Distributivity numbers of $\mathcal{P}(\omega)$ /fin and its friends

Jörg Brendle*
The Graduate School of Science and Technology
Kobe University
Rokko-dai 1-1, Nada-ku
Kobe 657-8501, Japan
email: brendle@kurt.scitec.kobe-u.ac.jp

November 18, 2005

Abstract

This brief survey on distributivity numbers is an exposition of the talk which I gave at RIMS in October 2005.

1 Distributivity numbers of Boolean algebras

Let $\mathbb P$ be a separative partial order. $D\subseteq \mathbb P$ is dense if for all $p\in \mathbb P$ there is $q\leq p$ with $q\in D$. D is open if for all $p\in D$, any $q\leq p$ belongs to D. The distributivity number (or height) of $\mathbb P$, $\mathfrak h(\mathbb P)$, is the least size of a family $\mathcal D$ of open dense subsets of $\mathbb P$ such that $\bigcap \mathcal D$ is not dense. Note that $\bigcap \mathcal D$ necessarily is open. Equivalently, $\mathfrak h(\mathbb P)$ is the least size of a family $\mathcal A$ of maximal antichains of $\mathbb P$ which has no common refinement. Here, for maximal antichains $A, B\subseteq \mathbb P$, we say that A refines B if for all $p\in A$ there is $q\in B$ with $p\leq q$. If $\mathbb A$ is an atomless Boolean algebra, we let $\mathbb A^+=\mathbb A\setminus\{\mathbf 0\}$ denote the partial order of its positive elements and define $\mathfrak h(\mathbb A):=\mathfrak h(\mathbb A^+)$. Similarly for other cardinals.

Fact 1. $\mathfrak{h}(\mathbb{P})$ is a regular cardinal. \square

 $\mathfrak{h}(\mathbb{P})$ is an invariant of \mathbb{P} as a forcing notion, that is, it does not depend on the particular realization of \mathbb{P} . Equivalently, $\mathfrak{h}(\mathbb{P}) = \mathfrak{h}(\text{r.o.}(\mathbb{P}))$ where r.o.(\mathbb{P}) is the completion of \mathbb{P} , i.e., the unique complete Boolean algebra forcing equivalent with \mathbb{P} . For a topological space X, r.o.(X) is the Boolean algebra of regular open subsets of X where $O \subseteq X$ is called regular open if it is open and Int(Cl(O)) = O. It is well-known that r.o.(X) is a complete Boolean algebra. If $X = \mathbb{P}$ with the topology introduced above, the mapping $p \mapsto O_p = \{q \in \mathbb{P} : q \leq p\}$ is a dense embedding of \mathbb{P} into r.o.(\mathbb{P}) and thus \mathbb{P} and r.o.(\mathbb{P}) are indeed forcing

^{*}Partially supported by Grant-in-Aid for Scientific Research (C) 17540116, Japan Society for the Promotion of Science

equivalent. In case \mathbb{A} is an atomless Boolean algebra, there is an alternative description of r.o.(\mathbb{A}) := r.o.(\mathbb{A}^+): namely, if St(\mathbb{A}) is the Stone space of \mathbb{A} , then r.o.(\mathbb{A}) = r.o.(St(\mathbb{A})).

From the forcing-theoretic point of view, $\mathfrak{h}(\mathbb{P})$ is the minimal cardinal κ such that there are $p \in \mathbb{P}$ and a \mathbb{P} -name \dot{f} for a function from κ to the ground model V such that $p \Vdash_{\mathbb{P}} \dot{f} \notin V$. Indeed if $\lambda < \mathfrak{h}(\mathbb{P})$ and $\dot{f} : \lambda \to V$, then, letting D_{α} , $\alpha < \lambda$, be the open dense subset of \mathbb{P} consisting of conditions which decide the value $\dot{f}(\alpha)$, $D = \bigcap_{\alpha < \lambda} D_{\alpha}$ is dense and for any $p \in D$ there is $f_p \in V$ such that $\Vdash_{\mathbb{P}} \dot{f} = f_p$. Thus $\Vdash_{\mathbb{P}} \dot{f} \in V$. On the other hand, if D_{α} , $\alpha < \mathfrak{h}(\mathbb{P})$, are open dense such that $D = \bigcap_{\alpha < \mathfrak{h}(\mathbb{P})} D_{\alpha}$ is not dense and $A_{\alpha} = \{p_{\alpha,\gamma} : \gamma < \kappa_{\alpha}\} \subseteq D_{\alpha}$ are maximal antichains, then, letting $\dot{f} : \mathfrak{h}(\mathbb{P}) \to V$ be the \mathbb{P} -name defined by $p_{\alpha,\gamma} \Vdash_{\mathbb{P}} \dot{f}(\alpha) = \gamma$, we see that if $p \in \mathbb{P}$ is such that no $q \leq p$ belongs to D then $p \Vdash_{\mathbb{P}} \dot{f} \notin V$.

If \mathbb{P} is homogeneous, that is, if O_p is forcing equivalent with \mathbb{P} for all $p \in \mathbb{P}$ (equivalently, if r.o.(\mathbb{P}) = r.o.(O_p) for all $p \in \mathbb{P}$), then $\mathfrak{h}(\mathbb{P})$ is the least size of a family \mathcal{D} of open dense subsets of \mathbb{P} with $\bigcap \mathcal{D} = \emptyset$. Equivalently, $\mathfrak{h}(\mathbb{P})$ is the least κ such that $\Vdash_{\mathbb{P}} \dot{f} \notin V$ for some \mathbb{P} -name $\dot{f} : \kappa \to V$.

