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THE RELATIVE TRACE FORMULA AND ITS
APPLICATIONS

EREZ M. LAPID

1. INTRODUCTION

The relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula is a tool introduced by Jacquet to study
periods integrals of the form

$\int_{H(F)\backslash H(\mathrm{A})}\varphi(h)dh$ .

Here $H$ is subgroup of a reductive $G$ defined over a number field $F$ ,
and $\varphi$ is a cusp form on $G(F)\backslash G(\mathrm{A})$ . We say that a cuspidal auto-
morphic representation $\pi$ of $G(\mathrm{A})$ is distinguished by $H$ if this period
integral is non-zero for some $\varphi$ in the space of $\pi$ . This notion is useful
for instance if $H$ is obtained as the fixed points of an involution ? of
$G$ defined over $F$ . These periods appear in several contexts -both an-
alytic and geometric. Sometimes they are related to special values of
$L$-functions through a Ranking-Selberg type integral Moreover, these
special values characterize the property that $\pi$ is obtained as a func-
torial transfer from an automorphic representation on a third group
$G’$ . However, interestingly enough, there are cases where the relation
between the period integral and $L$-values is much more subtle.

The relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula is a variant of the Kuznetsov $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ for-
mula, which is in turn the outgrowth of the work of Petterson, and
earlier, Kloosterman. The analysis of the Kuznetsov $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ from a rep-
resentation theoretic point of view is carried out in detail in [CPS90].
Since the Kuznetsov $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula is treated extensively in the article
of Michel in this volume, we shall say no further here.

Just like the usual $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula is a tool for studying harm onic
analysis on a group, the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula does so for the symm etric
space $G/H$ . Sometime, two symm etric spaces are related geometrically,
and “therefore’) they should also compare spectrally. These remarks
are equally applicable in the local and global cases. This, however, is
easier said than done. The road to obtaining spectral comparison is
full of ridges and requires a lot of technical skill and insight. Moreover,
the experience of Jacquet-Lai-Rallis suggests that certain automorphic
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weight factors have to be incorporated into the expressions before a
comparison can be carried out.

The goal here is to single out certain cases where the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

formula has been worked out, including some exciting new develop-
ments. We refer the reader to the excellent expository papers of Jacquet
for a more laid back discussion and background about the relative
$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula $([\mathrm{J}\mathrm{a}\mathrm{c}97_{\mathrm{J}}^{\rceil},[\mathrm{J}\mathrm{a}\mathrm{c}04\mathrm{a}])$. Needless to say that the influence
of Jacquet on the author in this subject is immense and the author
would like to express his appreciation and gratitude to Jacquet for
sharing his deep insight and fantasies.

2. EXAMPLES PERTAINING TO RESIDUES OF EISENSTEIN SERIES

We already mentioned that periods are often related to special val-
ues of $L$-functions, and that these, in turn, are related to functoriality.
However, there is more than one functoriality involved. Nam $\mathrm{e}\mathrm{l}\mathrm{y}$

) the
non-vanishing of the special value is also responsible for a pole of an
Eisenstein series built from $\pi$ on a group for which $G$ is a (maximal)
Levi subgroup. This double role is extremely important. It is the
point of departure for the descent method of Ginzburg-Rallis-Soudry
for constructing the inverse lifting from general linear groups to clas-
sical groups using Fourier coefficients of residues of Eisenstein series
on a larger classical group. Mao and Rallis formulated a sequence of
relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula identities which go side by side with the steps
ascribed by the descent method. Their work so far deals with the geo-
metric side of the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula. Once completed, it will give
a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ identity for the lifting from (generic cuspidal representations
on) classical groups to general linear groups. As a by-product, it will
circumvent the current use of the converse theorem for this functorial
transfer.

Let then $P=MU$ be a maximal parabolic (over $F$ ) of $G$ (quasi-split)
with its Levi decomposition and let $\pi$ be a generic cuspidal automor-
phic representation of $M(\mathrm{A})$ , Suppose, as is often the case, that the
existence of an appropriate pole for the Eisenstein series is detected by
a period integral over a certain subgroup $H_{M}$ .

