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Abstract

This brief survey on distributivity numbers is an exposition of the talk
which I gave at RIMS in October 2005.

1 Distributivity numbers of Boolean algebras

Let P be a separative partial order. D C P is dense if for all p € P there is
g<pwithqe D. Disopenifforallpe D, any g < p belongs to D. The
distributivity number (or height) of P, B(P), is the least size of a family D of
open dense subsets of P such that (D is not dense. Note that D necessarily
is open. Equivalently, h(P) is the least size of a family A of maximal antichains
of P which has no common refinement. Here, for maximal antichains A4, B C P,
we say that A refines B if for all p € A thereis ¢ € B with p < ¢. If Ais an
atomless Boolean algebra, we let AT = A\ {0} denote the partial order of its
positive elements and define h(A) := B(A™). Similarly for other cardinals.

Fact 1. §(P) is a regular cardinal. [

b(P) is an invariant of P as a forcing notion, that is, it does not depend on
the particular realization of P. Equivalently, h(P) = h(r.o.(P)) where r.o. (P) is
the completion of P, i.e., the unique complete Boolean algebra forcing equivalent
with P. For a topological space X, r.o.(X) is the Boolean algebra of regular open
subsets of X where O C X is called reqular open if it is open and Int(CL{O)) = O.
It is well-known that r.0.(X) is a complete Boolean algebra. If X =P with the
topology introduced above, the mapping p — Op = {geP:q<p}lisa
dense embedding of P into r.o.(P) and thus P and r.o.(P) are indeed forcing
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equivalent. In case A is an atomless Boolean algebra, there is an alternative
description of r.0.(A) := r.0.(A¥): namely, if St(A) is the Stone space of A, then
r.o.(A) = r.o.(St(A)).

From the forcing-theoretic point of view, §{P) is the minimal cardinal x such
that there are p € P and a P-name f for a function from & to the ground model
V such that plFp f ¢ V. Indeed if A < h(P) and f : A — V, then, letting Dy,
a < A, be the open dense subset of P consisting of conditions which decide the
value f(a), D =) a<x Da is dense and for any p € D there is f, € V such that
ke f = f,. Thus IFp f € V. On the other hand, if Dy, o < h(P), are open
dense such that D = ﬂaq(@) Dy, is not dense and Ay = {pa,y : ¥ < Ka} C Da

are maximal antichains, then, letting f : H(P) — V be the P-name defined by
Pay IFp f(a) =+, we see that if p € P is such that no ¢ < p belongs to D then
pltp f ¢ V.

If P is homogeneous, that is, if Oy is forcing equivalent with P for all p € P
(equivalently, if r.0.(P) = r.0.(Op) for all p € P), then h(P) is the least size of
a family D of open dense subsets of P with (1D = . Equivalently, §(PP) is the
least x such that IFp f ¢ V for some P-name f:x — V.

We write P<o Q if there is a complete embedding from P into Q.

Fact 2. If P<o Q then h(P) > §(Q). O

We briefly mention two cardinals which are closely related to h(P). A tower
T C P is a well-ordered decreasing chain without a lower bound. The tower
number () of P is the least size of a tower in P. ¢ € P splits p € P if p and
q are compatible and there is r < p incompatible with ¢. S C P is a splitting
Jamily if every member of P is split by a member of S. The splitting number
5(IP) of P is the least size of a splitting family. Unlike §, t and s are not invariant
under forcing equivalence: e.g. t(A) = Rq for every complete atomless Boolean
algebra A. Also the base-matrix theorem [BPS] (see also [BS, Theorem 3.4])
implies that s(r.0.(P(w)/fin)) = b := h(P(w)/fin) while § < 5 := s(P(w)/fin) is
consistent (see below for P(w)/fin).

Fact 3. t(P) is a regular cardinal. I
Fact 4. t(P) < §(P) < s(P).

Proof. Let Dy, o < h(P), be open dense such that thereis p € P with MNa <@ Dal
Op = 0. Recursively construct po € Do N O, such that p, > pg for a < 3. I
there is a limit A < §(P) such that py cannot be found, {p, : @ < A} is a tower
and t(P) < cf(A). Otherwise {p, : o < B(P)} must be a tower.

Let {pa : @ < s(P)} be asplitting family. For each o let A, C P be a maximal
antichain containing p,. Clearly the A, have no common refinement. O

Thus ¢(P) and s(P) are useful because they give natural lower and upper
bounds of §(P), respectively.



