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1 Introduction
At first we consider the following second order nonlinear difference equation,

$\{$

$u(t+1)=U(u(t), v(t))_{7}$

$v(t+1)=V(u(t),v(t))$ ,
(1 . 1 )

where $U(u, v)$ and $V(u, v)$ are entire functions for $u$ and $v$ . We suppose that the equation
(1.1) admits an equilibrium point $(u^{*}., v^{*})=(0, 0)$ . Furthermore we suppose that $U$ and
$V$ are written in the following form

$(\begin{array}{l}u(t+1)v(t+1)\end{array})=M$ $(\begin{array}{l}u(t)v(t)\end{array})+$ $(\begin{array}{l}U_{1}(u(t),v(t))V_{\mathrm{l}}(u(t),v(t))\end{array})$ ,

where $U_{1}(u, v)$ and $\mathrm{U}\{\mathrm{u},$ $v$ ) are higher order terms of $u$ and $v$ . Let A15 $\lambda_{2}$ be characteristic

values of matrix $M$ . For some regular matrix $P$ which decided by $M$ , put $(\begin{array}{l}uv\end{array})$ $=$

$P$ $(\begin{array}{l}xy\end{array})$ , then we can transform the system (1.1) into the following simultaneous system

of first order difference equations (1.2):

$\{$

$x(t +1)=X(x(t), y(t))$ ,
$y(t+1)=Y(x(t), y(t)))$

(1.2)
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where $X(x_{7}y)$ and $Y(x,y)$ are supposed to be holomorphic and expanded in a neigh-
borhood of $(0, 0)$ in the form

$\{$

$X(x, y)= \lambda_{1}x+\sum_{i+j\geqq 2}c_{ij}x^{i}y^{j}=\lambda_{1}x+X_{1}(x, y)$
,

$Y(x, y)= \lambda_{2}y+\sum_{i+j\geqq 2}d_{ij}x^{i}y^{J}=\lambda_{2}y+Y_{1}(x, y)$
,

(1.3)

or

$\{$

$X(x, y)= \lambda x+y+\sum_{i+j\geqq 2}c_{ij}’x^{i}y^{j}=\lambda x+X_{1}’(x, y)$
,

$Y(x, y)=$ Ay
$+ \sum_{i+j\geqq 2}d_{ij}’x^{i}y^{j}=\lambda y$

$+Y_{1}’(x, y)$ ,
(1.4)

where $\lambda=\lambda_{1}=\lambda_{2}$ .
In this note we consider analytic solutions of difference system (1.2), making use of

Theorems in [1] and [4]. We will seek an analytic solution of (1.2) under the conditions
$\lambda_{1}=\lambda_{2}=1$ and definition (1.3). Further we suppose that

$\{$

$X(x, y)=x+ \sum_{i+j\geqq 2,i\geqq 1}c_{ij}x^{i}y^{j}=x+X_{1}(x, y)$
,

$Y(x, y)=y$
$+ \sum_{i+j\geqq 2,j\geqq 1}d_{ij}x^{\mathrm{t}}y^{j}=y$

$+Y_{1}(x, y)$ ,
(1.5)

where $X_{1}(x, y)\not\equiv \mathrm{O}$ or $Y_{1}(x, y)\not\equiv \mathrm{O}$ . For the case $|\lambda_{1}|\neq 1$ or $|\lambda_{2}|\neq 1$ , we obtained
analytic general solutions of (1.2) in [ $5_{\rfloor}^{\rceil}$ and [6], For a long time we could not treat
the equation (1.2) under the condition $|\lambda_{1}|=|\lambda_{2}|=1$ , because it is difficult to have
an analytic solution of the equation (1.2). For analytic solutions of a nonlinear first
order difference equations, Kimura [1] and Yanagihara [7] studied the cases in which
the absolute value of the eigenvalue equal to 1.

Next we consider a functional equation

$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))_{7}$ (1.6)

where $X(x,y)$ and $Y(x, y)$ are holomorphic functions in $|x|<\delta_{1}$ , $|y|<\delta_{1}$ . We assume
that $X(x, y)$ and $Y(x, y)$ are expanded there as in (1.5).

As far as $\frac{dx}{dt}\neq 0$ , an existence of solutions of (1.2) is equivalent to an existence
of solution $\Psi$ of (1.6). Furthermore we can reduce (1.2) to the following first order
difference equation

$x(t+1)=X(x(t), \Psi(x(t)))$ , (1.3)

Hereafter we consider $t$ to be a complex variable, and concentrate on the difference
system (1.2). Our aim in this paper is to show the following Theorem 1.