In all known cases there is an “outer period” on $G$ over the period
subgroup $H$ which is computed in terms of the “inner” period over
$H_{M}=H\cap M$ . Typical examples include:

(1) $G=GL_{n}$ ([JR92]). The only maximal parabolic which con-
tributes to the discrete spectrum occurs for $n=2m$ and it is

$M=GL_{m}\mathrm{x}$ $GLm$ ; the cuspidal data is $\pi\otimes$ $\pi$ where $\pi$ is a
cuspidal representation of $GL_{m}$ . The relevant $L$-function is the
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Rankin-Selberg convolution of $\pi$ with its contragredient, The
outer period subgroup is $H=Sp_{n}$ , and the period over $H\cap M$

is essentially the inner product on $\pi$ .
(2) A twisted analogue of the above is the case $G=U_{n}$ quasi-

split, with respect to a quadratic extension $E/F$ and $M=$

$GL_{n}(E)$ . The pertaining $L$-function is the Asai $L$-function and
the period subgroup is $GL_{n}(F)$ . This case is considered in the
forth-coming thesis of Tanai.

(3) $G=Sp_{4n}$ and $P$ is the Siegel parabolic $([\mathrm{G}\mathrm{R}\mathrm{S}99\underline{1_{1}})$ . Here,
$H=Sp_{2n}\rangle\langle Sp_{2n}$ and $M\cap H=GL_{n}\mathrm{x}$ $GL_{n}$ . The relevant
period is related to the Bump-Friedberg integral representation
of $L(s_{1}, \pi)L(s_{2}, \pi, \Lambda^{2})$ ([BF90]).

(4) Similarly for $G=SO(4n)$ and $P-$ Siegel parabolic. The inner
period is the Shalika period (cf. [JS90]). The outer period
is a certain Fourier coefficient on the unipotent radical of a
Siegel type parabolic, integrated over its stabilizer (which is
isomorphic to $Sp_{2n}$ ).

(5) There are some interesting exceptional cases $(_{\lfloor}^{\mathrm{r}}\mathrm{G}\mathrm{J}01], [\mathrm{G}\mathrm{L}])$ .

In all these cases, the $H$-period vanishes on all cuspidal representa-
tions (generic or not), cf. [AGR93], This, however, is not a general fea-
ture. It makes a big difference, though, because it then mea$\mathrm{n}\mathrm{s}$ that the
comparison of the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formulas pertaining to $M$ and $G$ will be
much simpler, (The functoriality involved is “simply” taking residue
of an Eisenstein series.) At any rate, the comparison for the above
cases is carried out in [LR04], [JLR04], [GL]. Interestingly enough, the
automorphy weight factor, alluded to above, is a certain degenerate
Eisensetin series - exactly of the type which appear in the integral rep-
resentation of the pertinent $L$-function. Roughly speaking, its role is to
cancel out the effect of the residue of the intertwining operator (which
is essentially a quotient of “consecutive” values of this $L$-function. (The
residue of the intertw ining operator appears in the computation of the
inner product of residual Eisenstein series, cf. [Lan90].)

These results should be considered as test cases for the general con-
jectures of Jacquet-Lai-Rallis (which have to be made precise) – see
[JLR93]. They also play a role toward better understanding the de-
scent construction of Ginzburg-Rallis-Soudry alluded to above.

3. THETA CORRESPONDENCE

The previous discussion tried to highlight the fact that explicit con-
structions in the theory of automorphic forms are handy in obtaining
spectral identities. One of the most basic automorphic forms is the
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theta function used by Jacobi (and in fact, by Riemann in his proof of
the analytic continuation of the zeta function which bears his name).
The modern theory of Jacobi’s theta function and its relatives is the
theta correspondence. It gives rise to a way (one of the very few ways
known to us) of constructing automorphic forms on a group (from those
of another group). I will not review the method here – it is well cov-
ered in the literature – but will recall that one of the more famous
instances of it is a relation between representations of $GL_{2}$ with trivial
central character, and representations of the metaplectic cover of $SL_{2}$ .

It was Shimura who first conceived this relation in the context of half-
integral weight modular forms. (Shimura used the converse theorem,
rather than the Weil reprsentation.) In his seminal work, he related
the $Dn^{2}$-th Fourier coefficient of a half-integral modular form to the
n-th Fourier coefficient of its image $F$ , twisted by $\chi_{D}$ with some pro-
portionality constant depending on $D$ ([Shi73]). (Here $D$ is square-free
and $\chi_{D}$ is the corresponding quadratic character.) Subsequently, Wald-
spurger computed this proportionality constant, namely, he related the
square-free Fourier coefficients to $L( \frac{1}{2}, F\otimes\chi_{D})$ . As is weft-known this
fundamental result, combined with other results and conjectures, has
a great many far-reaching applications.