2 Products and reduced powers

For separative partial orders P and Q consider the product P x Q equipped with
the product ordering (that is, (¢',¢") <pxq (»,¢) iff p’ <p p and ¢’ <g ¢). Since
P<o P x Q and Q<o P x Q we see

Fact 5. h(P x Q) < min{h(P),h(Q)}. O

Notice that if A and B are Boolean algebras, then A x B denotes what is called
the free product in Boolean algebra theory, namely, (AT x B*) U {0}.

For a Boolean algebra A let A¥/fin := {[f]: f € A¥} where [f] = {g € A¥:
veon (f(n) = g(n))}, ordered by [f] < [g] if f(n) < g(n) holds for almost all n.
The reduced power A” /fin is again a Boolean algebra.

Fact 6. If A<oB then A¥/fin<o B¥/fin (and thus H{A¥/fin) > b(B“/fin)).
O

If A is the trivial algebra {0, 1}, we see A¥/fin & P(w)/fin where P(w)/fin :=
{IA] : A C w} with [4] = {B C w : |AAB| < Ro}, ordered by [4] < [B] if
|A\ B| < Rg. In particular h(B“/fin) < b for any Boolean algebra B where

b == h(P(w)/fin).

Stone-Clech remainders. Much of the interest in Boolean algebras of the
form A% /fin stems from the fact their completion is isomorphic to the regular
open algebra r.0.(X*) of the Stone-Cech remainder X* of some natural space
X. Briefly recall the construction of the Stone-Cech compactification X of a
normal space X [En, Section 3.6]. Let 83X be the family of all ultrafilters of
closed subsets of X. Identify z € X with U(z) = {4 C X closed: z € A} € BX.
Clearly NU(z) = {z}. In fact, the maximality of any & € BX entails that
either (YU = {z} for some z and then U = U(z) or (\U = 0 and U is a free
ultrafilter. Thus X* = BX \ X is the space of free ultrafilters of closed sets. For
O C X open let O* = {U € X : A € U with A C O}. Clearly O*N X = 0.
The sets O*, O C X open, form a basis of the topology of X and thus the
O* N X* are a basis of the topology of X™.

We come to specific examples. First let X = w, equipped with the discrete
topology. [Bw is the space of all ultrafilters on w and w* is the space of free
ultrafilters. Basic open sets are of the form O* = {U € fw: O € U} for O Cw
and, in fact, every regular open set is of this form so that r.0.(Bw) = P(w). Basic
non-empty open sets of w* are of the form O* Nw* where O C w is infinite. If
|06 AO;| < g, then clearly OfNw* = Of Nw*. Thus a dense subset of r.o.(w*) T

is isomorphic to P(w)/fin™ and we obtain
Fact 7. r.o.(w*) =r.o.(P(w)/fin). [

Similarly, we get r.0.(fw x fw) = r.0.(P(w) x P(w)) and r.o.(w* X wr) =
r.o.(P(w)/fin X P(w)/fin) etc.
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Next, let X = R, equipped with the standard topology. For s € 2<%, n€ Z
and € > 0, let

I .
Osyn,e = (n+ Z{-ZTH 11 < |s| and s(i) = 1} — ¢,
| , : 1
n+Z{§m:e< |s] and s(i) = 1}+§I-;|-+6)
Clearly the Qs ¢ are a basis of the topology of R and so the OF,, . are a basis
of the topology of AR. For every infinite partial function f : Z — 2<% let

Or= U Osmymen
n&dom(f)

where €, = min{z—,—(}ﬁ_g :n—1 < i < n+ 1} and notice that the O} N R*
form a basis of regular open sets of the topology of R* (indeed every U € R*
contains only unbounded closed sets; otherwise (U # @ by compactness; thus
for bounded O C R, O* NR* = @, and it is easy to see every unbounded O C R
contains a set of the form O;). If dom(f) =* dom(g) and f(n) = g(n) for
almost all n € dom(f) then O} NR* = O; NR*. Otherwise they are distinct
(by choice of the €,). This means that r.o.(R*)* has a dense subset isomorphic
to F/fin := {[f] : f € F} where F = {f : Z — 2<¥ : dom(f) is infinite}
and [f] = {g € F : dom(g) =* dom(f) and V*°n € dom(g) (g(n) = f(n))},
ordered by [f] < [g] if dom(f) C* dom(g) and f(n) 2 g(n) holds for almost all

n € dom(f).
Let C be Cohen forcing, that is, the algebra of clopen subsets of the Cantor

space 2¢, ordered by inclusion. Since {[s] : s € 2<“} is a dense subset of C¥,
Ct has a dense subset isomorphic to 2<% ordered by reverse inclusion. Thus
C¥/fin" has a dense subset isomorphic to F/fin. This shows