We write $\mathbb{P} < 0 \mathbb{Q}$ if there is a complete embedding from \mathbb{P} into \mathbb{Q} .

Fact 2. If $\mathbb{P} < 0 \mathbb{Q}$ then $\mathfrak{h}(\mathbb{P}) \geq \mathfrak{h}(\mathbb{Q})$. \square

We briefly mention two cardinals which are closely related to $\mathfrak{h}(\mathbb{P})$. A tower $T\subseteq \mathbb{P}$ is a well-ordered decreasing chain without a lower bound. The tower number $\mathfrak{t}(\mathbb{P})$ of \mathbb{P} is the least size of a tower in \mathbb{P} . $q\in \mathbb{P}$ splits $p\in \mathbb{P}$ if p and q are compatible and there is $r\leq p$ incompatible with q. $S\subseteq \mathbb{P}$ is a splitting family if every member of \mathbb{P} is split by a member of S. The splitting number $\mathfrak{s}(\mathbb{P})$ of \mathbb{P} is the least size of a splitting family. Unlike \mathfrak{h} , \mathfrak{t} and \mathfrak{s} are not invariant under forcing equivalence: e.g. $\mathfrak{t}(\mathbb{A})=\aleph_0$ for every complete atomless Boolean algebra \mathbb{A} . Also the base-matrix theorem [BPS] (see also [BS, Theorem 3.4]) implies that $\mathfrak{s}(r.o.(\mathcal{P}(\omega)/fin))=\mathfrak{h}:=\mathfrak{h}(\mathcal{P}(\omega)/fin)$ while $\mathfrak{h}<\mathfrak{s}:=\mathfrak{s}(\mathcal{P}(\omega)/fin)$ is consistent (see below for $\mathcal{P}(\omega)/fin$).

Fact 3. $\mathfrak{t}(\mathbb{P})$ is a regular cardinal. \square

Fact 4. $\mathfrak{t}(\mathbb{P}) \leq \mathfrak{h}(\mathbb{P}) \leq \mathfrak{s}(\mathbb{P})$.

Proof. Let D_{α} , $\alpha < \mathfrak{h}(\mathbb{P})$, be open dense such that there is $p \in \mathbb{P}$ with $\bigcap_{\alpha < \mathfrak{h}(\mathbb{P})} D_{\alpha} \cap O_p = \emptyset$. Recursively construct $p_{\alpha} \in D_{\alpha} \cap O_p$ such that $p_{\alpha} \geq p_{\beta}$ for $\alpha \leq \beta$. If there is a limit $\lambda < \mathfrak{h}(\mathbb{P})$ such that p_{λ} cannot be found, $\{p_{\alpha} : \alpha < \lambda\}$ is a tower and $\mathfrak{t}(\mathbb{P}) \leq cf(\lambda)$. Otherwise $\{p_{\alpha} : \alpha < \mathfrak{h}(\mathbb{P})\}$ must be a tower.

Let $\{p_{\alpha} : \alpha < \mathfrak{s}(\mathbb{P})\}$ be a splitting family. For each α let $A_{\alpha} \subseteq \mathbb{P}$ be a maximal antichain containing p_{α} . Clearly the A_{α} have no common refinement.

Thus $\mathfrak{t}(\mathbb{P})$ and $\mathfrak{s}(\mathbb{P})$ are useful because they give natural lower and upper bounds of $\mathfrak{h}(\mathbb{P})$, respectively.

2 Products and reduced powers

For separative partial orders \mathbb{P} and \mathbb{Q} consider the *product* $\mathbb{P} \times \mathbb{Q}$ equipped with the product ordering (that is, $(p', q') \leq_{\mathbb{P} \times \mathbb{Q}} (p, q)$ iff $p' \leq_{\mathbb{P}} p$ and $q' \leq_{\mathbb{Q}} q$). Since $\mathbb{P} \times \mathbb{Q}$ and $\mathbb{Q} <_{\circ} \mathbb{P} \times \mathbb{Q}$ we see

Fact 5.
$$\mathfrak{h}(\mathbb{P} \times \mathbb{Q}) \leq \min\{\mathfrak{h}(\mathbb{P}), \mathfrak{h}(\mathbb{Q})\}.$$

Notice that if A and B are Boolean algebras, then $\mathbb{A} \times \mathbb{B}$ denotes what is called the *free product* in Boolean algebra theory, namely, $(\mathbb{A}^+ \times \mathbb{B}^+) \cup \{0\}$.

For a Boolean algebra \mathbb{A} let $\mathbb{A}^{\omega}/\text{fin} := \{[f] : f \in \mathbb{A}^{\omega}\}$ where $[f] = \{g \in \mathbb{A}^{\omega} : \forall^{\infty} n \ (f(n) = g(n))\}$, ordered by $[f] \leq [g]$ if $f(n) \leq g(n)$ holds for almost all n. The reduced power $\mathbb{A}^{\omega}/\text{fin}$ is again a Boolean algebra.

