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Vulcanian explosive eruption, which is a nonlinear and nonequilibriuin abrupt

dynamics of magma-gas mixture, is modeled by a two-component Lermard-Jones

particle system. Molecular dynamics sinmlation of a shock-t he experim ent gives

consistent results with a explosive eruption picture of volcanology; Shock wave and

expansion wave are reproduced. In addition bubble nucleation of a gas component

in the magma lTlelt and spinodal-like decom position are observed in the simulation.

The result is also compared with a continuum hydrodynamic model; Qualitative

features of continuum dynamics are reproduced by the present model. We find that

the particle description of dynamics is an effective method in such kin$1\mathrm{d}$ of abrupt

dynamics

I. INTRODUCTION

Volcanic eruption is complicated physical phenomena and the physical understanding has
not been well establish ed yet; The problem is to understand nonlinear and nonequilibriuin

dynan ics of magma-gas mixture accompanied by phase transitions. [1 3] Existence of gas. which
$\mathrm{i}_{\mathrm{i}\supset}$ mainly $\mathrm{H}_{\underline{9}}\mathrm{O}$ , is sometim es forgotten, but it is pointed out that such gas component plays an
important role in explosive eruption. [4] Type of volcanic eruption is classified into three classes
by chronological behavior; One is so-called Vulcanian type eruption, which is widely observed
in Japanese volcanos. This type is characterized by an interm ittent explosive eruption and
formation of a lava dome. These features are determ ined }} $\mathrm{v}$ physical properties of magma;
Specifically viscosity of magma controls them.

In this paper, we $\grave{\mathrm{b}}\mathrm{t}\iota \mathrm{l}\mathrm{d}\mathrm{y}$ Vulcanian eruption. because its explosive mechanis $\mathrm{m}$ will be the most
interesting physically, in particular, in the context of nonequilibriuin physics; In the volcanology.
an eruption picture is considered as follows: A stage of eruption dyna mics consists of a magma
chamber and a conduit. Top of conduit is covered by a lava dorne. In a top of magma chamber
or a lower part of conduit, a gas com ponent is atm ost $\mathrm{c}\mathrm{o}$ mpletely dissolved into the magma
melt. In th le upper region of saturated magma, the gas is exsolved according to the equilibrium
solubility law. As decreasing the lithostatic pressure, volume fraction of gases is increasing.
At the beginning of eruption, pressure of the $\mathrm{m}\mathrm{a}\mathrm{g}$ ma-gas mixture is considered to increase,
although the mechanism is not clear yet. When the lava dome cannot support this overpressure,
it disrupts the lava dome. At the next moment, two shock waves appear and propagate; One
is a shock wave formed between atmosphere and compressed air a1lel it propagates upward.
Another is decor pression wave in magma-gas melt and it goes to opposite direction. During
the eruption it is observed that the transition from the lam inar flow of bubbly melt to the
turbulent flow of gas-magrna dispersion in the conduit. This transition layer determines the
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front of fragmentation wave which propagates downward. At the $\mathrm{m}\mathrm{o}$ ment, viscosity of magma-
gas mixture is drastically changed abruptly about the order of $10^{12}\sim 10^{1\overline{s}}\mathrm{P}\mathrm{a}\cdot \mathrm{s}$.

There have been many theoretical investigations of Vulcanian eruption in the volcanism
study. In 1995. Woods proposed the model for magma flow in conduit: [5] In his model magm la-

gas mixture is treated as a one-dim ensional nonviscotic compressible fluid with single compo-
nent. This model can capture physical properties of dynamics in sorne sense. But treatment
of dynam ics is not well satisfied; For example, flow is treated as isentropic one, th ough bub-
bte nucleation accompanies the eruption. There are some other phenomenological models, but
the present understanding of the eruption dynam ics is still unsatisfactory in the context of
nonequilibrium physics. $[2, 3]$

Recent progress of experimental techniques enables us to compare such theoretical model
with experimental results; These experiments are called as shock-t be experiment, $6-9|$ In
the $\exp\zeta^{\Delta},\mathrm{r}\mathrm{i}1\mathrm{n}\mathrm{e},11\mathrm{t}$ , analogue materials of magma-gas mixture, such as viscoelastic materials and
powder, are used. It is observed that the }) $\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{v}\mathrm{i}\mathrm{o}\mathrm{x}$ of explosion depends on the viscosity of
analogue materials. Thus a non-viscotic treatment in a theoretical study is not sufficient.