Fact 8. r.o.(R*) =r.o.(C¥/fin). O

The above discussion motivates the investigation of cardinal numbers like
b = h(r.o.(w*)), b2 := h(P(w)/fin x P(w)/fin) = h(r.o.(w* x w*)), H(C*/fin) =
h(r.0.(R*)) etc.

Distributivity numbers of products and reduced powers(. We know
already b2 < B. The following is easy to see

Fact 9. t<fh,. O
On the other hand §a may be less than b.

Theorem 1. (Shelah-Spinas [SS1]) CON(hs < §).
In fact ha < B holds in the iterated Mathias model (the ws-stage countable
support iteration of Mathias forcing over a model of CH). [

In fact Shelah and Spinas also obtained the consistency of hp+1 < b for any
n [8S2] where b, := B{(P(w)/fin)"*). Since t < b, for all n, the consistency of
t < b, follows immediately.

We know already §(C¥/fin) < §. Again, the inequslity is consistently strict.



Theorem 2. (Dow [Do]) CON(H(C¥ /fin) < b).
In fact H(C* /fin) < b holds in the iterated Mathias model. L]

The similarity to the Shelah-Spinas result lead to the following

Question 1. (Dow [Do]) Is (C*/fin x C¥/fin) = H(C*/fin)? Is hH(C*/fin) <
ha? |

Note that §(C¥/fin x C¥/fin) < by because C¥/fin x C¥/fin<o P(w)/fin x
P(w)/fin. Upper and lower bounds for §(C*/fin) are given by S

Theorem 3. (Balcar-Hrusdk [BH]) t < h(C¥/fin) < add(M). O

Here add{M) denotes the additivity of the meager ideal, that is, the least size
of a family of meager sets whose union is not meager.

Balcar and Hrusék also observed [BH] that t < B{C“/fin) is consistent.
Moreover, Dow’s Theorem 2 is a Corollary of Theorem 3. Namely, it is well-
known (and much easier to prove than Dow’s argument for §(C* / fin) = R ) that
add(M) = X in the iterated Mathias model (see, e.g., [BJ]). On the other hand,
since f < add(M) in the Hechler model, the consistency of h(C¥/fin) < add(M)
follows. This naturally leads to

Question 2. (Balcar-Hrusék [BH]) s h(C*/fin) < min{f, add(M)} consistent?
Both questions can be answered with basically the same method.
Theorem 4. [Br3] CON(§(C¥/fin) < min{h, add(M)}).

Theorem 5. [Br3] CON(h2 < h(C*/fin)).
Thus §(C¥ /fin x C¥/fin) < h(C¥/fin) is consistent as well.

Notice that the converse, namely, the consistency of hjz > h(C¥/fin), follows
from the consistency of hs > add(M) established by Shelah and Spinas [SS2]

and from Theorem 3.

Sketch of proof. We briefly sketch the proof of Theorem 4. Unlike earlier
results on the independence of distributivity numbers ([Do], [SS1], [SS2]), we
use a finite support iteration (PQ,QO, : a < ws) of cec forcing over a model of
CH. This is natural because we have to add Cohen reals anyway (in Theorem 4
we want to add increase add(M), and in Theorem 5 we have to increase add(M)
by Theorem 3).

Roughly speaking, the iteration adds dominating reals (via Hechler forcing
D, see [BJ]} in successor stages and limit stages of cofinality w while we use
Laver forcing Ly with a Ramsey ultrafilter U at limit stages of cofinality wy
(see below for the definition). The Hechler reals (as well as the Laver reals)
guarantee that b = N, while the Cohen reals give cov(M) = Ra. So add(M) =
min{b, cov(M)} = Ry holds.

