Second order Nonlinear Difference Equations whose Eigenvalues are 1

愛知学泉大学・経営学部 鈴木まみ (Mami Suzuki)* Department of Management Informatics, Aichi Gakusen Univ.

Keywords: Analytic solutions, Functional equations, Nonlinear difference equations. 2000 Mathematics Subject Classifications: 39A10,39A11,39B32.

1 Introduction

At first we consider the following second order nonlinear difference equation,

$$\begin{cases} u(t+1) = U(u(t), v(t)), \\ v(t+1) = V(u(t), v(t)), \end{cases}$$
(1.1)

where U(u, v) and V(u, v) are entire functions for u and v. We suppose that the equation (1.1) admits an equilibrium point $(u^*, v^*) = (0, 0)$. Furthermore we suppose that U and V are written in the following form

$$\begin{pmatrix} u(t+1)\\v(t+1) \end{pmatrix} = M \begin{pmatrix} u(t)\\v(t) \end{pmatrix} + \begin{pmatrix} U_1(u(t),v(t))\\V_1(u(t),v(t)) \end{pmatrix},$$

where $U_1(u, v)$ and $V_1(u, v)$ are higher order terms of u and v. Let λ_1, λ_2 be characteristic values of matrix M. For some regular matrix P which decided by M, put $\begin{pmatrix} u \\ v \end{pmatrix} =$

 $P\begin{pmatrix}x\\y\end{pmatrix}$, then we can transform the system (1.1) into the following simultaneous system of first order difference equations (1.2):

$$\begin{cases} x(t+1) = X(x(t), y(t)), \\ y(t+1) = Y(x(t), y(t)), \end{cases}$$
(1.2)

^{*}Research partially supported by the Grant-in-Aid for Scientific Research (C) 15540217 from the Ministry of Education, Science and Culture of Japan.

111

where X(x,y) and Y(x,y) are supposed to be holomorphic and expanded in a neighborhood of (0,0) in the form

$$\begin{cases} X(x,y) = \lambda_1 x + \sum_{i+j \ge 2} c_{ij} x^i y^j = \lambda_1 x + X_1(x,y), \\ Y(x,y) = \lambda_2 y + \sum_{i+j \ge 2} d_{ij} x^i y^j = \lambda_2 y + Y_1(x,y), \end{cases}$$
(1.3)

or

$$\begin{cases} X(x,y) = \lambda x + y + \sum_{i+j \ge 2} c'_{ij} x^i y^j = \lambda x + X'_1(x,y), \\ Y(x,y) = \lambda y + \sum_{i+j \ge 2} d'_{ij} x^i y^j = \lambda y + Y'_1(x,y), \end{cases}$$
(1.4)

where $\lambda = \lambda_1 = \lambda_2$.

In this note we consider analytic solutions of difference system (1.2), making use of Theorems in [1] and [4]. We will seek an analytic solution of (1.2) under the conditions $\lambda_1 = \lambda_2 = 1$ and definition (1.3). Further we suppose that

$$\begin{cases} X(x,y) = x + \sum_{i+j \ge 2, \ i \ge 1} c_{ij} x^i y^j = x + X_1(x,y), \\ Y(x,y) = y + \sum_{i+j \ge 2, \ j \ge 1} d_{ij} x^i y^j = y + Y_1(x,y), \end{cases}$$
(1.5)

where $X_1(x,y) \neq 0$ or $Y_1(x,y) \neq 0$. For the case $|\lambda_1| \neq 1$ or $|\lambda_2| \neq 1$, we obtained analytic general solutions of (1.2) in [5] and [6], For a long time we could not treat the equation (1.2) under the condition $|\lambda_1| = |\lambda_2| = 1$, because it is difficult to have an analytic solution of the equation (1.2). For analytic solutions of a nonlinear first order difference equations, Kimura [1] and Yanagihara [7] studied the cases in which the absolute value of the eigenvalue equal to 1.

Next we consider a functional equation

$$\Psi(X(x,\Psi(x))) = Y(x,\Psi(x)), \tag{1.6}$$

where X(x,y) and Y(x,y) are holomorphic functions in $|x| < \delta_1$, $|y| < \delta_1$. We assume that X(x,y) and Y(x,y) are expanded there as in (1.5).