Theorem 1 Suppose $X(x,$y) and $Y(x,$y) are expanded in the forms (1 . 5) such that
$X_{1}(x, y)\not\equiv 0$ or $Y_{1}(x, y)\not\equiv 0$ .
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(1) We defin $e$ domains $D_{1}(\kappa_{0}, R_{0})$ by

$D_{1}(\kappa_{0}, R_{0})=\{t : |t|>R_{0}, |\arg[t]|<\kappa_{0}\}_{7}$ (1.8)

where $\kappa_{0}$ is any constant such that $0< \kappa_{0}\leqq\frac{\pi}{4}$ and $R_{0}$ is sufficiently large number
which may depend on $X$ and Y. Further define

$D^{*}(\kappa, \delta)=\{x;|\arg[x]|<\kappa, 0<|x|<\delta\}$ , (1.8)

there $\delta$ is a small constant and $\kappa$ is a constant such that $\kappa$ $=2\kappa_{0_{l}}\mathrm{i}.e.$ , $0< \kappa\leqq\frac{\pi}{2}$ .
Suppose that $\mathrm{k}\mathrm{c}20=d_{11}<0$ for some $k\in \mathrm{N}_{f}k\geqq 2$ , and $A=c_{20}$ , then ute Aaue $a$

formal solution $x(t)$ of (1 . 2) the following $form$

$\frac{1}{At}(1+\sum_{i+k\geqq 1}\hat{q}_{jk}t^{-j}(\frac{\log t}{t})^{k})-1$ , (1.10)

where $\hat{q}jk$ are constants which are defined by $X$ and $Y$ .
(2) Suppose $R_{1}= \max(R_{0},2/(|A|\delta))_{l}$ then there is a solution $x(t)$ of (1.2) such that
$x(t)\in D^{*}(\kappa, \delta)$ for $t\in D_{1}(\kappa_{0}, R_{1})_{f}$ which the solution satisfying the following
conditions:
(i) $x(t)$ is holomorphic in $D_{1}(\kappa_{0}, R_{1})$ .
(ii) $x(t)$ is expressible in the form

$x(t)=- \frac{1}{At}(1+b(t,\frac{\log t}{t}))^{-1}$ , (1.8)

where $b(t, \eta)$ is holomorphic for t $\in D_{1}(\kappa_{0)}R_{1})_{f}|\eta|<r$ , and in the expansion
$b(t, \eta)\sim\sum_{k=1}^{\infty}b_{k}(t)\eta^{k}$ , $b_{k}(t)$ is asymptotically develop-able into $b_{k}(t) \sim\sum_{i+k>1}^{\infty}b_{jk}t^{-j}$ ,
as $t\prec\infty$ through $D_{1}(\kappa_{0}, R_{1})_{2}$ where $b_{jk}$ are constants which are defined by $\overline{\overline{X}}$ and $Y$ .

2 Proof of Theorem 1

In [1], Kimura considered the following first order difference equation

$w(t+\lambda)=F(w(t))$ , (D1)

where $F$ is represented in a neighborhood of oo by a Laurent series

$F(z)=z(1+ \sum_{i=1}^{\infty}b_{j}z^{-j})$ , $b_{1}=\lambda\neq 0$ . (2.1)

He defined the following domains

$D(\epsilon, R)=\{t$ : $|t|>R$ , $| \arg[t]-\theta|<\frac{\pi}{2}-\epsilon$ , or ${\rm Im}(e^{i(\theta-\epsilon)}t)>R$ ,

or ${\rm Im}(e^{i(\theta+\epsilon)}t)<-R\}$ , (1.2)
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$\hat{D}(\epsilon, R)=\{t$ : $|t|>R$ , $| \arg[t]-\theta-\pi|<\frac{\pi}{2}-\epsilon$ or ${\rm Im}(e^{-i(\theta+\pi-\epsilon)}t)>R$

or ${\rm Im}(e^{-i\{\theta+\pi+\epsilon)}t)<-R\}$ , (2.3)

where $\epsilon$ is an arbitrarily small positive number and $R$ is a sufficiently large number
which may depend on $\epsilon$ and $F$ , $\theta=\arg\lambda$ , (in this present paper, we consider the case
$\lambda=1$ in (D1) $)$ . He proved the following theorems A and B.