Fact 6. If $\mathbb{A} < \circ \mathbb{B}$ then $\mathbb{A}^{\omega}/\text{fin} < \circ \mathbb{B}^{\omega}/\text{fin}$ (and thus $\mathfrak{h}(\mathbb{A}^{\omega}/\text{fin}) \geq \mathfrak{h}(\mathbb{B}^{\omega}/\text{fin})$).

If A is the trivial algebra $\{0,1\}$, we see $\mathbb{A}^{\omega}/\text{fin} \cong \mathcal{P}(\omega)/\text{fin}$ where $\mathcal{P}(\omega)/\text{fin} := \{[A] : A \subseteq \omega\}$ with $[A] = \{B \subseteq \omega : |A \triangle B| < \aleph_0\}$, ordered by $[A] \leq [B]$ if $|A \setminus B| < \aleph_0$. In particular $\mathfrak{h}(\mathbb{B}^{\omega}/\text{fin}) \leq \mathfrak{h}$ for any Boolean algebra \mathbb{B} where $\mathfrak{h} := \mathfrak{h}(\mathcal{P}(\omega)/\text{fin})$.

Stone-Čech remainders. Much of the interest in Boolean algebras of the form A^{ω} /fin stems from the fact their completion is isomorphic to the regular open algebra r.o. (X^*) of the Stone-Čech remainder X^* of some natural space X. Briefly recall the construction of the Stone-Čech compactification βX of a normal space X [En, Section 3.6]. Let βX be the family of all ultrafilters of closed subsets of X. Identify $x \in X$ with $\mathcal{U}(x) = \{A \subseteq X \text{ closed: } x \in A\} \in \beta X$. Clearly $\bigcap \mathcal{U}(x) = \{x\}$. In fact, the maximality of any $\mathcal{U} \in \beta X$ entails that either $\bigcap \mathcal{U} = \{x\}$ for some x and then $\mathcal{U} = \mathcal{U}(x)$ or $\bigcap \mathcal{U} = \emptyset$ and \mathcal{U} is a free ultrafilter. Thus $X^* = \beta X \setminus X$ is the space of free ultrafilters of closed sets. For $O \subseteq X$ open let $O^* = \{\mathcal{U} \in \beta X : \exists A \in \mathcal{U} \text{ with } A \subseteq O\}$. Clearly $O^* \cap X = O$. The sets O^* , $O \subseteq X$ open, form a basis of the topology of βX and thus the $O^* \cap X^*$ are a basis of the topology of X^* .

We come to specific examples. First let $X = \omega$, equipped with the discrete topology. $\beta \omega$ is the space of all ultrafilters on ω and ω^* is the space of free ultrafilters. Basic open sets are of the form $O^* = \{\mathcal{U} \in \beta \omega : O \in \mathcal{U}\}$ for $O \subseteq \omega$ and, in fact, every regular open set is of this form so that $\text{r.o.}(\beta \omega) = \mathcal{P}(\omega)$. Basic non-empty open sets of ω^* are of the form $O^* \cap \omega^*$ where $O \subseteq \omega$ is infinite. If $|O_0 \triangle O_1| < \aleph_0$, then clearly $O_0^* \cap \omega^* = O_1^* \cap \omega^*$. Thus a dense subset of r.o. $(\omega^*)^+$ is isomorphic to $\mathcal{P}(\omega)/\text{fin}^+$ and we obtain

Fact 7. r.o.
$$(\omega^*)$$
 = r.o. $(\mathcal{P}(\omega)/\text{fin})$. \square

Similarly, we get r.o. $(\beta\omega \times \beta\omega)$ = r.o. $(\mathcal{P}(\omega) \times \mathcal{P}(\omega))$ and r.o. $(\omega^* \times \omega^*)$ = r.o. $(\mathcal{P}(\omega)/\text{fin} \times \mathcal{P}(\omega)/\text{fin})$ etc.

Next, let $X = \mathbb{R}$, equipped with the standard topology. For $s \in 2^{<\omega}$, $n \in \mathbb{Z}$ and $\epsilon > 0$, let

$$O_{s,n,\epsilon} = (n + \sum \{ \frac{1}{2^{i+1}} : i < |s| \text{ and } s(i) = 1 \} - \epsilon,$$

$$n + \sum \{ \frac{1}{2^{i+1}} : i < |s| \text{ and } s(i) = 1 \} + \frac{1}{2^{|s|}} + \epsilon)$$

Clearly the $Q_{s,n,\epsilon}$ are a basis of the topology of \mathbb{R} and so the $O_{s,n,\epsilon}^{\star}$ are a basis of the topology of $\beta\mathbb{R}$. For every infinite partial function $f:\mathbb{Z}\to 2^{<\omega}$ let