Recall that an ultrafilter 2 on w is Ramsey if for all partitions (X, : n € w)
of w either X, € U for some n € w or there is Y € U with Y NnX, <1
for all n. Ly consists of all trees T C w<% guch that for all s € T below the
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stem (i.e. s D stem(T")) the set of successor nodes {n : s ~ n € T'} belongs
to U. Ly is ordered by inclusion. It is easy to see that the generic Laver
real &y = ([T] : T € G} € w* dominates the ground model reals and that
ran(fy) C w diagonalizes U (i.e. & C* U for all U € U). Here G denotes the
generic filter. Thus iterating Ly naturally increases b and s. The effect of Ly on
l, however, is a more subtle issue and depends very much on the choice of the
ultrafilter U. In some situations h (and its relatives) stay small (see [Br2, Section
9] for such a construction) and we obtain a natural model for < min{b,s},
the consistency of which was originally obtained by Shelah [Sh1] (see also [Sh2,
Theorem V1.8.2}).

We assume ¢ g2 holds in the ground model. This means there is a sequence
(Zo : cf (@) = w1, @ < wy) such that for all Z C wy, the set {a <wg : cf(a) =wy
and Z Na = Z,} is stationary. ¢gz is used for guessing (initial segments of)
names for potential witnesses for § = N;. Notice that if A is a P,,-name for
such a witness, then by CH and ccc, A can be thought of as an object of size wa
and can be coded into a subset of wp. Similarly if o < ws, |l =R;,and Aisa
P,-name for a witness of § = Ny, A can be coded into a subset of . Thus, if at
stage a where cf(a) = wy, Zq codes such a Py-name A = {Ag : f <wi}, then
we construct a Ramsey ultrafilter U, such that -, Uy N Aﬁ # @ for all § < wy
and force with Qa = L;;_ . This destroys the witness A. Now, if Aisa P,,-name
for a witness for § = N; coded by Z C ws, then C = {a& < wy : ¢f(0) = w1 and
Ala is a Py-name for a witness for fj = Ry} is wy-club. By <>s§ thereisa € C
with Z N a = Zs. S0 Z, codes Ala and Ly, destroys Al and also A. This
shows §j = Ro.

The most difficult part of the argument is the proof of §(C¥/fin) = N;. We
build a witness F = {F3 C C¥ : § < w1} along the iteration. The main point is
that if the Ramsey ultrafilter U, is carefully chosen, then Qq = Ly, does not
destroy (the initial segment of) this witness . This is a technical argument
which relies heavily on a rank analysis of Ly, -names. See [Br3] for details. To
be able to build the required Ramsey ultrafilter in limit stages of cofinality ws,
we use the Hechler reals which we added in successor stages. For Hechler forcing
it is much easier to see that it preserves (the initial segment of) the witness F.
Thus h{C¥/fin) = N; follows. O

We close this section with some comments and questions on related cardi-
nals. Balcar and Hrusék [BH] proved that t(C¥/fin) = t (and thus {{C¥/fin) <
h(C¥/fin) is consistent as well, see above). But little seems to be known about
s(C¥/fin) except for the trivial s(C¥/fin) < s.

Problem 1. Investigate s(C¥/fin)! Investigate r(C¥/fin) for other cardinal
invariants ¢/

For a topological space X without isolated points, the Baire number of X
(alsg called Novdk number), n(X), is the least size of a family of nowhere dense
sets covering X. Let n := n(w*).

Theorem 6. (Balcar-Pelant-Simon [BPS], see also [BS, Theorem 3.10])



() Ifh<c, thenh<n<pt.
(i) Ifp=c, thenc<n <20 [

The analogous result holds for hH(R*) and n(R*). Also n(R*) < n is easy to see,
but the following is still open.

Question 3. (van Douwen, see [Do]) Is n(R*) < n consistent?

3 Further friends of P(w) /fin

We briefly discuss the distributivity number of other structures related to P{w)/fin.

Dense (Q) / nwd. Let Dense(Q) denote the family of dense subsets of the
rationals Q, and let nwd stand for the nowhere dense sets of rationals. Let
Dense(Q)/nwd = {[4] : A € Dense(Q)} where [A] = {B: AAB € nwd} for
A € Dense(Q), ordered by [A] < [B] if A\B € nwd. Let ho = b(Dense(Q)/nwd).
sq and tg are defined similarly. The investigation of Dense{Q)/nwd has been
started by Balcar, Herndndez and Hruddk [BHH].