As far as $\frac{dx}{dt} \neq 0$, an existence of solutions of (1.2) is equivalent to an existence of solution Ψ of (1.6). Furthermore we can reduce (1.2) to the following first order difference equation

$$x(t+1) = X(x(t), \Psi(x(t))),$$
(1.7)

Hereafter we consider t to be a complex variable, and concentrate on the difference system (1.2). Our aim in this paper is to show the following Theorem 1.

Theorem 1 Suppose X(x,y) and Y(x,y) are expanded in the forms (1.5) such that $X_1(x,y) \neq 0$ or $Y_1(x,y) \neq 0$.

$$D_1(\kappa_0, R_0) = \{t : |t| > R_0, |\arg[t]| < \kappa_0\},$$
(1.8)

where κ_0 is any constant such that $0 < \kappa_0 \leq \frac{\pi}{4}$ and R_0 is sufficiently large number which may depend on X and Y. Further define

$$D^{*}(\kappa, \delta) = \{x; |\arg[x]| < \kappa, 0 < |x| < \delta\},$$
(1.9)

where δ is a small constant and κ is a constant such that $\kappa = 2\kappa_0$, i.e., $0 < \kappa \leq \frac{\pi}{2}$. Suppose that $kc_{20} = d_{11} < 0$ for some $k \in \mathbb{N}$, $k \geq 2$, and $A = c_{20}$, then we have a formal solution x(t) of (1.2) the following form

$$\frac{1}{At} \left(1 + \sum_{j+k \ge 1} \hat{q}_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right)^{-1}, \tag{1.10}$$

where \hat{q}_{jk} are constants which are defined by X and Y.

(2) Suppose $R_1 = \max(R_0, 2/(|A|\delta))$, then there is a solution x(t) of (1.2) such that $x(t) \in D^*(\kappa, \delta)$ for $t \in D_1(\kappa_0, R_1)$, which the solution satisfying the following conditions:

(i) x(t) is holomorphic in $D_1(\kappa_0, R_1)$.

(ii) x(t) is expressible in the form

$$x(t) = -\frac{1}{At} \left(1 + b\left(t, \frac{\log t}{t}\right) \right)^{-1}, \qquad (1.11)$$

where $b(t,\eta)$ is holomorphic for $t \in D_1(\kappa_0, R_1)$, $|\eta| < r$, and in the expansion $b(t,\eta) \sim \sum_{k=1}^{\infty} b_k(t)\eta^k$, $b_k(t)$ is asymptotically develop-able into $b_k(t) \sim \sum_{j+k\geq 1}^{\infty} b_{jk}t^{-j}$, as $t \to \infty$ through $D_1(\kappa_0, R_1)$, where b_{jk} are constants which are defined by X and Y.

2 Proof of Theorem 1

In [1], Kimura considered the following first order difference equation

$$w(t+\lambda) = F(w(t)), \tag{D1}$$

where F is represented in a neighborhood of ∞ by a Laurent series

$$F(z) = z \left(1 + \sum_{j=1}^{\infty} b_j z^{-j} \right), \ b_1 = \lambda \neq 0.$$
(2.1)

He defined the following domains

$$D(\epsilon, R) = \{t : |t| > R, |\arg[t] - \theta| < \frac{\pi}{2} - \epsilon, \text{ or } \operatorname{Im}(e^{i(\theta - \epsilon)}t) > R, \\ \text{ or } \operatorname{Im}(e^{i(\theta + \epsilon)}t) < -R\},$$
(2.2)

$$\hat{D}(\epsilon, R) = \{t : |t| > R, |\arg[t] - \theta - \pi| < \frac{\pi}{2} - \epsilon \text{ or } \operatorname{Im}(e^{-i(\theta + \pi - \epsilon)}t) > R$$

or
$$\operatorname{Im}(e^{-i(\theta + \pi + \epsilon)}t) < -R\}, \quad (2.3)$$

where ϵ is an arbitrarily small positive number and R is a sufficiently large number which may depend on ϵ and F, $\theta = \arg \lambda$, (in this present paper, we consider the case $\lambda = 1$ in (D1)). He proved the following theorems A and B.