$$O_f = \bigcup_{n \in \text{dom}(f)} O_{f(n), n, \epsilon_n}$$

where $\epsilon_n = \min\{\frac{1}{2f(i)+5}: n-1 \leq i \leq n+1\}$ and notice that the $O_f^* \cap \mathbb{R}^*$ form a basis of regular open sets of the topology of \mathbb{R}^* (indeed every $\mathcal{U} \in \mathbb{R}^*$ contains only unbounded closed sets; otherwise $\bigcap \mathcal{U} \neq \emptyset$ by compactness; thus for bounded $O \subseteq \mathbb{R}$, $O^* \cap \mathbb{R}^* = \emptyset$, and it is easy to see every unbounded $O \subseteq \mathbb{R}$ contains a set of the form O_f). If $\operatorname{dom}(f) = ^* \operatorname{dom}(g)$ and f(n) = g(n) for almost all $n \in \operatorname{dom}(f)$ then $O_f^* \cap \mathbb{R}^* = O_g^* \cap \mathbb{R}^*$. Otherwise they are distinct (by choice of the ϵ_n). This means that r.o.(\mathbb{R}^*)⁺ has a dense subset isomorphic to $F/\operatorname{fin} := \{[f]: f \in F\}$ where $F = \{f: \mathbb{Z} \to 2^{<\omega}: \operatorname{dom}(f) \text{ is infinite}\}$ and $[f] = \{g \in F: \operatorname{dom}(g) = ^* \operatorname{dom}(f) \text{ and } \forall^\infty n \in \operatorname{dom}(g) \ (g(n) = f(n))\}$, ordered by $[f] \leq [g]$ if $\operatorname{dom}(f) \subseteq ^* \operatorname{dom}(g)$ and $f(n) \supseteq g(n)$ holds for almost all $n \in \operatorname{dom}(f)$.

Let \mathbb{C} be *Cohen forcing*, that is, the algebra of clopen subsets of the Cantor space 2^{ω} , ordered by inclusion. Since $\{[s]: s \in 2^{<\omega}\}$ is a dense subset of \mathbb{C}^+ , \mathbb{C}^+ has a dense subset isomorphic to $2^{<\omega}$ ordered by reverse inclusion. Thus $\mathbb{C}^{\omega}/\text{fin}^+$ has a dense subset isomorphic to F/fin. This shows

Fact 8. r.o.(
$$\mathbb{R}^*$$
) = r.o.(\mathbb{C}^{ω} /fin).

The above discussion motivates the investigation of cardinal numbers like $\mathfrak{h} = \mathfrak{h}(\mathbf{r.o.}(\omega^*))$, $\mathfrak{h}_2 := \mathfrak{h}(\mathcal{P}(\omega)/\mathrm{fin} \times \mathcal{P}(\omega)/\mathrm{fin}) = \mathfrak{h}(\mathbf{r.o.}(\omega^* \times \omega^*))$, $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin}) = \mathfrak{h}(\mathbf{r.o.}(\mathbb{R}^*))$ etc.

Distributivity numbers of products and reduced powers. We know already $h_2 \le h$. The following is easy to see

Fact 9.
$$\mathfrak{t} \leq \mathfrak{h}_2$$
. \square

On the other hand h_2 may be less than h.

Theorem 1. (Shelah-Spinas [SS1]) $CON(\mathfrak{h}_2 < \mathfrak{h})$.

In fact $h_2 < h$ holds in the iterated Mathias model (the ω_2 -stage countable support iteration of Mathias forcing over a model of CH). \square

In fact Shelah and Spinas also obtained the consistency of $\mathfrak{h}_{n+1} < \mathfrak{h}_n$ for any n [SS2] where $\mathfrak{h}_n := \mathfrak{h}((\mathcal{P}(\omega)/\text{fin})^n)$. Since $\mathfrak{t} \leq \mathfrak{h}_n$ for all n, the consistency of $\mathfrak{t} < \mathfrak{h}_n$ follows immediately.

We know already $\mathfrak{h}(\mathbb{C}^{\omega}/\text{fin}) \leq \mathfrak{h}$. Again, the inequality is consistently strict.

Theorem 2. (Dow [Do]) $CON(\mathfrak{h}(\mathbb{C}^{\omega}/\text{fin}) < \mathfrak{h})$. In fact $\mathfrak{h}(\mathbb{C}^{\omega}/\text{fin}) < \mathfrak{h}$ holds in the iterated Mathias model.

The similarity to the Shelah-Spinas result lead to the following

Question 1. (Dow [Do]) Is $\mathfrak{h}(\mathbb{C}^{\omega}/\text{fin} \times \mathbb{C}^{\omega}/\text{fin}) = \mathfrak{h}(\mathbb{C}^{\omega}/\text{fin})$? Is $\mathfrak{h}(\mathbb{C}^{\omega}/\text{fin}) \leq \mathfrak{h}_2$?

Note that $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin} \times \mathbb{C}^{\omega}/\mathrm{fin}) \leq \mathfrak{h}_2$ because $\mathbb{C}^{\omega}/\mathrm{fin} \times \mathbb{C}^{\omega}/\mathrm{fin} < \mathcal{P}(\omega)/\mathrm{fin} \times \mathcal{P}(\omega)/\mathrm{fin}$. Upper and lower bounds for $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin})$ are given by

Theorem 3. (Balcar-Hrušák [BH]) $\mathfrak{t} \leq \mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin}) \leq \mathsf{add}(\mathcal{M})$. \square

Here $add(\mathcal{M})$ denotes the additivity of the meager ideal, that is, the least size of a family of meager sets whose union is not meager.

