
Nagakute, Aichi 480-1198, JAPAN;
keisuke@ist.aichi-pu.ac.jp

Abstract
This note is a summary of the results in the preprints [2], [3] and [4] which are the joint works with Thomas Britz.

1 Introduction
The most celebrated result to connect coding theory and design theory is undoubtedly the Assmus-Mattson Theorem [1]. It offers a sufficient condition for the codewords of a given weight in a linear code over a finite field to form a simple t-design. Consequently, it has been used to construct t-designs from linear codes; for instance, 5-designs are in [1] obtained from the extended Golay code, the extended ternary Golay code, and other codes.

The MacWilliams identity [8] for the weight enumerator of a linear code over a finite field plays an important role in the proof of the Assmus-Mattson Theorem. Recently [2], we proved a matroid theoretical analogue of this identity. In [3], we apply this MacWilliams identity for matroids in order to establish the matroid theoretical analogue of the Assmus-Mattson theorem. We prove the Assmus-Mattson theorem for subcode supports of linear codes in [4].

Our matroid theoretic terminology essentially follows that of Whitney [13], Tutte [11], Oxley [10] and Welsh [12].

2 Notation and Terminology
We begin by introducing matroids, as in [10]. A matroid is an ordered pair $M = (E, \mathcal{I})$ consisting of a finite set E and a collection \mathcal{I} of subsets of E satisfying the following three conditions:

(I1) $\emptyset \in \mathcal{I}$.

(I2) If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$.
(I3) If I_1 and I_2 are in \mathcal{I} and $|I_1| < |I_2|$, then there is an element e of $I_2 - I_1$ such that $I_1 \cup e \in \mathcal{I}$.

The members of \mathcal{I} are the \textit{independent sets} of M, and a subset of E that is not in \mathcal{I} is called \textit{dependent}. A minimal dependent set in M is called a \textit{circuit} of M, and a maximal independent set in M is called a \textit{base} of M. For a subset X of E, we define the \textit{rank} of X as follows:

\[\rho(X) := \max\{|Y| : Y \subseteq X, Y \in \mathcal{I}\}. \]

The \textit{dual matroid} M^* of M is defined as the matroid, the set of bases of which is

\[\{E - B : B \text{ is a base of } M\}. \]

When we denote the rank of M^* by ρ^*, the following is well-known:

\[\rho^*(X) = |X| - \rho(M) + \rho(E - X). \]

For a matroid $M = (E, \mathcal{I})$ and a subset T of E, it is easy to check that

\[M \setminus T = (E - T, \{I \subseteq E - T : I \in \mathcal{I}\}) \]

is a matroid which is called the \textit{deletion of T from M}. The \textit{contraction of T from M} is given by

\[M/T = (M^* \setminus T)^*. \]

For an $m \times n$ matrix A over \mathbb{F}_q, if E is the set of column labels of A and \mathcal{I} is the set of subsets X of E for which the multiset of columns labeled by X is linearly independent in the vector space \mathbb{F}_q^m, then $M[A] := (E, \mathcal{I})$ is a matroid and is called a matroid of A over \mathbb{F}_q.

For a vector $x = (x_1, \ldots, x_n) \in \mathbb{F}_q^n$ and a subset $D \subseteq \mathbb{F}_q^n$, we define the \textit{supports} of x and D respectively as follows:

\[\text{supp}(x) := \{i \mid x_i \neq 0\}, \]
\[\text{Supp}(D) := \bigcup_{x \in D} \text{supp}(x). \]

A t-(v, k, μ) \textit{design} is a collection \mathcal{B} of k-subsets (called \textit{blocks}) of a set V with v \textit{points}, such that any t-subset of V is contained in exactly μ \textit{blocks}. In [1], E. F. Assmus, Jr. and H. F. Mattson, Jr. proved the following result, which is thus widely known as the \textit{Assmus-Mattson Theorem} (cf. [7]).