Theorem A. Equation (D1) admits a formal solution of the form

$$t\left(1+\sum_{j+k\geq 1}\hat{q}_{jk}t^{-j}\left(\frac{\log t}{t}\right)^k\right) \tag{2.4}$$

containing an arbitrary constant, where \hat{q}_{jk} are constants defined by F.

Theorem B. Given a formal solution of the form (2.4) of (D1), there exists a unique solution w(t) satisfying the following conditions:

(i) w(t) is holomorphic in $D(\epsilon, R)$,

(ii) w(t) is expressible in the form

$$w(t) = t\left(1 + b\left(t, \frac{\log t}{t}\right)\right),\tag{2.5}$$

where the domain $D(\epsilon, R)$ is defined by (2.2) and $b(t, \eta)$ is holomorphic for $t \in D(\epsilon, R)$, $|\eta| < 1/R$, and in the expansion $b(t, \eta) \sim \sum_{k=1}^{\infty} b_k(t)\eta^k$, $b_k(t)$ is asymptotically developable into $b_k(t) \sim \sum_{j+k\geq 1}^{\infty} \hat{q}_{jk}t^{-j}$, as $t \to \infty$ through $D(\epsilon, R)$, where \hat{q}_{jk} are constants which are defined by X and Y.

Also there exists a unique solution \hat{w} which is holomorphic in $\hat{D}(\epsilon, R)$ and satisfies a condition analogous to (ii), where the domain $\hat{D}(\epsilon, R)$ is defined by (2.3).

In Theorem A and B, he defined the function F as in (2.1). But in our method, we can not have a Laurent series of the function F. Hence we derive following Propositions.

In the following, A denotes the constant $A = c_{20}$ in Theorem 1, where c_{20} is the coefficient in (1.5).

Proposition 2. Suppose $\tilde{F}(t)$ is holomorphic and expanded asymptotically in $\{t; -1/(At) \in D^*(\kappa, \delta), A < 0\}$ as

$$\tilde{F}(t) \sim t\left(1 + \sum_{j=1}^{\infty} b_j t^{-j}\right), \qquad b_1 = \lambda \neq 0,$$

where $D^*(\kappa, \delta)$ is defined in (1.9). Then the equation

$$\psi(\tilde{F}(t)) = \psi(t) + \lambda \tag{2.6}$$

has a formal solution

$$\psi(t) = t \left(1 + \sum_{j=1}^{\infty} q_j t^{-j} + q \frac{\log t}{t} \right),$$
 (2.7)

where q_1 can be arbitrarily prescribed while other coefficients are uniquely determined by b_j , $(j = 1, 2, \dots)$, independently of q_1 .

Proposition 3. The equation (2.6) has a solution $w = \psi(t)$, which is holomorphic in $\{t; -1/(At) \in D^*(\kappa/2, \delta/2), A < 0\}$ and has asymptotic expansion (2.7) there.

These Propositions are proved as in [1] pp. 212-222. Since $A = c_{20} < 0$ and $\kappa_0 = \kappa/2$, we see that $x = -1/(At) \in D^*(\kappa/2, \delta/2)$ equivalent to $t \in D_1(\kappa/2, 2/(|A|\delta)) = D_1(\kappa_0, 2/(|A|\delta))$, where $D_1(\kappa_0, R_0)$ is defined in (1.8). Further, as in [1] pp.206 and pp.228-232, we have following Proposition 4.

Proposition 4. Suppose a function ϕ is the inverse of ψ such that $w = \psi^{-1}(t) = \phi(t)$. Then we have $\phi \circ \psi(w) = w, \psi \circ \phi(t) = t$, furthermore ϕ is holomorphic and asymptotically expanded in $\{t; t \in D_1(\kappa_0, 2/(|A|\delta))\}$ as

$$\phi(t) \sim t \left\{ 1 + \sum_{j+k \ge 1} \hat{q}_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right\}.$$

$$(2.8)$$

This function $\phi(t)$ is a solution of difference equation of (D1).

In [4], we proved the following theorem C.

Theorem C. Suppose X(x,y) and Y(x,y) are defined in (1.5). Then

(1) if $kc_{20} \neq d_{11}$ for any $k \in \mathbb{N}$, $k \geq 2$, then the formal solution $\Psi(x)$ of (1.6) of the following form

$$\Psi(x) = \sum_{m=1}^{\infty} a_m x^m, \qquad (2.9)$$

is identical to 0, i.e., $a_1 = a_2 = \cdots = 0$.