Balcar and Hrušák also observed [BH] that $\mathfrak{t} < \mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin})$ is consistent. Moreover, Dow's Theorem 2 is a Corollary of Theorem 3. Namely, it is well-known (and much easier to prove than Dow's argument for $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin}) = \aleph_1$) that $\mathrm{add}(\mathcal{M}) = \aleph_1$ in the iterated Mathias model (see, e.g., [BJ]). On the other hand, since $\mathfrak{h} < \mathrm{add}(\mathcal{M})$ in the Hechler model, the consistency of $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin}) < \mathrm{add}(\mathcal{M})$ follows. This naturally leads to

Question 2. (Balcar-Hrušák [BH]) Is $\mathfrak{h}(\mathbb{C}^{\omega}/\text{fin}) < \min\{\mathfrak{h}, \mathsf{add}(\mathcal{M})\}$ consistent? Both questions can be answered with basically the same method.

Theorem 4. [Br3] $CON(\mathfrak{h}(\mathbb{C}^{\omega}/fin) < \min\{\mathfrak{h}, \mathsf{add}(\mathcal{M})\}).$

Theorem 5. [Br3] $CON(\mathfrak{h}_2 < \mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin}))$. Thus $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin} \times \mathbb{C}^{\omega}/\mathrm{fin}) < \mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin})$ is consistent as well.

Notice that the converse, namely, the consistency of $\mathfrak{h}_2 > \mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin})$, follows from the consistency of $\mathfrak{h}_2 > \mathsf{add}(\mathcal{M})$ established by Shelah and Spinas [SS2] and from Theorem 3.

Sketch of proof. We briefly sketch the proof of Theorem 4. Unlike earlier results on the independence of distributivity numbers ([Do], [SS1], [SS2]), we use a finite support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\alpha} : \alpha < \omega_2 \rangle$ of ccc forcing over a model of CH. This is natural because we have to add Cohen reals anyway (in Theorem 4 we want to add increase $\operatorname{add}(\mathcal{M})$, and in Theorem 5 we have to increase $\operatorname{add}(\mathcal{M})$ by Theorem 3).

Roughly speaking, the iteration adds dominating reals (via Hechler forcing \mathbb{D} , see [BJ]) in successor stages and limit stages of cofinality ω while we use Laver forcing $\mathbb{L}_{\mathcal{U}}$ with a Ramsey ultrafilter \mathcal{U} at limit stages of cofinality ω_1 (see below for the definition). The Hechler reals (as well as the Laver reals) guarantee that $\mathfrak{b} = \aleph_2$ while the Cohen reals give $\operatorname{cov}(\mathcal{M}) = \aleph_2$. So $\operatorname{add}(\mathcal{M}) = \min\{\mathfrak{b}, \operatorname{cov}(\mathcal{M})\} = \aleph_2$ holds.

Recall that an ultrafilter \mathcal{U} on ω is Ramsey if for all partitions $\langle X_n : n \in \omega \rangle$ of ω either $X_n \in \mathcal{U}$ for some $n \in \omega$ or there is $Y \in \mathcal{U}$ with $|Y \cap X_n| \leq 1$ for all n. $\mathbb{L}_{\mathcal{U}}$ consists of all trees $T \subseteq \omega^{<\omega}$ such that for all $s \in T$ below the

stem (i.e. $s \supseteq \text{stem}(T)$) the set of successor nodes $\{n: s \frown n \in T\}$ belongs to \mathcal{U} . $\mathbb{L}_{\mathcal{U}}$ is ordered by inclusion. It is easy to see that the generic Laver real $\ell_{\mathcal{U}} := \bigcap \{[T]: T \in G\} \in \omega^{\omega}$ dominates the ground model reals and that $\text{ran}(\ell_{\mathcal{U}}) \subseteq \omega$ diagonalizes \mathcal{U} (i.e. $\ell_{\mathcal{U}} \subseteq^* U$ for all $U \in \mathcal{U}$). Here G denotes the generic filter. Thus iterating $\mathbb{L}_{\mathcal{U}}$ naturally increases \mathfrak{b} and \mathfrak{s} . The effect of $\mathbb{L}_{\mathcal{U}}$ on \mathfrak{h} , however, is a more subtle issue and depends very much on the choice of the ultrafilter \mathcal{U} . In some situations \mathfrak{h} (and its relatives) stay small (see [Br2, Section 2] for such a construction) and we obtain a natural model for $\mathfrak{h} < \min \{\mathfrak{b}, \mathfrak{s}\}$, the consistency of which was originally obtained by Shelah [Sh1] (see also [Sh2, Theorem VI.8.2]).