Jacquet has used the relative formula to reformulate, reprove and
sharpen Waldspurger’s results (and their subsequence generalizations)
-see [Jac84] [Jac86], $[\mathrm{J}\mathrm{a}\mathrm{c}87\mathrm{a}]$ , $[\mathrm{J}\mathrm{a}\mathrm{c}87\mathrm{b}]$ , [Jac91]. One of the advantages
of the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula setup is that it puts the local issues of the
problem in their right perspective, and it makes the ultimate formulae
(from which special cases may be derived with some effort, cf. $[\mathrm{B}\mathrm{M}03^{1}\rfloor$ ,
[BMb], [BMa] $)$ more transparent and conceptual. Following the work
of Mao and Rallis, it became clear that the geometric issues of the
relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula can in fact be resolved using the machinery of
the Weil representation ([MR97], [MR99], [MR04]). Thus, although
the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula voids the use of the theta correspondence
in its formulation, the latter can nevertheless be used in its analysis.
Recently, we observed that in fact, the spectral identity too can be
inferred from the setup of the theta correspondence. This will appear
in a joint paper of Baruch, Mao and the author. The result will be a
generalization of Waldspurger’s formula for generic cuspidal automor-
phic form $f$ on SO(2n+1) and their theta-lift $f’$ to the metaplectic
cover of $Sp_{2n}$ . Namely, if we $L^{2}$-normalize the forms then

$| \frac{c(f’)}{c(f)}|^{2}\sim L(\frac{1}{2}, f)$
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where $c(f)$ and $c(f’)$ are appropriate Fourier coefficients of $f$ and $f’$ .
This formula builds on earlier computations of Furusawa, and in fact, it
can be thought of as a spectral interpretation thereof ([Fur95]). There
is also a local analogue, involving local Bessel distributions, and where
the proportionality constant is the root number. This is one in a whole
slew of spectral identities which can be obtained using the apparatus
of the theta corresponden ce,

4. UNITARY PERIODS

Let $E/F$ be a quadratic extension and consider cuspidal represen-
tations of $GL_{n}(\mathrm{A}_{E})$ which are distinguished by a unitary group $U_{n}$

(not necessarily quasi-split). It has been long conjectured by Jacquet
that these representations are characterized as the functorial transfer
of automorphic representations of $GL_{n}(\mathrm{A}_{F})$ via base change. Jacquet
has proposed a relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula comparison betw een a Kuznetsov
$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula on $GL_{n}(\mathrm{A}_{F})$ on the one hand and a relative version of it
on the other hand. Several low rank cases where extensively studied by
Jacquet and Ye ([JY90], [JY92], [Jac92], [Ye97]) [Jac95], [JY96], $[\mathrm{J}\mathrm{Y}99\mathrm{J}$ ,
[Ye99], [Ye98], [JacOl] $)$ . However, it was clear that more ideas are re-
quired to deal with the higher rank case. In the last few years Jacquet
succeeded in dealing with the issues coming from the geometric side,
namely proving the existing of matching functions ([Jac02], $[\mathrm{J}\mathrm{a}\mathrm{c}03\mathrm{a}]$ ,
$[\mathrm{J}\mathrm{a}\mathrm{c}03\mathrm{b}])$ and subsequently, proving the fundamental lemm a in this
setup, initially for the unit element of the Hecke algebra $([\mathrm{J}\mathrm{a}\mathrm{c}04\mathrm{b}])$

and ultimately, in general ([Jac]). Parallel to these developments, the
author obtained the fine spectral expansion of the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula
([Lap]). Finally, Jacquet’s conjecture is proved!

For the geometric part of the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula, Jacquet first linearized
the problem by considering functions on the spaces of all $n\rangle\langle$ $n$ matri-
ces and Hermitian matrices, rather than the invertible ones. He then
expressed the orbital in tegral of a Fourier transform of a function by
means of the Jacquei-Klooseterman transform of the original orbital
integral This builds on an idea of Waldspurger for the usual $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ for-
mula (on the Lie algebra) – see [Wa197] , [WalOO]. Using this it is “not
too difficult” to establish the transfer (at least in the $p$-adic case). The
fundamental Lemma requires, in addition, some “uncertainty principl\"e)’
for the Jacquet-Kloosterman transform which can be reduced to the
usual uncertainty principle (for a function and its Fourier transform).
To carry out this reduction Jacquet developed an elaborate combina-
torial scheme using certain boxed diagrams. We will not venture into
this very aesthetic approach. Strictly speaking, the combinatorics oniy
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gives matching of Hecke functions, but it is rather intricate to expli-
cate the ensuing linear map (say $\beta$) between the Hecke algebras, and
in particular, to compare it with the expected base change map (say
$b)$ . To that end, Jacquet used global means to show that $\beta$ is in fact an
algebra homomorphism. Therefore, it is enough to show that $\beta$ agrees
with $b$ on a set of generators, and this is much less daunting, and in
any case, doable.