Theorem 2.1 Let C be a linear code on E over \mathbb{F}_q with minimum nonzero weight d, and let d^\perp denote the minimum nonzero weight of C^\perp. Let $w = n$ when $q = 2$ and otherwise let w be the largest integer satisfying

\[w - \left\lfloor \frac{w + q - 2}{q - 1} \right\rfloor < d, \]

defining w^+ similarly. Suppose there is an integer t with $0 < t < d$ that satisfies the following condition: the number of indices i $(1 \leq i \leq n - t)$ such that $A_{C^\perp}(i) \neq 0$ is at most $d - t$. Then for each i with $d \leq i \leq w$, the supports of codewords in C of weight i, provided there are any, yield a t-design. Similarly, for each j with $d^\perp \leq j \leq \min\{w^+, n - t\}$, the supports of codewords in C^\perp of weight j, provided there are any, form a t-design.
3 Main Results

For any subset $T \subseteq E$ and a matroid M, let M/T denote the contraction $M/(E - T)$ and let $M\backslash T$ denote the deletion $M\backslash (E - T)$. The characteristic polynomial $p(M; \lambda)$ of a matroid M on the set E is given by the sum

$$p(M; \lambda) = \sum_{T \subseteq E} (-1)^{|T|} \lambda^{|E| - |T|},$$

where ρ is the rank function of M.

The characteristic enumerator of a matroid M on a set E is given by

$$W_M(\lambda, x, y) = \sum_{T \subseteq E} p(M.T; \lambda)x^{|E-T|}y^{|T|} = \sum_{i=0}^{n} A_M(i, \lambda)x^{n-i}y^{i},$$

where $A_M(i, \lambda) = \sum_{T \in \binom{E}{i}} p(M.T; \lambda)$. Then we proved the following MacWilliams type identity in [2].

Theorem 3.1 If M is a matroid on the set E, then

$$\lambda^\rho(M)W_M^*(\lambda, x, y) = W_M(\lambda, x + (\lambda - 1)y, x - y),$$

and for $i = 0, 1, \ldots, n$,

$$\lambda^\rho(M)A_M^*(i, \lambda) = \sum_{j=0}^{n} A_M(j, \lambda) \sum_{\nu=0}^{j} (-1)^\nu (\lambda - 1)^{i-\nu} \binom{j}{\nu} \binom{n-j}{i-\nu}. \quad (2)$$

Let F be a (not necessarily finite) field, and let $F[z]$ denote the ring of polynomials in an indeterminate z with coefficients in F. Furthermore, define $G := F[z] - \{0, 1\}$. For a matroid M on E with at least one cocircuit, we define for positive integers i and t,

$$\mathcal{R}_M^\lambda(i, t) = \{i \in \{1, \ldots, n-t\} : A_M^*(i, \lambda) \neq 0\};$$

$$d_M = \min \{|X| : X is a cocircuit in M\};$$

$$C_M(i) = \{X : X is a cocircuit of M with |X| = i\};$$

$$\mathcal{H}_M(i) = \{X : X is a hyperplane of M with |X| = i\};$$

$$e_M = \max \{i : no subset X \in \binom{E}{i} contains two distinct cocircuits of M\}.$$

Using the above theorem, we have a generalization of the Assmus-Mattson theorem for matroids.

Theorem 3.2 Let M be a matroid on E with at least one circuit and one cocircuit, and suppose that t ($0 < t < d_M$) is an integer with $|\mathcal{R}_M^\lambda(i, t)| \leq d_M - t$ for some $\lambda \in G$ such that

1. for all $T \in \binom{E}{t}$ and $l = 1, \ldots, n-t$, $A_M^*(l, \lambda) = 0$ whenever $A_M^*(l, \lambda) = 0$.

Then for \(m = \min\{e_{M^*}, n - t\} \),

\[
C_{M,d_{M}}^{*}, \ldots, C_{M,e_{M}}, C_{M^*,d_{M}}, \ldots, C_{M^*,e_{M}}, \mathcal{H}_{M,n-e_{M}}, \ldots, \mathcal{H}_{M,n-d_{M}}, \mathcal{H}_{M^*,n-m}, \ldots, \mathcal{H}_{M^*,n-d_{M^*}}
\]
each forms a \(t \)-design.