Theorem A. Equation (D1) admits a formal solution of the form

$t(1+ \sum_{1j+k\geqq}q^{\mathrm{A}}jkt^{-j}(\frac{\log t}{t})^{k})$ (2.4)

containing an arbitrary constant, where $q\wedge jk$ are constants defined by F.

Theorem B. Given a formal solution of the form (2.4) of (Di), there exists $a$

unique solution $w(t)$ satisfying the following conditions:
(i) $w(t)$ is holomorphic in $D(\epsilon, R)$ ,
(ii) $w(t)$ is expressible in the form

$w(t)=t(1+b$ ($t$ , $\frac{\log t}{t}$) $)$ , (2.5)

where the domain $D(\epsilon, R)$ is defined by (2.2) and $b(t, \eta)$ is holomorphic for $t\in D(\epsilon, R)f$

$|\eta|<1/\mathrm{R}\}$ and in the expansion & $($ ?, $\eta)\sim\sum_{k=1}^{\infty}b_{k}(t)\eta^{k}$ , $b_{k}(t)$ is asymptotically devet-
opable into $b_{k}(t) \sim\sum_{j+k\geqq 1}^{\infty}\hat{q}jkt^{-i}$ , as $tarrow\infty$ through $D(\epsilon, R)$ , where $qjk$ are constants
which are defined by $X$ and $Y$ .

Also there exists a unique solution $\hat{w}$ which is holomorphic in $\hat{D}(\epsilon, R)$ and satisfies
a condition analogous to (ii), where the domain $\hat{D}(\epsilon, R)$ is defined by (2.2)

In Theorem A and $\mathrm{B}$ , he defined the function $F$ as in (2.1). But in our method, we
can not have a Laurent series of the function $F$ . Hence we derive following Propositions,

In the following, $A$ denotes the constant $A=c_{20}$ in Theorem 1, where $c_{20}$ is the
coefficient in (1.5) .

Proposition 2. Suppose $\tilde{F}(t)$ is holomorphic and expanded asymptotically in { $t,\cdot$

$-1/(At)\in D^{*}(\kappa, \delta))A<0\}$ as

$\tilde{F}(t)\sim t(1+\sum_{j=1}^{\infty}b_{i}t^{-g})$ , $b_{1}=\lambda\neq 0$ ,

there $\mathrm{D}(\mathrm{e}, \mathit{5})$ is defined in (1 . 9) , Then the equation

$\psi(\tilde{F}(t))=\psi(t)+\lambda$ (2.6)
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has a formal solution

$\psi(t)=t(1+\sum_{j=1}^{\infty}q_{j}t^{-j}+q\frac{\log t}{t})$ , (2.7)

where $q_{1}$ can be arbitrarily prescribed while other coefficients are uniquely determined
by $b_{j_{f}}(j=1,2, \cdots)_{J}$ independently of $q_{1}$ .

Proposition 3, The equation (2.6) has a solution w $=\psi(t)$ , which is holomorphic
in $\{t;-1/(At)\in D^{*}(\kappa/2, \mathrm{k}/2,$A $<0\}$ and has asymptotic expansion (2.7) there.

These Propositions are proved as in [1] pp. 212-222. Since $A=c_{20}<0$ and $\kappa_{0}=$

$\kappa/2$ , we see that $x=-1/(At)\in D^{*}(\kappa/2, \delta/2)$ equivalent to $t\in D_{1}(\kappa/2,2/(|A|\delta))=$

$D_{1}(\kappa_{0},2/(|A|\delta))!$. where $D_{1}(\kappa_{0}, R_{0})$ is defined in (1.8). Further, as in [1] pp.206 and
pp.228-232, we have following Proposition 4.

Proposition 4. Suppose a function 42 is the inverse of $\psi$ such that $w=\psi^{-1}(t)=$

$\phi(t)$ . Then we have $\phi 0\psi(w)=w$ , $\psi$ $\circ\phi(t)=t$ , furthermore $\phi$ is holomorphic and
asymptotically expanded in $\{t; t\in D_{1}(\kappa_{07}2/(|A|\delta))\}$ as

$\phi(t)\sim t\{1+\sum_{j+k\geq 1}\hat{q}_{jk}t^{-r}(\frac{\log t}{t})^{k}\}$ . (2.6)

This function $\phi(t)$ is a solution of difference equation of (D1).

In [4], we proved the following theorem C.