To deal with the spectral side, the point of departure, as always,
is to describe the kernel using Langlands $L^{2}$-theory, nam ely as sums
of integrals of the Eisenstein series, and then integrate in the group
variables. The unipotent integration, being compact, poses no ana-
lytical dificulties, and handsomely kills all contribution from residual
Eisenstein series. However, the period integral of the Eisenstein series
does not converge, and a fortiori it is not possible to interchange the
order of integrations over the spectral parameter and the group vari-
able. The standard approach to overcome these kind of difficulties is
to use Arthur’s truncation operator, and then analyze the behavior in
the truncation parameter. This can be made to work, but we chose a
slightly different approach. Namely, we first write the Eisenstein series
in terms of its truncated parts (along different parabolics). (This is
the inversion formula for truncation, based on a well-known geometric
lemma of Langlands, For technical reasons, a slightly different variant
called mixed truncation is used.) Each term is indexed by a parabolic
subgroup and a Weyl chamber thereof. The obstruction to interchange
the order of integration boils down to the non-integrability of $e^{\lambda x}$ (on
$x\in \mathbb{R}_{>0})$ for ${\rm Re}\lambda=0$ . However, shifting the contour of integration
slightly to ${\rm Re}\lambda$ in the appropriate chamber, the double integral will
converge and it is possible to interchange the order, obtaining an expo-
nential divided by a product of linear factors from the inner integration.
Shifting the spectral parameter back to ${\rm Re}\lambda=0$ is again subtle, exactly
because of these linear factors in the denominators. However, we can
at least do it in “Cauchy’s sense” ) not forgetting to take into account
term $\mathrm{s}$ coming from iterated residues. All in all, we obtain sums of
expressions which miraculously group together to terms which are in-

dependent of the truncation parameter (as they shouldl) and which are
actually holomorphic for ${\rm Re}\lambda=0$ . The latter terms are the regularized
periods defined in [JLR99]. They were studied further in [LR03] (see
also [LR02] $)$ and a formula for them was given in terms of intertwining

periods – an analogue of the standard intertwining operators in the
theory of Eisenstein series. The rearranging of terms and the residue
calculus requires some knowledge of analytic properties of Eisenstein,

namely polynomial bounds (uniformly, not only on average) in terms of
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the spectral parameter (as well as the group variable) on, or even near,
${\rm Re}\lambda=0$ . This problem can be translated, using Arthur’s formalism
of $(G, M)$-families and the manipulation of [Art82] , into a problem of
lower bounds of $L$-functions near ${\rm Res}=1$ , together with some know 1-
edge tow ard the Ramanujan Hypothesis. (A similar analysis is carried
out by Miiller in his investigations on the Arthur-Selberg $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula
and its analytic properties - cf. [M\"u102] $)$

[MS04].) For reductive groups
these problems are unsolved in general. Fortunately for $GLn$ , the re-
quired lower bounds for Rankin-Selberg $L$-function are known by the
work of Brumley ([Bni]), while uniform bounds toward the Ramanujan
Hypothesis were given by Luo-Rudnick-Sarnak ( [LR899] ). Ultimately,
the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula is spectrally expanded in terms of intertwin-
ing periods, and the sum-integral is absolutely convergent.