Theorem 7. (Balcar-Hernsndez-Hrusék [BHH], Brendle [Br2])

() o=t
(ii) s < min{s,add(M)}. O

Balcar, Hernandez and Hrussk [BHH] also proved the consistency of tg < bg
and of ho < . In fact, by (ii) of Theorem 7, 5g < f holds in the iterated
Mathias model. Furthermore:

Theorem 8. [Br2]
(i) CON(hg < 5Q)-
(i) CON(h < bg). O

The argument for the proof of (ii) is similar to the argument for' Theorems 4
and 5, see above. The following is still open.

Question 4. [Br2] Is sg < min{s, add(M)} consistent?

Partitions of w. Let () denote the collection of partitions of w. (w)¥ is the
infinite partitions of w (i.e. the partitions into infinitely many blocks), and (w)°
is the non-trivial partitions of w. Here, we say A € (w) is trivial if {n} € A
for almost all n (equivalently, A has no infinite block and almost all blocks are
singletons). Write A < B if A is coarser than B iff all blocks of A are unions
of blocks of B. Say X is a finite coarsening of A if X is gotten from A by
merging finitely many blocks of A. Write A <* B if there is a finite coarsening
X of A such that X < B. Say A=*Bif A<* B and B <* A iff there is
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X which is a finite coarsening of both A and B. Let [A] = {B : A =* B}
and set [4] < [B] if A <* B. ((w)¥/ =% <) is the separative quotient of
((w)“, <). It is called the dual structure and we let ha = h((w)*/ =) etc. As
usual, we work with ((w)¥, <*) instead of ((w)*/ =*,<). It is easy to see that
P(w)/fin<o (w)*¥/ =*; namely, h : (w)* — [w]* given by h(A) = {min(b) : b €
A} induces the projection mapping giving rise to the complete embedding. Thus
ba < B. The investigation of cardinal invariants of ((w),<*) has been started
by Cichon, Krawczyk, Majcher-Iwanow and Weglorz [CKMW].

Theorem 9. (Carlson [Mat]) t =R8;. [

Theorem 10. (i) (Halbeisen [Ha]) CON(ha > ¥;).
Namely, ¢ = bg = Ry holds in the iterated dual Mathias model.

(ii) (Spinas [Sp]) CON(ba < B).
In fact bg < § holds in the iterated Mathias model.

(iii) [Bl‘l] CON(bd = N1 + MA + ﬂCH) J

Note that (iii) strengthens (ii) because M A implies t = ¢ and, thus, b = ¢
and B(PP) = ¢ where P is any of the partial orders considered in Section 2 or
P = Dense(Q)/nwd. (The main distinction seems to be that for all P considered
earlier in this paper, t(P) = t in ZFC while t4 = ®;.) On the other hand,
Cichon et al. [CKMW] already observed that M A implies 54 = ¢ 50 that ha < 54
is consistent as well.

There is another natural structure associated with (w), which is obtained by
turning the order upside down and looking at refining instead of coarsening. Say
A <. Bif Ais finer than B iff B < A. X is a finite refinement of A if for some
finite z Cw, X = {b\z:b€ AU {{n}: n € z}. Write A <} B if there is a
finite refinement X of A such that X <, B. Say A=} Bif A<} Band B} A
iff there is X which is a finite refinement of both A and B. Notice that A <} B
implies B <* A (and equivalence holds for partitions which contain only finite
blocks). As usual let [A] = {B: A=} B}, [A] < [B] if A<} B and consider the
converse dual structure ((w)°/ =}, <) which may be identified with ((w)¢, <}).
The reason for considering <? instead of >* is that the former gives indeed rise to
the separative quotient of ((w)?, <.) (while ((w)¢, >*) does not). This structure
has been investigated by Majcher-Iwanow [Maj]. Again P(w)/fin<o (w)°/ =%
but more is true: ((w)¢,<%) is locally isomorphic to ([w]¥, C*) [Maj] so that
r.0.(P(w)/fin) = r.o.((w)¢/ =%). Thus b, = b where h = §((w)®/ =3). In fact,
equality also holds for several other cardinal invariants of the continuum, e.g.,
t. = t and s, = 5, see [BZ] for details.

The General Philosophy behind the results obtained so far is that distribu-
tivity numbers are independent unless there is an order relationship for trivial
reasons, namely, unless there is a complete embedding between the partial order-
ings. Indeed, in all cases investigated so far, either P<o Q or CON (h(P) < h(Q))
has been established.
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