ooooooooon 14v40 20060 110-117

110

Second order Nonlinear Difference Equations
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1 Introduction

At first we consider the following second order nonlinear difference equation,

{ ult + 1) = Ulu(t), v(t)),

v(t+1) = V(u(t),v(t)), (L)

where U(u, v) and V' (u,v) are entire functions for v and v. We suppose that the equation
(1.1) admits an equilibrium point (u*,v*) = (0,0). Furthermore we suppose that U/ and
V are written in the following form

) = (0) + (Gletii).

where U;{u,v) and Vi(u,v) are higher order terms of u and v. Let Ay, A; be characteristic

values of matrix M. For some regular matrix P which decided by M, put (ﬁ) =

P Z) , then we can transform the system (1.1) into the following simultaneous system

of first order difference equations (1.2):

2(t +1) = X(a(2), y(2)),
{ y(t+1) = Y(2(1),4(t)), (1.2)
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where X(z,y) and Y(z,y) are supposed to be holomorphic and expanded in a neigh-
borhood of (0,0) in the form

X(z,y) =Mz + Y ea'y’ = hz + Xi(s,y),
4522

Y(z,y) = Aoy + Y, diz'y’ = hay + Yi(2,y),

1+522

(1.3)

X(z,y) = Az +y+ Z dia'y’ = Az + X{(z,y),
4522
Y(e,y)=dy+ Y diyz'y’ =dy+Y{(z,y),

722

or

(1.4)

where A = A = Aq.

In this note we consider analytic solutions of difference system (1.2), making use of
Theorems in [1] and [4]. We will seek an analytic solution of (1.2) under the conditions
M = A; =1 and definition (1.3). Further we suppose that

X(wy)=z+ Y e’y =+ Xilzy),
522,121

Y(z,y)=y+ Y dyz'y’ =y+Yi(e,y),

i+522, 521

(1.5)

where X;(z,y) # 0 or Yi(z,y) # 0. For the case |A1] # 1 or [As] # 1, we obtained
analytic general solutions of (1.2) in [5] and [6], For a long time we could not treat
the equation (1.2) under the condition |A;| = |As] = 1, because it is difficult to have
an analytic solution of the equation (1.2). For analytic solutions of a nonlinear first
order difference equations, Kimura [1] and Yanagihara [7] studied the cases in which
the absolute value of the eigenvalue equal to 1.

Next we consider a functional equation
V(X (2,¥(2)) = V(, ¥e)), (1.6)

where X(z,y) and Y (z,y) are holomorphic functions in {2} < 41, ly| < é1. We assume
that X(z,y) and Y (z,y) are expanded there as in (1.5).

As far as % # 0, an existence of solutions of (1.2) is equivalent to an existence
of solution W of (1.6). Furthermore we can reduce (1.2) to the following first order

difference equation
ot +1) = X(a(t), U(=(1)), (L7)
Hereafter we consider ¢ to be a complex variable, and concentrate on the difference
system (1.2). Our aim in this paper is to show the following Theorem 1.

Theorem 1 Suppose X(z,y) and Y(z,y) are expanded in the forms (1.5) such that
Xi(z,y) #£0 or Yi(z,y) £ 0.
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(1) We define domains Dy(ko, Ro) by

Dy(ko, Ro) = {t : [t| > Ry, |arg[t]] < #o}, (1.8)
where kg is any constant such that 0 < ko £ T and Ry is sufficiently large number
which may depend on X and Y. Further define

D*(k,8) = {z; |arglz]| < k, 0 < |z| < &}, (1.9)

where § is a small constant and & is a constant such that k = 2k, 1.6, 0 <k S Z.
Suppose that keg = diy < 0 for some k € N, k 2 2, and A = ¢, then we have a
formal solution z(t) of (1.2) the following form

-1
:%G*EZ%”Gf@j , (1.10)

k21

where §;p are constants which are defined by X and Y.

(2) Suppose R; = max(Ry,2/(|A|)), then there is a solution z(t) of (1.2) such that
z(t) € D*(k,0) for t € Dy(ko, Ry), which the solution satisfying the following
conditions:

(i) z(t) is holomorphic in Di(ko, Ry).

(ii) z(t) is expressible in the form

2(t) = ~%(1 +b(t, b—ff)) , ‘ (1.11)

where b(t,n) is holomorphic for t € Dy(ko, Ry), |n] <7, and in the expansion
bt,n) ~ > ey e(t)n®, bi(t) is asymptotically develop-able into by(t) ~ Y7 154 byt
as t — oo through Di(ko, Ry), where b;;, are constants which are defined by X and Y.