Theorem C. Suppose $X(x,$y) and $Y(x,$y) are defined in (L5). Then

(1) if $\mathrm{k}\mathrm{c}20\neq d_{11}$ for any $k\in \mathbb{N}_{f}k\geqq 2_{f}$ then the formal solution $\Psi(x)$ of (1.6) of the
following form

$\Psi(x)=\sum_{m=1}^{\infty}a_{m}x^{m}$ , (2.9)

is identical to 0, $i.e.$ , $a_{1}=a_{2}=\cdots=0$ .
(2) if $\mathrm{k}\mathrm{c}20=d_{11}$ for some $k\in \mathrm{N}_{f}k\geqq 2_{J}$ then we have a formal solution $\Psi(x)$ of (1.6)
such the following form

$\Psi(x)=\sum_{m=k}^{\infty}a_{m}x^{m}$ , (2.10)

$i.e.$ , $a_{1}=a_{2}=\cdots=a_{k-1}=0$ .
(3) suppose

$kc_{20}=d_{11}<0$ for some $k\in \mathrm{N}$ , $k\geqq 2$ . (2.10)
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For any $\kappa$ , $0< \kappa\leqq\frac{\pi}{2}$ and small $\delta$ , we define the following domain $D^{*}(\kappa, \delta)$ ,

$D^{*}(\kappa, \delta)$ $=\{x;|\arg[x]|<\kappa, 0<|x|<\delta\}$ . (1.10)

there is a constant $\delta>0$ and a solution $\Psi(x)$ of (1.6), which is holomorphic and can
be expanded asymptotically in $D^{*}(\kappa, \delta)$ such that

$\Psi(x)\sim\sum_{j=k}^{\infty}a_{j}x^{j}$ . (2.12)

Proof of Theorem 1. We prove (1) of Theorem 1. We assu me that $kc_{20}=q_{11}<0$

for some $k\in \mathbb{N}$ , we suppose that $R_{0}>R$ and $\kappa_{0}<\frac{\pi}{4}-\epsilon$ . Since
$\theta=\arg[\lambda]=\arg[1]=0$ , we have

$D_{1}(\kappa_{0}, R_{0})\subseteq D(\epsilon, R)$ . (2.13)

From Theorem $\mathrm{C}_{7}$ for a $x\in D^{*}(\kappa, \delta)$ we have a solution $\Psi(x)$ of (1.6) which is
holomorphic and can be expanded asymptotically in $D^{*}(\kappa_{7}\delta)$ such that

$\Psi(x)$ $\sim\sum_{=Jk}^{\infty}a_{j}x^{j}$ . $(2,12)$

On the oth er hand putting $A=c_{20}$ and $\mathrm{w}(\mathrm{t})=-\frac{1}{Ax(t)}$ in (1.7), then we have

$w(t+1)=- \frac{1}{AX(-\frac{1}{Aw(t)},\Psi(-\frac{1}{Aw(t)}))}$ . (2.14)

If we can have $- \frac{1}{Aw}=x\in D^{*}(\kappa, \delta)$ , then making use of Theorem $\mathrm{C}$ , we have a

solution $\Psi(x)$ of (1.6) such that $\Psi(x)=\Psi(-\frac{1}{Aw})\sim\sum_{m=k}^{\infty}aj(-\frac{1}{Aw})^{m}$, $(k\geqq 2)$ .

Further from (1.5), we have

$- \frac{1}{AX(x,\Psi(x))}\sim w[1+c_{20}\frac{1}{A}w^{-1}+\sum_{k\geqq 2}\tilde{c}_{k}(w)^{-k}]$
, (2.15)

where $\overline{c}_{k}$ are defined by $c_{ij}$ and $a_{k}(i+j\geqq 2, i\geqq 1, k\geqq 2)$ . From (2.15) and definition
of $A$ , we can write (2.15) into the following form (2.16),

$w(t+1)= \tilde{F}(w(t))\sim w(t)\{1+w(t)^{-1}+\sum_{k\geqq 2}\tilde{c}_{k}(w(t))^{-k}\}$
. (2.16)

On the other hand, putting $\lambda=1$ and $m=1$ in (2.1), i.e. $\theta=0$ , then making use of
the Theorem $\mathrm{A}$ , we have the following first order difference equation (Dl, $\lambda=1$ )

$w(_{\iota}t+1)=F(w(t))=w(t)(1+w(t)^{-1}+ \sum_{j=2}^{\infty}b_{j}w(t)^{-j})$ , ( $\mathrm{D}1_{7}$ A $=1$ )
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admits a formal solution of the form $t(1+ \sum_{g+k\geqq 1}\hat{q}jkt^{-j}(\frac{\log t}{t})^{k})$ .