(2) if $kc_{20} = d_{11}$ for some $k \in \mathbb{N}$, $k \geq 2$, then we have a formal solution $\Psi(x)$ of (1.6) such the following form

$$\Psi(x) = \sum_{m=k}^{\infty} a_m x^m, \qquad (2.10)$$

i.e., $a_1 = a_2 = \cdots = a_{k-1} = 0$. (3) suppose

$$kc_{20} = d_{11} < 0 \quad for \ some \quad k \in \mathbb{N}, \ k \ge 2.$$
 (2.11)

$$D^*(\kappa, \delta) = \{x; |\arg[x]| < \kappa, 0 < |x| < \delta\}.$$
(1.10)

there is a constant $\delta > 0$ and a solution $\Psi(x)$ of (1.6), which is holomorphic and can be expanded asymptotically in $D^*(\kappa, \delta)$ such that

$$\Psi(x) \sim \sum_{j=k}^{\infty} a_j x^j.$$
(2.12)

Proof of Theorem 1. We prove (1) of Theorem 1. We assume that $kc_{20} = q_{11} < 0$ for some $k \in \mathbb{N}$, we suppose that $R_0 > R$ and $\kappa_0 < \frac{\pi}{4} - \epsilon$. Since $\theta = \arg[\lambda] = \arg[1] = 0$, we have

$$D_1(\kappa_0, R_0) \subset D(\epsilon, R). \tag{2.13}$$

From Theorem C, for a $x \in D^*(\kappa, \delta)$ we have a solution $\Psi(x)$ of (1.6) which is holomorphic and can be expanded asymptotically in $D^*(\kappa, \delta)$ such that

$$\Psi(x) \sim \sum_{j=k}^{\infty} a_j x^j.$$
(2,12)

On the other hand putting $A = c_{20}$ and $w(t) = -\frac{1}{Ax(t)}$ in (1.7), then we have

$$w(t+1) = -\frac{1}{AX\left(-\frac{1}{Aw(t)}, \Psi\left(-\frac{1}{Aw(t)}\right)\right)}.$$
 (2.14)

If we can have $-\frac{1}{Aw} = x \in D^*(\kappa, \delta)$, then making use of Theorem C, we have a solution $\Psi(x)$ of (1.6) such that $\Psi(x) = \Psi\left(-\frac{1}{Aw}\right) \sim \sum_{m=k}^{\infty} a_j \left(-\frac{1}{Aw}\right)^m$, $(k \ge 2)$. Further from (1.5), we have

$$-\frac{1}{AX(x,\Psi(x))} \sim w \left[1 + c_{20} \frac{1}{A} w^{-1} + \sum_{k \ge 2} \tilde{c}_k(w)^{-k} \right], \qquad (2.15)$$

where \tilde{c}_k are defined by c_{ij} and a_k $(i+j \ge 2, i \ge 1, k \ge 2)$. From (2.15) and definition of A, we can write (2.15) into the following form (2.16),

$$w(t+1) = \tilde{F}(w(t)) \sim w(t) \Big\{ 1 + w(t)^{-1} + \sum_{k \ge 2} \tilde{c}_k(w(t))^{-k} \Big\}.$$
 (2.16)

On the other hand, putting $\lambda = 1$ and m = 1 in (2.1), i.e. $\theta = 0$, then making use of the Theorem A, we have the following first order difference equation (D1, $\lambda = 1$)

$$w(t+1) = F(w(t)) = w(t) \Big(1 + w(t)^{-1} + \sum_{j=2}^{\infty} b_j w(t)^{-j} \Big), \qquad (D1, \lambda = 1)$$

admits a formal solution of the form $t\left(1 + \sum_{j+k \ge 1} \hat{q}_{jk} t^{-j} \left(\frac{\log t}{t}\right)^k\right)$.

Similarly for the first order difference equation (2.16), making use of Proposition 2, we have a formal solution (2.17) of it such that,

$$w(t) = t \left(1 + \sum_{j+k \ge 1} b_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right),$$
(2.17)

where b_{jk} are defined by \tilde{F} in (2.16).