2 Proof of Theorem 1

In [1], Kimura considered the following first order difference equation
wlt+ %) = Flu(), (1)

where F' is represented in a neighborhood of co by a Laurent series
F(z)=2(1+ ijw'), b= #0. (2.1)
j=1

He defined the following domains

D(e,R)={t : |t| > R, |arglt] — 0] < % — ¢, or Im(&?=9t) > R,
or Im{e!™*)t) < <R},  (2.2)
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D(e,R)={t : |t| > R,|arg[t] — 6 — 7| < %— e or Im(e~®*""9¢) > R
or Im(e~*®+™9¢) < —R},  (2.3)

where ¢ is an arbitrarily small positive number and R is a sufficiently large number
which may depend on ¢ and F, § = arg A, (in this present paper, we consider the case
A =1in (D1)). He proved the following theorems A and B.

Theorem A. Equation (D1) admits a formal solution of the form

t(” 3 (% t)k> .

J+k21

containing an arbitrary constant, where §;; are constants defined by F.

Theorem B. Given a formal solution of the form (2.4) of (D1), there ezists a
unique solution w(t) satisfying the following conditions:

(i) w(t) is holomorphic in D(e, R),

(i) w(t) is expressible in the form

w(t) = t(l + b(tlﬁtg—t>) (2.5)

where the domain D(e, R) is defined by (2.2) and b(t,n) is holomorphic fort € D(e, R),
Inl < 1/R, and in the ezpansion b(t, 1) ~ Ype; be(t)n*, br(t) is asymptotically devel-
opable into bp(t) ~ 271> g;xt™?, as t — oo through D(e, R), where ¢;x are constants
which are defined by X and Y. )

Also there ezists a unique solution 1 which is holomorphic in D(¢, R) and satisfies
a condition analogous to (ii), where the domain D(e, R) is defined by (2.5).

In Theorem A and B, he defined the function F as in (2.1). But in our method, we
can not have a Laurent series of the function F. Hence we derive following Propositions.

In the following, A denotes the constant A = ¢y in Theorem 1, where ¢y is the
coefficient in (1.5) .

Proposition 2. Suppose F(t) is holomorphic and expanded asymptotically in {t;
—1/(At) € D*(x,6), A< 0} as

ﬁ’(tj~t(1+26ﬂ‘j>, by =X #0,
J=1

where D*(k,6) is defined in (1.9). Then the equation
Y(EE) = 9(t) + A (2:6)
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has a formal solution

W(t) =t (1 +> gt + qk’—f—t-) : (2.7)
i=1

where q; can be arbiirarily prescribed while other coefficients are uniquely determined
by b;, (7 =1,2,--+), independently of q;.

Proposition 3. The equation (2.6) has a solution w = (t), which is holomorphic
in {t; —1/(At) € D*(k/2,6/2), A <0} and has asymptotic expansion (2.7) there.

These Propositions are proved as in [1] pp. 212-222. Since A = ¢y < 0 and sy =
/2, we see that = = —1/(At) € D*(x/2,4/2) equivalent to t € D1(x/2,2/(|A}S)) =
Di(x¢,2/{|A]6)), where Di{(kg, Ry) is defined in (1.8). Further, as in [1} pp.206 and
pp.228-232, we have following Proposition 4.

Proposition 4. Suppose a function ¢ is the inverse of ¢ such that w = ¥7(t) =
é(t). Then we have ¢ o Pp(w) = w,¥ o §(t) = t, furthermore ¢ is holomorphic and
asymptotically expanded in {t; t € Dy(ko,2/(Al6)) } as

k
¢U)~t{l+ Ejémij%£> }- (2.8)

JHE1

This function ¢(t) is a solution of difference equation of (D1).

In [4], we proved the following theorem C.

Theorem C. Suppose X(z,y) and Y (z,y) are defined in (1.5). Then

(1) if kego # diy for any k € N, k 2 2, then the formal solution ¥(z) of (1.6) of the
following form

U(z) = Z amz™, (2.9)
m=1
i8 tdentical to 0, i.e., a; = ag = --- = 0.
(2) if keoo = dyy for some k € N, k 2 2, then we have a formal solution ¥(z) of (1.6)
such the following form