In this paper, we try to establish a computational microscopic model of Vulcanian eruption;
So to say, we want to make “an Ising model of Vulcanian eruption... Here we describe dynam-

ics of the mixture by microscopic particle dynamics. A particle dynamics simulation can be
regar ded as an ideal shock-tube experiment, because we can calculate macroscopic quantities.
In addition, using the particle dynamics. we can also reproduce hydrodynamic behavior de-
scribed by a contin uum description of Navier-Stokes equation. Even in Newtonian dynamics,

we can produce macroscopic behavior in linear nonequilibrium thermodynamic regime. [10 13]
Moreover we can also discuss phenomena in far from equilibrium state, which are not capt ured
by continuum descriptions based on local equilibrium. Thus the particle 1odel enable us to

explore $\mathrm{n}\mathrm{o}\mathrm{n}\mathrm{e}(1^{11\mathrm{i}}1\mathrm{i}\dagger)\mathrm{r}\mathrm{i}\iota 1\mathrm{r}\mathrm{n}$ dynamics of volcano, as well as the model can verify an macroscopic

theor etical model

II. MODEL

Here we assume microscopic dynamics are governed by the following Ha miltonian:

$H$ $= \sum_{i=1}^{N}\frac{\mathrm{p}_{l}^{2}}{2m_{i}}+\frac{1}{2}\sum_{i.j}^{N}\alpha_{i}\alpha_{j}\emptyset(|\mathrm{q}_{\mathrm{i}}-\mathrm{q}_{?}|)$ {1)

where $\phi(r)$ is Lennard-Jones 12-6 potential: $q1(r)=4\epsilon\{(\sigma/r)^{12}-(\sigma/r)^{6}\}+\prime \mathrm{j})_{0}$ . For computation al

efficiency, we introduce a potential cutoff as $3.9\mathrm{a}$ and determine the value of $\phi_{\mathit{0}}$ to be $\varphi^{\int}(3.9\sigma\grave{)}=$

$0$ . And $N$ denotes total particle number, $m_{i}$ denotes $\mathrm{n}1\mathrm{a}\mathrm{s}^{\backslash }\mathrm{s}$ of particle $\mathrm{i}$ , $\mathrm{p}_{i}$ and $\mathrm{q}_{i}$ denote particle

th $\mathrm{r}\mathrm{e}\mathrm{e}$-dimensional momenta and coordinates, respectively. Dimensionless parameters $\alpha_{i}$ and
$m_{\mathrm{g}\mathrm{a}\mathrm{e}}/m_{\mathrm{r}\mathrm{r}1\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{a}}1$ are selected so that it will reproduce similar properties as magma gas;[4] We take
$\alpha_{i}$ to be 1 for magma particles, and 0.1 for gas particles. It determines energy scales of magm a
and gas. Ratio of melting temperatures of magma to gas is given by $\alpha_{\mathfrak{n}1\mathrm{a}\mathrm{g}\mathrm{m}\mathrm{a}}^{2}/\alpha_{\mathrm{g}\mathrm{a}\mathrm{b}}^{2}$ and it is 100 in

the present model, although it is approximately 1000 for actual magma and gas. Present choice

is ten $\mathrm{t}\mathrm{i}$ mes less than actual situation, but it is sufficient to describe thle explosive eruption as we
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FIG. 1: Geometry of the system. When we calculate physical quantities, we slice the system with a

unit length.

will show in the following. Particle mass ratio is chosen as $m_{\mathrm{g}\mathrm{a}_{\llcorner}\mathrm{s}},/m_{\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{m}\mathrm{a}}$ $=0.1$ , which is of order

actual 11lass ratio. Hereafter we measure length. mass, and energy by the units of $\sigma_{\backslash }m_{\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{n}\mathrm{a}}\mathrm{I}$ and
$\epsilon\backslash$ respectively, and use dimensionless variables. Employing the Lennard-Jones 12-6 potential

makes us to describe the rmodynamic phases of gas, fluid, solid, and their coexisting state.