We assume $\Diamond_{S_1^2}$ holds in the ground model. This means there is a sequence $\langle Z_\alpha : cf(\alpha) = \omega_1, \alpha < \omega_2 \rangle$ such that for all $Z \subseteq \omega_2$, the set $\{\alpha < \omega_2 : cf(\alpha) = \omega_1 \text{ and } Z \cap \alpha = Z_\alpha \}$ is stationary. $\Diamond_{S_1^2}$ is used for guessing (initial segments of) names for potential witnesses for $\mathfrak{h} = \aleph_1$. Notice that if \dot{A} is a \mathbb{P}_{ω_2} -name for such a witness, then by CH and ccc , \dot{A} can be thought of as an object of size ω_2 and can be coded into a subset of ω_2 . Similarly if $\alpha < \omega_2$, $|\alpha| = \aleph_1$, and \dot{A} is a \mathbb{P}_{α} -name for a witness of $\mathfrak{h} = \aleph_1$, \dot{A} can be coded into a subset of α . Thus, if at stage α where $cf(\alpha) = \omega_1$, Z_α codes such a \mathbb{P}_{α} -name $\dot{A} = \{\dot{A}_\beta : \beta < \omega_1\}$, then we construct a Ramsey ultrafilter $\dot{\mathcal{U}}_\alpha$ such that $\mathbb{H}_\alpha \dot{\mathcal{U}}_\alpha \cap \dot{A}_\beta \neq \emptyset$ for all $\beta < \omega_1$ and force with $\dot{\mathbb{Q}}_\alpha = \mathbb{L}_{\dot{\mathcal{U}}_\alpha}$. This destroys the witness \dot{A} . Now, if \dot{A} is a \mathbb{P}_{ω_2} -name for a witness for $\mathfrak{h} = \aleph_1$ coded by $Z \subseteq \omega_2$, then $C = \{\alpha < \omega_2 : cf(\alpha) = \omega_1$ and $\dot{A} \upharpoonright \alpha$ is a \mathbb{P}_α -name for a witness for $\mathfrak{h} = \aleph_1$ } is ω_1 -club. By $\dot{\Diamond}_{S_1^2}$ there is $\alpha \in C$ with $Z \cap \alpha = Z_\alpha$. So Z_α codes $\dot{A} \upharpoonright \alpha$ and $\mathbb{L}_{\dot{\mathcal{U}}_\alpha}$ destroys $\dot{A} \upharpoonright \alpha$ and also \dot{A} . This shows $\mathfrak{h} = \aleph_2$.

The most difficult part of the argument is the proof of $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin}) = \aleph_1$. We build a witness $\mathcal{F} = \{F_{\beta} \subseteq \mathbb{C}^{\omega} : \beta < \omega_1\}$ along the iteration. The main point is that if the Ramsey ultrafilter \mathcal{U}_{α} is carefully chosen, then $\mathbb{Q}_{\alpha} = \mathbb{L}_{\mathcal{U}_{\alpha}}$ does not destroy (the initial segment of) this witness \mathcal{F} . This is a technical argument which relies heavily on a rank analysis of $\mathbb{L}_{\mathcal{U}_{\alpha}}$ -names. See [Br3] for details. To be able to build the required Ramsey ultrafilter in limit stages of cofinality ω_1 , we use the Hechler reals which we added in successor stages. For Hechler forcing it is much easier to see that it preserves (the initial segment of) the witness \mathcal{F} . Thus $\mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin}) = \aleph_1$ follows. \square

We close this section with some comments and questions on related cardinals. Balcar and Hrušák [BH] proved that $\mathfrak{t}(\mathbb{C}^{\omega}/\mathrm{fin}) = \mathfrak{t}$ (and thus $\mathfrak{t}(\mathbb{C}^{\omega}/\mathrm{fin}) < \mathfrak{h}(\mathbb{C}^{\omega}/\mathrm{fin})$ is consistent as well, see above). But little seems to be known about $\mathfrak{s}(\mathbb{C}^{\omega}/\mathrm{fin})$ except for the trivial $\mathfrak{s}(\mathbb{C}^{\omega}/\mathrm{fin}) \leq \mathfrak{s}$.

Problem 1. Investigate $\mathfrak{s}(\mathbb{C}^{\omega}/\text{fin})$! Investigate $\mathfrak{r}(\mathbb{C}^{\omega}/\text{fin})$ for other cardinal invariants \mathfrak{r} !

For a topological space X without isolated points, the *Baire number of* X (also called *Novák number*), $\mathfrak{n}(X)$, is the least size of a family of nowhere dense sets covering X. Let $\mathfrak{n} := \mathfrak{n}(\omega^*)$.

Theorem 6. (Balcar-Pelant-Simon [BPS], see also [BS, Theorem 3.10])

- (i) If $\mathfrak{h} < \mathfrak{c}$, then $\mathfrak{h} \leq \mathfrak{n} \leq \mathfrak{h}^+$.
- (ii) If $\mathfrak{h} = \mathfrak{c}$, then $\mathfrak{c} \leq \mathfrak{n} \leq 2^{\mathfrak{c}}$.

The analogous result holds for $\mathfrak{h}(\mathbb{R}^*)$ and $\mathfrak{n}(\mathbb{R}^*)$. Also $\mathfrak{n}(\mathbb{R}^*) \leq \mathfrak{n}$ is easy to see, but the following is still open.

Question 3. (van Douwen, see [Do]) Is $\mathfrak{n}(\mathbb{R}^*) < \mathfrak{n}$ consistent?

3 Further friends of $\mathcal{P}(\omega)/\text{fin}$

We briefly discuss the distributivity number of other structures related to $\mathcal{P}(\omega)/\mathrm{fin}$.

Dense (\mathbb{Q}) / **nwd.** Let Dense(\mathbb{Q}) denote the family of dense subsets of the rationals \mathbb{Q} , and let nwd stand for the nowhere dense sets of rationals. Let Dense(\mathbb{Q})/nwd = {[A] : $A \in \text{Dense}(\mathbb{Q})$ } where [A] = { $B : A \triangle B \in \text{nwd}$ } for $A \in \text{Dense}(\mathbb{Q})$, ordered by [A] \leq [B] if $A \setminus B \in \text{nwd}$. Let $\mathfrak{h}_{\mathbb{Q}} = \mathfrak{h}(\text{Dense}(\mathbb{Q})/\text{nwd})$. $\mathfrak{s}_{\mathbb{Q}}$ and $\mathfrak{t}_{\mathbb{Q}}$ are defined similarly. The investigation of Dense(\mathbb{Q})/nwd has been started by Balcar, Hernández and Hrušák [BHH].