Jacquet is now in the process of completing the geometric aspects of
the comparison in the real case. (So far, a technical assumption that all
real places of $F$ split in $E$ was put into place in order to circumvent this
issue.) Even without this, it is still possible to obtain an interesting
result about periods over anisotropic unitary groups. Namely, suppose
that $F$ is totally real and $E$ is totally complex (i.e. a CM-field). In
principle, all unitary groups appear in the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula. How-
ever, we can single out the anisotropic ones by choosing an appropriate
test function, without losing much spectrally. The Kuznetsov coun-
terpart of the formula is reasonably well understood spectrally. The
result would be a form ula for the anisotropic unitary periods in terms
of $L$-function, roughly speaking

The norm square of the anisotropic unitary period of
the base chan ge II of $\pi$ (assumed cuspidal) is “equal” to
the quotient

$\frac{L(1,\pi\cross\tilde{\pi}\otimes\eta_{E/F})}{\mathrm{r}\mathrm{e}\mathrm{s}_{s=1}L(s,\pi\otimes\tilde{\pi})}$

where $\eta_{E/F}$ is the quadratic Hecke character of $F$ attached to $E$ by
class field theory. To explicate this formula, it will be useful to have
a comparison of the local Bessel distributions (defined appropriately)
with an explicit proportionality constant. For $n=3$ and principal series
this was done in [LROO] using global methods. Omer Offen is working
on generalizing this for $n>3$ , taking into account the aforementioned
recent developments. It will require the detailed results of Hironaka on
spherical functions on Hermitian matrices ([Hir99] ).

This kind of formula, once explicated completely, has an application
toward some recent $L^{\infty}$-norm conjecture of Sarnak ([Sar04]). Namely,
thinking of $\Pi$ as a Maass form $\varphi$ on a locally symmetric space $\Gamma\backslash G/K$
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(where $G$ is a product of $GL_{n}(\mathbb{C})’ \mathrm{s}$ and $K$ is its maximal compact – a
product of compact $U_{n}$ ’s), the period becomes a finite sum of point eval-
uations of $\varphi$ . On the right hand side, the finite part of the L-function
is expected to be sub-exponential in the logarithm of the spectral pa-
rameter, (This can be proved sometimes, at least on average.) There-
fore the behavior is dictated by the archimedean part of the L-function
which by simple properties of the $\mathrm{F}$-function is easily seen to be roughly
$\lambda^{n(n-1)/4}\dot,$ where A is the eigenvalue of the Casimir (or Laplacian), at
least when the parameters of $\pi_{\infty}$ are in general position. This wou$1\mathrm{d}$

give a lower bound of the order of magnitude of $\lambda^{n(n-1)/8}$ for $||\varphi||_{\infty}$ .
The upper bound $\lambda^{n(n-1\grave{\mathit{1}}/4}$ is the “convexity” bound in this setup, and
comes from local considerations of the sym metric space (cf. [Sar04]).
For $n=2$ these results had been obtained by Rudnick and Sarnak
using the theta correspondence ([RS94]), However, the latter is not
applicable for $n>2$ .

5. CONCLLUDING REMARKS

The reader may have been conveyed the impression, which is shared
by the author, that at this stage the development of the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

formula is more by means of examples (or families of them), rather
than by general setup and methodology (even a conjectural one). This
is a main lacking feature in the theory, especially compared to other
leading themes in automorphic forms, for instance endoscopy (in its
various guises). Such formulation, if possible, will have to take into
account automorphic forms on metaplectic covers (i.e. non-algebraic
groups) for which strictly speaking functoriality does not apply in its
current formulation. (They already appear when comparing the pair
$PGL_{2}$ and the torus, with the metaplectic cover of $SL_{2}.$ )

For the more impatient reader there are many other important cases,
beyond those considered above, where the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula has a
substantial payoff, though hard earned.

One of the more tantalizing ambitions is to find a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ form ula
interpretation (even a conjectural one) of the Gross-Zagier formula. As
a wishful thinking, such a formulation will provide an interpretation of
the value of the derivative $L’( \frac{1}{2}, \pi)$ of a $GL_{2}L$-function, even in cases
where $\pi$ comes from a Maass form. At the moment, there is no really
cogent reason to believe that such an approach is possible. It will
certainly require new ideas.

There are also interesting cases in which the $H$-period does not
support generic representations, but nevertheless it is either known
or expected that there exist distinguished cuspidal representations,
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Those representations are presumably CAP representations attached
to a residual Eisenstein series. Our understanding of these represen-
tations has developed in recent years due to the fundamental work of
Ginzburg, Rallis and Soudry. It would be of great interest to see to
what extent these constructions can shed light on the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ form ula
and vice versa.

It will also be interesting to interpret the recent results of Luo-Sarnak
(cf. this volume) in the context of the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula. This is
plausible since Watson’s formula for the triple product can be inter-
preted in terms of the see-saw formalism of the theta correspondence,
which in turn can also be interpreted using the relative $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ formula.
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