Using the above Ha miltonian, we calculate particle motion. The geometry of the system is

as follows (see also Fig. 1): Consider rectangular parallelepiped with a size $L_{\alpha}\cross$ $L_{y}\cross$ $L_{\sim},$ . For $x$

and $y$ directions, periodic boundary conditions are imposed. A eruption direction is to $z$ axis,

and we prepare elastic walls at bottom and top. These walls are represented by repulsion part

of Lennard-Jones potential.
First we have to prepare initial state as thermal equilibrium one. In this stage, whole

system is divided into two parts, ‘.chamber’. $(0 \leq z\leq L_{d})$ and ‘.C01lduit” $(L_{d}\leq\sim\wedge/\leq L_{\sim}\neg)\mathrm{b}\mathrm{v}$

a diaphragm, which is located at $z=L_{d}$ , made of same elastic walls at $\approx=0$ and $\approx=L_{z}$ .

At the beginning, magma and gas particles are contained in the chamber. Contrarily, on lv
gas particles are in the conduit. For preparing initial state, we do an isothermal simulation

with $*\backslash ^{\mathrm{Y}}|0\acute{\mathrm{s}}\mathrm{e}$ -Hoover thermostat in each part of the svstem414 16] Density and temperature in

the chamber are chosen as gas particles are uniformly mixed into magma particles; There is no
phase separation.

After thermalization, we rem ove the separator between conduit and chamber and we detach
the the 1mostat. Then the system obeys the Hamiltonian dynam ics If pressure in the chamber

is higher than one in the conduit, an explosion is activated.
Simulation details are as follows: The second order symplectic method (the leapfrog method )

is used in numerical integration. Time integration slice is taken to be $10^{-3}$ . This value is

sufficient for present simulations, which is checked by energy conservation.

III. RESULTS

In the simulation, we calculate several physical quantities in boxes whicll are obtained by

slicing along $z$-direction with a unit length $\sigma.[17.1\mathrm{S}]$ Number density $n(z)$ and mass density
$\rho(z)$ of the slice $z$ are basic quantities of macroscopic dynamnics defined by counting a number
and mass in the local slice. Barycentric velocity $\mathrm{v}(z)$ is defined through sum of momenta in
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FIG. 2: Space-time profile of number density (left) and local pressure (right): Horizontal axis repre-

sents coordinate of explosion direction ( $z$ axis) and vertical axis is time At timne $0_{\backslash }$ a diaphragm is

removed. Characteristic waves are guided by lines.

the slice. Pressure $\mathrm{p}(\mathrm{z})$ , is defined by a $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of stress tensor. And temperature $T(\approx)$ is defined
by variance of particle velocities from local barycentric motion.

Here we present a typical result of si mulation as space-timle profile of physical quantities.

In Figs. 2. number density $n(z)$ and pressure $p(z)$ are presented. In this sir ulation. we take

following parameters: System size is $L_{x}=L_{y}=40$ . $L_{z}=74\mathrm{t}$). In an initial therm al equilibration

stage, a diaphragm is located at $z$ $=40$ , so thle size of magma chamber is 40 $\rangle\langle$ $40\cross$ $40$ and one of

the conduit is $40\cross$ $40\cross 700$ . Total number of particle is 176000, which consists of 57600 magma

particles and 118400 gas particles. The chamber contains 57600 magm a particles and 6400 gas

particles. Other 112000 gas $\mathrm{p}_{C}$‘xrticles are in the conduit. Then initial number densities are 1

for the chamber and 0.1 for the conduit. Thermalization is done with the chamber temperature

2 aJld $\mathrm{t}\mathrm{I}_{1}\mathrm{e}$ conduit temperature 0.8.
In Figs. 2, a horizontal axis corresponds to $z$ direction and explosion goes to right. A vertical

axis represents time. At the time 0, the diaphragm is removed. In the profile of number

density, we recognize two characteristic density waves. First one begins at $(Z/=40, f=0)$

and propagates to $(750, 120)$ . This wave corresponds to a shock wave between hot gas, which

is heated bv adiabatic compressing, and thermal equilibrium gas. Its velocity is larger than

a sound velocity of equilibrium conduit gas. This wave is reflected at $(757. 12\mathrm{t}3)_{\tau}$ because an

elastic wall exists at there. Another wave propagates more slowly than the shock wave from$\mathrm{n}$

$(4\mathrm{t}1, 1\mathrm{I})$ to $(300, 185)$ . Front position of this density wave corresponds to magma-gas contact

surface.
There are other small waves in this figure. A wave propagating from (0. 10) to $(170, 185)$

is also reflecting wave caused by the elastic wall located at $z=0$ . A wave propagating to

opposite direction, which is from $(40, 0)$ to (0. 10), is also observed in the figure. This wave is

an expansion wave of dense magm a-gas mixture.