U(z) =Y ana™, (2.10)
m=k
?:.6., a1 = 4y Z"':ak_lzo.
(3) suppose
kego =dyy <0 for some keN, k22 (2.11)
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For any k, 0 < & £ T and small §, we define the following domain D*(k,d),
D*(k,6) = {z; |arg[z]| < &, 0 < |z] < §}. (1.10)

there is a constant § > 0 and a solution U(x) of (1.6), which is holomorphic and can
be ezpanded asymptotically in D*(x,8) such that

o0

U(z) ~ Zaj:rj. (2.12)

=k

Proof of Theorem 1. We prove (1) of Theorem 1. We assume that kcyp = g1 < 0
for some £ € N, we suppose that Ry > R and k¢ < § — €. Since
6 = arg[A] = arg[l] = 0, we have

Dl(ﬁ?o,Ro) C D(ﬁ, R) (213)

From Theorem C, for a z € D*(k, ) we have a solution ¥(z) of (1.6) which is
holomorphic and can be expanded asymptotically in D*(x,§) such that

U(z) ~ Y ajel. (2,12)
J=k
On the other hand putting A = ¢y and w(2) = —Axl(t) in (1.7), then we have
wt41) = - ! (2.14)

AX (= mmp Y- =)
If we can have — = = z € D*(k,§), then making use of Theorem C, we have a

solution ¥(z) of (1.6) such that ¥(z) = \I!( - A—la) ~3 aj( - -ﬁ)—)m, (k =2 2).

Further from (1.5), we have
1 1 . -k
e~ w4+ ) E(w)7F (2.15)
AX (=, 9(z)) e = |
where &, are defined by ¢;; and ax (i+37 2 2,¢ 2 1, k 2 2). From (2.15) and definition
of A, we can write {2.15) into the following form (2.16),

w(t+1) = Flw(t) ~ wt){1+w(®) + S a(w@) ™} (2.16)

k22

On the other hand, putting A = 1 and m = 1 in (2.1), i.e. § =0, then making use of
the Theorem A, we have the following first order difference equation (D1, A = 1)

w(t +1) = F(w(t)) = w(t)(l +w(t) + i bw(t)™), (D1, A = 1)
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_ k
admits a formal solution of the form ¢| 1 + 3. +hz Gwt™ (1—"&)

£

Similarly for the first order difference equation (2.16), making use of Proposition 2, we
have a formal solution (2.17) of it such that,

w(t) wt(1+ 3 bt J(h’gt) ), (2.17)

J+k21

where b;; are defined by F in (2.16).

From z(t) = —m, we have a formal solution of (1.2) such that

z(t) = — it (1-;— > bt” J(IOtgt) ) . (2.18)

jtk21

Conversely, if we have a formal function 2(t) such that in (2.18) exist in the domain
D*(x,8), then we can prove that the formal function (2.18) is a formal solution of
(1.2), as t — oo through Dj{kg, Ro). At first we take a small 6 > 0. For sufficiently
large R, since Ry > R, we can have

4 3 e ()

JHk21

1

2(0)] =|

1
1
= < ——(1+1) <6 (2.19)

|A|R

for t € D1(ko, Ro). Since A = ¢30 < 0, if we take sufficiently large Ry, then we have

e {1+b( 1otgt>}

Hence we have —kg — kg < arg [z(t)] £ ko + ko. From the assumption of k = 2kg, we
have

< Ko, fort € DZ'(.‘Q(),R()).

larg [z(1)]] < & S —g— for t € Dy(ke, Ro). (2.20)

From (2.19) and (2.20), we have that z(t) € D*(x,d) for a some &, (0 < & < 7).
Hence we have a ¥(z(t)) which satisfies the equation (1.6) and we prove that the
function z(¢) is a formal solution of (1.2) and holomorphic in D;(ko, Ry). Therefore
we see that the function z(t) in the (2.18) is a formal solution of (1.2).

Next we prove (2). Suppose that R, = max(Rg,2/(|A|d)), making use of Proposition
4, then we have a holomorphic solution w(t) of (2.16) for t € D1(kq, R1), i.e., we have
a solution z(¢) of (1.2) for ¢ at there, in which satisfying following conditions:

(i) z(¢) is holomorphic in D (ko, Ry ),
(ii) w(¢) is expressible in the form

2(t) = —ji—t (1 + b(t, %g—t)> , (2.21)
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where b(t,7) is holomorphic for ¢ € D;(ko, R1), |7| < r, and in the expansion
b(t,n) ~ D_oe be(t)n*, bi(t) is asymptotically develop-able into by(1) ~ S rirer bt ™,
as t — oo though Dj(ko, R1). O -

Finally, we have a solution u(t), v(t) of (1.1) by the transformation

(oie) = 7 (otatn)
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