Similarly for the first order difference equation (2.16), making use of Proposition 2, we
have a formal solution (2.17) of it such that,

$w(t)=t(1+ \sum_{j+k\geqq 1}bt^{-j}jk(\frac{\log t}{t})^{k})$ , (2.17)

where $b_{jk}$ are defined by $\tilde{F}$ in (2.16).
From $x(t)=- \frac{1}{Aw(t)}$ , we have a formal solution of (1.2) such that

$x(t)=- \frac{1}{At}(1+\sum_{j+k\geqq 1}b_{jk}t^{-j}(\frac{\log t}{t})^{k})^{-1}$ (2.18)

Conversely, if we have a formal function $x(t)$ such that in (2.18) exist in the domain
$D^{*}(\kappa, \delta)$ , then we can prove that the formal function (2.18) is a formal solution of
(1.2), as $tarrow$ oo through $D_{1}(\kappa_{0}, R_{0})$ . At first we take a small $\delta>0$ . For sufficiently
large $R$ , since $R_{0}>R$ , we can have

$|x(t)|=| \frac{1}{At}||1+\sum_{j+k\geqq 1}b_{jk}t^{-j}(\frac{\log t}{t})^{k}|^{-1}<\frac{1}{|A|R}(1+1)<\delta$ . (2.19)

for $t\in D_{1}$ ( $\kappa_{0}$ , R$\mathrm{o}$ ). Since $A=c_{20}<0$ , if we take sufficiently large $R_{0}$ , then we have

$| \arg[1+b(t,\frac{\log t}{t})\ovalbox{\tt\small REJECT}|<\kappa_{0}$ , for $t\in D_{i}(\kappa_{0}, R_{0})$ .

Hence we have $-\kappa_{0}-\kappa_{0}\leqq\arg[x(t)]\leqq\kappa_{0}+\kappa_{0}$ . From the assumption of $\kappa=2\kappa_{0}$ , we
have

$| \arg[x(t)]|<\kappa\leqq\frac{\pi}{2}$ for $t\in D_{1}(\kappa_{0}, R_{0})$ . (2.20)

From (2.19) and (2.20), we have that $x(t)\in D^{*}(\kappa, \delta)$ for a some $\kappa$ , $(0< \kappa\leqq\frac{\pi}{2})$ .
Hence we have a $\Psi(x(t))$ which satisfies the equation (1.6) and we prove that the
function $x(t)$ is a formal solution of (1.2) and holomorphic in $D_{1}(\kappa_{0}, R_{0})$ . Therefore
we see that the function $x(t)$ in the (2.18) is a formal solution of (1.2).

Next we prove (2). Suppose that $R_{1}= \max(R_{0)}2/(|A|\delta))$ , making use of Proposition
4, then we have a holomorphic solution $w(t)$ of (2.16) for $t\in D_{1}(\kappa_{0}, R_{1})_{7}$ i.e., we have
a solution $x(t)$ of (1.2) for $t$ at there, in which satisfying following conditions:
(i) $x(t)$ is holomorphic in $D_{1}(\kappa_{0}, R_{1})$ ,
(ii) $w(t)$ is expressible in the form

$x(t)=- \frac{1}{At}(1+\mathrm{x}(\mathrm{t})$ $\frac{\log t}{t}))^{-1}$ , (2.21)
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where $b(t, \eta)$ is holomorphic for $t\in D_{1}$ ( $\kappa_{0}$ , Rx), $|\eta|<r$ . and in the expansion
$\mathrm{b}(\mathrm{t}, \eta)\sim\sum_{k=1}^{\infty}b_{k}(t)\eta^{k}$ . $b_{k}(t)$ is asymptotically develop-able into $b_{k}(t) \sim\sum_{\mathrm{i}+k\geqq 1}^{\infty}b_{jk}t^{-j}$,
as $tarrow\infty$ though $D_{1}(\kappa_{0}, R_{1})$ . Cl

Finally, we have a solution $u(t)$ , $v(t)$ of (1.1) by the transformation

$(\begin{array}{l}u(t)v(t)\end{array})=P$ $(\begin{array}{l}x(t)\Psi(x(t))\end{array})$ .
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