Other significant features are observed in this space-time profile. After propagating magma
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FIG. 3: Snapshots of simulation: (Up) Snapshot at $t=40$ . (Down) Snapshot at $t=170$ . Parameters

are identical to ones of Fig 2. Eruption propagates to the right direction. Only particles originated

from the chamber are plotted; A red ball represents a magma particle, and blue one is a gas particle

At the initial condition $t=0_{\backslash }$ blue and red particles are uniformly mixed in the chamber.

gas contact wave, som $\mathrm{e}$ internal structures are glowing. To investigate the internal structure in
details, we show snapshot of simulation are shown in Figs. 3. These snapshot are taken from
the simulation drawing Fig. 2 so simulation parameters are identical ones of that simulation.

We only draw 1agma particles and gas particles which are in the magma chamber at the initial

condition. Gas particles coming from the conduit are omitted. Explosion propagates to the
right direction in this figure, which is $z$ axis.

Before removing the diaphragm, magma and gas are uniformly mixed in the $\mathrm{m}\mathrm{a}\mathrm{g}$ ma chamber.
But, in Figs. 3, inhomogeneous mixing of those components is gradually growing during the

eruption. This rernin ds us of spinodal decomposition. Size of exsolved gas bubble grows from
Figs. $3(\mathrm{a})$ to (b); In Fig. $3(\mathrm{a})$ , bubble size are widely distributed but, in (b), one large gas
bubble and small bubbles in the thick magma exists. In large gas bubble, one magma droplet

is observed.
In this way, magma-gas mixture becom $\mathrm{e}$ inhom ogeneous mixture and internal structure of

bubbles are growing. Such behavior is consistent with the scenario of volcanology. But in the
present simulation, transition to rnag1na dispersion flow is not observed. The reason may be
that smaller cross section of conduit and finiteness particles.

Next we $\mathrm{c}\mathrm{o}$ mpare the present simulation results with the continuum description given by
Woods.[5] In his model, magma-gas mixture is described by one-dimensional nonviscotic com -

pressible one-component fluid. The dynamics are described by a continuity equation, an equa-
tion of motion, and the followings:

$\frac{1-n}{\rho_{l}}+\frac{nRT}{p_{g}}=\frac{1}{\rho}$ . $p_{\mathit{9}}( \frac{\emptyset}{\rho})^{\gamma_{m}}=$ const. (2)

where $\rho\backslash p_{l}$ , $p_{g}$ .T. $R$ , $n$ , $cb$ and $\gamma_{m}$, denote $\mathrm{r}\mathrm{n}\mathrm{a}\mathrm{b}^{\tau}\mathrm{b}$ density, mass density of magma com ponent. pres-
sure of gas component, temperature, a gas constant, a mass fraction of magma and gas comnI)$()$ -

$\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{b}_{\backslash }$ a volume fraction of magma and gas components, and ratio of specific heats, respectively.
In these quantities, $\rho,p_{\mathit{9}^{\wedge}}T$ and $\phi^{-1}\equiv 1+\frac{1-n}{\gamma}‘\frac{p_{y}}{\rho;RT}$ are variables. Other $\rho_{l\backslash }R_{\backslash }\tau\iota_{\backslash }$ and $\gamma_{m}$ are
fixed to som $\mathrm{e}$ constant values. The first equation is an equation of states, and the second one
expresses an isentropic condition derived from the first law of the rmodynamics. As we know
the present equation of states is almost identical to one of ideal gas
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These equations are essentially same as ones of compressible ideal gas fluid. To study the
equations is just an textbook example. $[19, 20]$ We get a standard rewrite as

$\{\frac{\partial}{\partial t}+$ $(w \pm a(\rho))\frac{\partial}{\partial z}\}(u’\pm\int^{\rho}\frac{a(p’)}{\rho’}d\rho’)=0$ (3)

where $?l/$’ and $a(\rho)$ are a velocity field and a sound velocity, respectively. Tlle sound velocity of
rnagm a-gas mixture is a function of $\rho$ . and it is expressed as $\zeta\iota^{2}(\rho)=a_{0}^{2}(\rho/p\mathrm{o})^{\gamma_{m}-1}(\phi_{0}/\{2))^{\gamma,,+1}\iota$

( $a_{0},$ $\rho_{(\}_{\mathrm{t}}}$ ($f\acute{)}_{\{)}$ are sound velocity, density, and volume fraction at some reference state.) This
equation gives characteristic curves and conserved quantities on them. Then we can solve
the equation $\mathrm{i}\mathrm{I}1$ characteristic regions. For obtaining global shock tube solution, we ha$\mathrm{v}\mathrm{e}$ to
glue the solution with appropriate boundary conditions.