From $x(t) = -\frac{1}{Aw(t)}$, we have a formal solution of (1.2) such that

$$x(t) = -\frac{1}{At} \left(1 + \sum_{j+k \ge 1} b_{jk} t^{-j} \left(\frac{\log t}{t} \right)^k \right)^{-1}.$$
 (2.18)

Conversely, if we have a formal function x(t) such that in (2.18) exist in the domain $D^*(\kappa, \delta)$, then we can prove that the formal function (2.18) is a formal solution of (1.2), as $t \to \infty$ through $D_1(\kappa_0, R_0)$. At first we take a small $\delta > 0$. For sufficiently large R, since $R_0 > R$, we can have

$$|x(t)| = \left|\frac{1}{At}\right| \left|1 + \sum_{j+k \ge 1} b_{jk} t^{-j} \left(\frac{\log t}{t}\right)^k\right|^{-1} < \frac{1}{|A|R}(1+1) < \delta.$$
(2.19)

for $t \in D_1(\kappa_0, R_0)$. Since $A = c_{20} < 0$, if we take sufficiently large R_0 , then we have

$$\left| \arg \left[1 + b\left(t, \frac{\log t}{t}\right) \right] \right| < \kappa_0, \quad \text{for } t \in D_i(\kappa_0, R_0).$$

Hence we have $-\kappa_0 - \kappa_0 \leq \arg[x(t)] \leq \kappa_0 + \kappa_0$. From the assumption of $\kappa = 2\kappa_0$, we have

$$|\arg[x(t)]| < \kappa \leq \frac{\pi}{2} \text{ for } t \in D_1(\kappa_0, R_0).$$

$$(2.20)$$

From (2.19) and (2.20), we have that $x(t) \in D^*(\kappa, \delta)$ for a some κ , $(0 < \kappa \leq \frac{\pi}{2})$. Hence we have a $\Psi(x(t))$ which satisfies the equation (1.6) and we prove that the function x(t) is a formal solution of (1.2) and holomorphic in $D_1(\kappa_0, R_0)$. Therefore we see that the function x(t) in the (2.18) is a formal solution of (1.2).

Next we prove (2). Suppose that $R_1 = \max(R_0, 2/(|A|\delta))$, making use of Proposition 4, then we have a holomorphic solution w(t) of (2.16) for $t \in D_1(\kappa_0, R_1)$, i.e., we have a solution x(t) of (1.2) for t at there, in which satisfying following conditions: (i) x(t) is holomorphic in $D_1(\kappa_0, R_1)$, (ii) w(t) is expressible in the form

$$x(t) = -\frac{1}{At} \left(1 + b\left(t, \frac{\log t}{t}\right) \right)^{-1},$$
 (2.21)

where $b(t,\eta)$ is holomorphic for $t \in D_1(\kappa_0, R_1)$, $|\eta| < r$, and in the expansion $b(t,\eta) \sim \sum_{k=1}^{\infty} b_k(t)\eta^k$, $b_k(t)$ is asymptotically develop-able into $b_k(t) \sim \sum_{j+k\geq 1}^{\infty} b_{jk}t^{-j}$, as $t \to \infty$ though $D_1(\kappa_0, R_1)$. \Box

Finally, we have a solution u(t), v(t) of (1.1) by the transformation

$$\begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = P \begin{pmatrix} x(t) \\ \Psi(x(t)) \end{pmatrix}.$$

References

- T. Kimura, On the Iteration of Analytic Functions, Funkcialaj Ekvacioj, 14, (1971), 197-238.
- M. Suzuki, Holomorphic solutions of some functional equations, Nihonkai Math. J., 5, (1994), 109-114.
- [3] M. Suzuki, Holomorphic solutions of some system of n functional equations with n variables related to difference systems, Aequationes Mathematicae, 57, (1999), 21-36.
- [4] M. Suzuki, Holomorphic solutions of some functional equations II, Southeast Asian Bulletin of Mathematics, 24, (2000), 85-94.
- [5] M. Suzuki, Analytic General Solutions of Nonlinear Difference Equations, preprint.
- [6] M. Suzuki, Holomorphic solutions of a Functional Equation, preprint.
- [7] N. Yanagihara, Meromorphic solutions of some difference equations, Funkcialaj Ekvacioj, 23, (1980), 309-326.