Theorem 7. (Balcar-Hernández-Hrušák [BHH], Brendle [Br2])

- (i) $\mathfrak{t}_{\mathbb{Q}} = \mathfrak{t}$.
- (ii) $\mathfrak{s}_{\mathbb{Q}} \leq \min\{\mathfrak{s}, \operatorname{add}(\mathcal{M})\}.$

Balcar, Hernández and Hrušák [BHH] also proved the consistency of $\mathfrak{t}_{\mathbb{Q}} < \mathfrak{h}_{\mathbb{Q}}$ and of $\mathfrak{h}_{\mathbb{Q}} < \mathfrak{h}$. In fact, by (ii) of Theorem 7, $\mathfrak{s}_{\mathbb{Q}} < \mathfrak{h}$ holds in the iterated Mathias model. Furthermore:

Theorem 8. [Br2]

- (i) $CON(\mathfrak{h}_{\mathbb{Q}} < \mathfrak{s}_{\mathbb{Q}})$.
- (ii) $CON(\mathfrak{h} < \mathfrak{h}_{\mathbb{Q}})$.

The argument for the proof of (ii) is similar to the argument for Theorems 4 and 5, see above. The following is still open.

Question 4. [Br2] Is $\mathfrak{s}_{\mathbb{Q}} < \min\{\mathfrak{s}, \mathsf{add}(\mathcal{M})\}\ consistent$?

Partitions of ω . Let (ω) denote the collection of partitions of ω . $(\omega)^{\omega}$ is the infinite partitions of ω (i.e. the partitions into infinitely many blocks), and $(\omega)^c$ is the non-trivial partitions of ω . Here, we say $A \in (\omega)$ is trivial if $\{n\} \in A$ for almost all n (equivalently, A has no infinite block and almost all blocks are singletons). Write $A \leq B$ if A is coarser than B iff all blocks of A are unions of blocks of B. Say X is a finite coarsening of A if X is gotten from A by merging finitely many blocks of A. Write $A \leq^* B$ if there is a finite coarsening X of A such that $X \leq B$. Say $A =^* B$ if $A \leq^* B$ and $B \leq^* A$ iff there is

X which is a finite coarsening of both A and B. Let $[A] = \{B : A = *B\}$ and set $[A] \leq [B]$ if $A \leq *B$. $((\omega)^{\omega}/=^*, \leq)$ is the separative quotient of $((\omega)^{\omega}, \leq)$. It is called the dual structure and we let $\mathfrak{h}_d = \mathfrak{h}((\omega)^{\omega}/=^*)$ etc. As usual, we work with $((\omega)^{\omega}, \leq^*)$ instead of $((\omega)^{\omega}/=^*, \leq)$. It is easy to see that $\mathcal{P}(\omega)/\text{fin} < o(\omega)^{\omega}/=^*$; namely, $h: (\omega)^{\omega} \to [\omega]^{\omega}$ given by $h(A) = \{\min(b) : b \in A\}$ induces the projection mapping giving rise to the complete embedding. Thus $\mathfrak{h}_d \leq \mathfrak{h}$. The investigation of cardinal invariants of $((\omega)^{\omega}, \leq^*)$ has been started by Cichoń, Krawczyk, Majcher-Iwanow and Węglorz [CKMW].

Theorem 9. (Carlson [Mat]) $\mathfrak{t}_d = \aleph_1$. \square

Theorem 10. (i) (Halbeisen [Ha]) $CON(\mathfrak{h}_d > \aleph_1)$. Namely, $\mathfrak{c} = \mathfrak{h}_d = \aleph_2$ holds in the iterated dual Mathias model.

- (ii) (Spinas [Sp]) $CON(\mathfrak{h}_d < \mathfrak{h})$. In fact $\mathfrak{h}_d < \mathfrak{h}$ holds in the iterated Mathias model.
- (iii) [Br1] $CON(\mathfrak{h}_d = \aleph_1 + MA + \neg CH)$. \square

Note that (iii) strengthens (ii) because MA implies $\mathfrak{t}=\mathfrak{c}$ and, thus, $\mathfrak{h}=\mathfrak{c}$ and $\mathfrak{h}(\mathbb{P})=\mathfrak{c}$ where \mathbb{P} is any of the partial orders considered in Section 2 or $\mathbb{P}=\mathrm{Dense}(\mathbb{Q})/\mathrm{nwd}$. (The main distinction seems to be that for all \mathbb{P} considered earlier in this paper, $\mathfrak{t}(\mathbb{P})=\mathfrak{t}$ in ZFC while $\mathfrak{t}_d=\aleph_1$.) On the other hand, Cichoń et al. [CKMW] already observed that MA implies $\mathfrak{s}_d=\mathfrak{c}$ so that $\mathfrak{h}_d<\mathfrak{s}_d$ is consistent as well.