FIG. 4: Spatial profiles of temperature, velocity (z), pressure, and $\mathrm{n}\iota \mathrm{a}\mathrm{i},\cdot \mathrm{b}$ density at $t=15$ : System size

is taken to be $L_{x}=32$ . $L_{y}=32.L_{\mathrm{z}}=408$ and size of lnagm a chamber is 32 $\mathrm{x}$ $32\mathrm{x}200$ . Initial mass

density and temperature are taken to be 1 and 2, respectively. $\mathrm{W}^{\gamma}\mathrm{e}$ can recognize cha1acte1 istic regions.

Rom right, “initial equilibrium state.) , “hot gas region” , “cold gas region” $\backslash$ “expanding wave region”

and “initial $\mathrm{e}$ quilibrium statc” again are observed. These regions are indicated by gray rectangular.

In Fig. 4. temperature $T(_{\sim}^{\mathrm{v}})\backslash$ barycentric velocity $\mathrm{v}(\approx)_{z}$ , pressure $p(z)$ . mass density $\rho(z)$ of
$\mathrm{t}1_{1}\mathrm{e}$ present simulation are shown. Simulation parameters are taken to be as follows: System size
is $L_{x}=L_{y}=32$ , $L_{z}=408$ and size of magma chamber is 32 $\mathrm{x}$ $32\cross 200$ . Initial number densitv
of magma chamber is taken to be 1 an$1\mathrm{d}$ conduit density is 0.02, thus the number of particles in

the chamber is 204800, which contains 10% gas particles. The num ber of gas particles in the
conduit is 4096. In this simulation, we imposed an artificial boundary condition at the top of
conduit; For decreasing reflection effects from the top elastic wall, we attach a particle sink at

the top, in which particles with the energy larger than some threshold value are removed from
the systern.
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We can observe characteristic regions in Fig. 4. Let us compare these results with contin-

uum descriptions. The solution of Eq. (3) teaches us that there are three regions in shock tube

analysis, that is, a hot gas region, a cold gas region, and an expanding wave region. Corre-

sponding regions of simulation are indicated in the figure; In the “hot gas” region, gases are
heating up by the shock wave. In contrast, in the “cold gas” region, gases are cooling by an
adiabatic expansion. Another region is an “expanding wave” region in which the expanding

wave exists and physical quantities are smoothly changed. Physical properties of such regions

obtained by the simulation are almost equivalent to ones of shock tube analysis. But there

is a little mismatch with the solution; Analysis of compressible fluid gives constant profiles of
physical quantities in both hot and cold gas regions. But, in this simulation, some structures

are $0$})selved in each regions. For example, in a velocity profile of the hot gas region, velocity

near cold gas is rather faster than other areas. This high velocity area is caused by pushing

effects of magma-gas contact surface, which is corresponding to the front of cold gas contact.
These high velocity particles are not thermalized yet; In the molecular dynamics simulation,

microscopic relaxation is apparently observed.

IV. SUM MARY

To sumlnarize, we have constructed a microscopic model of Vulcanian eruption by a two-
components Leonard-Jones particle system. We observed that the particle dynam ics is efficient
in this kind of dynamics. Using the present model we can reproduce characteristic features
of explosive eruption such as a shock wave, a expansion wave. At the early stage of the
eruption, we also compare the simulation result with the analytic model given by Woods.
Qualitative behavior is almost consistent with the analytic result, even though the flow is
treated as nonviscotic one in the analytic model, In addition, we have also observed that the
internal structure is grow ing during the eruption. Internal bubble structure cannot be captured
by the Woods model. This behavior is also consistent with a eruption picture of volcanology
study. Thus we conclu de that the present model is a candidate of “an Ising model of Vulcanian
eruption

To establish the present model, a quantitative study is inevitable. For this purpose, we
have to enlarge the size of system ; A transition from bubbly magm a flow to magma dispersion
flow will be reproduced and studied by simulation of the system with ten times larger to all
directions. And the more details of volcanic eruption not only Vulcanian but also Strombolian,
and Plinian will be elucidated. Present typical computational time is approximately 80 hours
for 208896 particles with single AMD opteron 248 $(2.2\mathrm{G}\mathrm{H}\mathrm{z})$ . Hence much larger simulation is
feasible with large super computers.
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