Example 3.3 The binary affine matroid \(M = AG(3, 2) \), represented by the binary matrix

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0
\end{pmatrix}
\]

has minimal cocircuit size \(d_{M} = 4 \), and the characteristic enumerator of \(M^* \) (and of \(M \)) is

\[
W_{M^*}(\lambda, x, y) = (\lambda - 1)(\lambda^3 - 7\lambda^2 + 21\lambda - 21)y^8 + 8(\lambda - 1)(\lambda - 2)x^2y^7 + 28(\lambda - 1)x^2y^6 + 14(\lambda - 1)x^4y^4 + x^8.
\]

so \(|\mathcal{R}_{M,3}^{*}| = |\{4\}| = 1 \leq d_{M} - 3\). By letting \(\lambda \) be an indeterminate (resp., by setting \(\lambda := 2 \)), Condition 1 in Theorem 3.2 is satisfied for \(\lambda \) and \(t = 3 \). Hence, \(C_{M,4} \) and \(\mathcal{H}_{M,4} \) each form a 3-design.

Let \(C \) be an \([n, k]\) code over \(\mathbb{F}_q \). Let \(r, i \) be integers with \(1 \leq r \leq k \) and \(1 \leq i \leq n \), and define

\[
\begin{align*}
D_{r}(C) &= \{D \mid D \text{ is an } r \text{-dimensional subcode of } C\}; \\
S_{r}(C) &= \{\text{Supp}(D) \mid D \in D_{r}(C)\}; \\
S_{r,i}(C) &= \{X \in S_{r}(C) \mid |X| = i\}; \\
d_{r}(C) &= d_{r} = \min\{|X| \mid X \in S_{r}(C)\}.
\end{align*}
\]

For an \(r \) with \(1 \leq r \leq k \), the \(r \)-th support weight enumerator \(A^{(r)}_{C}(x, y) \) of \(C \) is defined as follows:

\[
A^{(r)}_{C}(x, y) = \sum_{i=0}^{n} A^{(r)}_{i} x^{n-i} y^{i},
\]

where

\[
A^{(r)}_{i} = A^{(r)}_{i}(C) = |\{D \mid \text{Supp}(D) \in S_{r,i}(C)\}|.
\]

Using Theorem 3.1 and Theorem 3.2, we have the Assmus-Mattson type theorem for subcode supports of linear codes.

Theorem 3.4 Let \(C \) be an \([n, k, d]\) code over \(\mathbb{F}_q \) and let \(m \) be an integer with \(1 \leq m \leq \min\{k, n-k\} \). Suppose that \(t \) (\(0 < t < d \)) is an integer with

\[
|\{i \in \{d_{m}, \ldots, n-t\} \mid A_{M^*}(i, q^{m}) \neq 0\}| \leq d_{m} - t.
\]
If each $S_{r,i}(C)$ form t-designs and $|S_{r,i}(C)| = A_{i}^{(r)}(C)$ whenever $A_{i}^{(r)}(C) \neq 0$, for all r ($1 \leq r \leq m-1$) and all i ($d_r \leq i < d_{m+1}$), then each $S_{m,i}(C)$ $(d_m \leq i < d_{m+1})$ forms a t-design. Moreover, if each $S_{r,j}(C^\perp)$ form t-designs and $|S_{r,j}(C^\perp)| = A_{j}^{(r)}(C^\perp)$ whenever $A_{j}^{(r)}(C^\perp) \neq 0$, for all r ($1 \leq r \leq m-1$) and all j ($d_r^\perp \leq j < d_{m+1}^\perp$), then each $S_{m,j}(C^\perp)$ $(d_m^\perp \leq j < d_{m+1}^\perp)$ form t-design.

From this theorem, we have the following result for doubly-even self-dual codes of length 24, 32 and 48.

Corollary 3.5 For $n = 24$, 32 or 48, let C be a binary doubly-even self-dual $[n, n/2, 4[n/24]+4]$ code. then each $S_{m,i}(C)$ forms a t-design as follows:

<table>
<thead>
<tr>
<th>length n</th>
<th>m</th>
<th>support weights i</th>
<th>t-designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2</td>
<td>12</td>
<td>5-(24, 12, 660)</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>14</td>
<td>5-(24, 14, 8008)</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>16</td>
<td>5-(24, 16, 65598)*</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>14</td>
<td>5-(24, 14, 4290)</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>15</td>
<td>5-(24, 15, 40040)*</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>12</td>
<td>3-(32, 12, 385)</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>14</td>
<td>3-(32, 14, 10192)</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>18</td>
<td>5-(48, 18, 13328)</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>20</td>
<td>5-(48, 20, 581400)</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>22</td>
<td>5-(48, 22, 15853068)</td>
</tr>
</tbody>
</table>

*by computer search

References