There is another natural structure associated with (ω) , which is obtained by turning the order upside down and looking at refining instead of coarsening. Say $A \leq_c B$ if A is finer than B iff $B \leq A$. X is a finite refinement of A if for some finite $x\subseteq\omega,\ X=\{b\setminus x:b\in A\}\cup\{\{n\}:n\in x\}.$ Write $A\leq_c^*B$ if there is a finite refinement X of A such that $X \leq_c B$. Say $A =_c^* B$ if $A \leq_c^* B$ and $B \leq_c^* A$ iff there is X which is a finite refinement of both A and B. Notice that $A \leq_c^* B$ implies $B \leq^* A$ (and equivalence holds for partitions which contain only finite blocks). As usual let $[A] = \{B : A =_c^* B\}, [A] \leq [B]$ if $A \leq_c^* B$ and consider the converse dual structure $((\omega)^c/=_c^*,\leq)$ which may be identified with $((\omega)^c,\leq_c^*)$. The reason for considering \leq_c^* instead of \geq^* is that the former gives indeed rise to the separative quotient of $((\omega)^c, \leq_c)$ (while $((\omega)^c, \geq^*)$ does not). This structure has been investigated by Majcher-Iwanow [Maj]. Again $\mathcal{P}(\omega)/\text{fin} < \circ (\omega)^c/=^*$; but more is true: $((\omega)^c, \leq_c^*)$ is locally isomorphic to $([\omega]^\omega, \subseteq^*)$ [Maj] so that $\text{r.o.}(\mathcal{P}(\omega)/\text{fin}) = \text{r.o.}((\omega)^c/=_c^*)$. Thus $\mathfrak{h}_c = \mathfrak{h}$ where $\mathfrak{h}_c = \mathfrak{h}((\omega)^c/=_c^*)$. In fact, equality also holds for several other cardinal invariants of the continuum; e.g., $\mathfrak{t}_c = \mathfrak{t}$ and $\mathfrak{s}_c = \mathfrak{s}$, see [BZ] for details.

The General Philosophy behind the results obtained so far is that distributivity numbers are independent unless there is an order relationship for trivial reasons, namely, unless there is a complete embedding between the partial orderings. Indeed, in all cases investigated so far, either $\mathbb{P} < 0 \mathbb{Q}$ or $CON(\mathfrak{h}(\mathbb{P}) < \mathfrak{h}(\mathbb{Q}))$ has been established.

References

- [BHH] B. Balcar, F. Hernández-Hernández and M. Hrušák, Combinatorics of dense subsets of the rationals, Fund. Math. 183 (2004), 59-80.
- [BH] B. Balcar and M. Hrušák, Distributivity of the algebra of regular open subsets of $\beta \mathbb{R} \setminus \mathbb{R}$, Top. Appl.
- [BPS] B. Balcar, J. Pelant and P. Simon, The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24.
- [BS] B. Balcar and P. Simon, *Disjoint refinement*, in: Handbook of Boolean algebra (J.D. Monk and R. Bonnet, eds.), North-Holland, Amsterdam (1989), 335-386.
- [BJ] T. Bartoszyński and H. Judah, Set Theory, On the structure of the real line, A K Peters, Wellesley, 1995.
- [Br1] J. Brendle, Martin's Axiom and the dual distributivity number, Math. Log. Quart. 46 (2000), 241-248.
- [Br2] J. Brendle, Van Douwen's diagram for dense sets of rationals, Ann. Pure Appl. Logic.
- [Br3] J. Brendle, Independence for distributivity numbers, preprint.
- [BZ] J. Brendle and S. Zhang, Converse dual cardinals, J. Symbolic Logic.
- [CKMW] J. Cichoń, A. Krawczyk, B. Majcher-Iwanow, B. Węglorz, Dualization of the van Douwen Diagram, J. Symbolic Logic 65 (2000), 959-968.
- [Do] A. Dow, The regular open algebra of $\beta \mathbb{R} \setminus \mathbb{R}$ is not equal to the completion of $\mathcal{P}(\omega)$ /fin, Fund. Math. 157 (1998), 33-41.
- [En] R. Engelking, General Topology, Revised and completed edition, Heldermann, Berlin, 1989.
- [Ha] L. Halbeisen, On shattering, splitting and reaping partitions, Math. Log. Quart. 44 (1998), 123-134.
- [Maj] B. Majcher-Iwanow, Cardinal invariants of the lattice of partitions, Comment. Math. Univ. Carolinae 41 (2000), 543-558.
- [Mat] P. Matet, Partitions and filters, J. Symbolic Logic 51 (1986), 12-21.
- [Sh1] S. Shelah, On cardinal invariants of the continuum, in: Axiomatic set theory (J. Baumgartner et al., eds.) Contemp. Math. 31 (1984), Amer. Math. Soc., Providence, 183-207.
- [Sh2] S. Shelah, Proper and Improper Forcing, Springer, Berlin, 1998.

- [SS1] S. Shelah and O. Spinas, The distributivity number of $\mathcal{P}(\omega)$ /fin and its square, Trans. Amer. Math. Soc. 352 (2000), 2023-2047.
- [SS2] S. Shelah and O. Spinas, The distributivity numbers of finite products of $\mathcal{P}(\omega)$ /fin, Fund. Math. 158 (1998), 81-93.
- [Sp] O. Spinas, Partition numbers, Ann. Pure Appl. Logic 90 (1997), 243-262.