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Abstract
We consider the existence of a duck solution in two economic models; one is the

Goodwin’s nonlinear business cycle model, and the other is a two-region business
cycle model where each region is described as the Goodwin model and they are
coupled by interregional trade. We show that there exist duck solutions in the
two-region business cycle model, while the Goodwin model itself doesn’ $\mathrm{t}$ have a
duck solution.

1 Introduction
A duck solution is a segment of a solution to a slow-fast system which first follows the
attracting part of the slow manifold and then the repelling one. It was first found for the
one parameter family of van der Pol equations and analyzed by making use of techniques
from non-standard analysis. In [1], Benoit showed the existence of a duck solution to
a slow-fast system in $\mathbb{R}^{3}$ when it has a pseudo singular saddle point. Tchizawa [5]
considered a slow-fast system in $\mathbb{R}^{4}$ with a two-dimensional slow manifold and obtained
the condition for the existence of a duck solution by reducing it to the system in $\mathbb{R}^{2}$ .

In this paper, we consider the existence of a duck solution in two economic models.
First we consider the business cycle model of Goodwin [3]. The equation in the Goodw in
model can be transformed into a slow-fast system in $\mathbb{R}^{2}$ when we take the constant
concerning a lag to be considerably small, but we can show that a duck solution doesn’t
exist in it. Tchizawa et $al[6]$ considered the Goodwin-like business cycle model where the
induced investment function is a cubic polynomial and provided an economic condition
for the existence of a duck solution. Second, we present a two-region business cycle
model where each region is described as the Goodwin model and they are coupled by
interregional trade. Finally we show that there exist duck solutions in the two-region
model without using cubic polynomials as the induced invest function.

2 Duck solution

2.1 Duck in $\mathbb{R}^{2}$

We review some results of a duck solution in $\mathbb{R}^{2}$ by following Zvonkin and Shubin [7].
Consider the following system of differential equations:

$\{$

$\epsilon\dot{x}=y-f(x)$ ,
$\dot{y}=a-x$ ,

(2.1)
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Figure 1 (a) $\prime \mathrm{I}’\mathrm{h}\mathrm{e}$ slow curve of (2.1). The bold line is an exam ple of the solution to (2.1)
in the case of $at\approx x_{0}$ . The double arrows indicate rapid motion. The parts of the slow curve
where $f(x)$ is increasing are attracting and those where $f(x)$ is decreasing are repelling, (b)

The slow manifold $S$ , the pli set $PL$ , and an example solution of (2.2).

where $f$ is defined in $\mathbb{R}^{1}$ , $a$ is a parameter, and $\epsilon$ is infinitesimally small. For system (2.1),
the graph $y=f(x)$ is called the slow curve. A duck solution is a segment of a solution
which first follows the attracting part of the slow manifold and then the repelling one
(for the definition, see e.g. [7]). We consider the extremum point $x_{0}$ of the slow curve,
which separates the attracting and repelling parts. We give a necessary condition for
the existence of a duck solution close to the extremum point $\mathrm{x}\mathrm{q}$ .

Proposition 2.1 if there exists a duck solution of system (2.1) close to the extremum
point $x_{0}$ , then a $\approx x_{0}$ .

The follow ing theorem is due to Diener [2],

Theorem 2.2 Suppose that $f$ has a nondegenerate extremum point $x\mathit{0}$ , that is, $f’(x_{0})=$

$0$ and $f’(x_{0})\neq 0$ . Then there are the corresponding values of the parameter $a$ satisfying
Proposition 2.1 for which there exist duck solutions $\mathrm{i}\tau\iota$ system (2.1).

2.2 Duck in $\mathbb{R}^{3}$

We describe some results of Benoit [1] by following Kakiuchi and Tchizawa [4]. Consider
the following system of differential equations:

$\{$

$\dot{x}=f(x,y, z)$ ,
$\dot{y}=g(x, y, z)$ ,

$\epsilon\dot{\nearrow}.=h(x,y, z)$ ,

(2.2)

where $f$ , $g$ } and $h$ are defined in $\mathbb{R}^{3}$ and $\epsilon$ is infinitesimally small. We assume that system
$(2,2)$ satisfies the following conditions.

(A1) $f$ and $\backslash q$ are of class $\mathbb{C}^{1}$ , and $h$ is of class $\mathbb{C}^{2}$ .
(A2) The slow manifold $S=\{(x_{\backslash }y, z)\in \mathbb{R}^{3}|h(x, y, z)=0\}$ is a two-dimensional dif-

ferentiable manifold and the pli set $PL=\{(x, y, z)\in S|\partial h(x, y, z)/\partial z=0\}$ is $\mathrm{a}$

one-dimensional differentiate manifold
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(A3) Either the value of $f$ or that of $g$ is nonzero at any point $p\in PL$ .

We consider the following reduced system (see [4] for details) :

$\{$

$\dot{x}=-h_{z}(x, y, z)f(x, y, z)$ ,
$\dot{y}=-h_{z}(x, y, z)g(x, y, z)$ ,
$\dot{z}=hx(x, y, z)f(x_{7}y, z)+h_{y}(x, y, z)g(x, y, z)$ ,

(2.3)

where $h_{\alpha}(x, y, z)=\partial h(x,y, z)/\partial\alpha$ $(\alpha =x, y, z)$ .

Definition 2.3 A singular point of (2.3) which lies on PL is called a pseudo singular
point.

(A4) For any $(x, y, z)\in S$ , either $h_{x}(x, y, z)\neq 0$ or $h_{y}(x, y, z)\neq 0$ holds.

Then the slow manifold $S$ can be expressed like as $y=\varphi(x, z)$ in the neighborhood of
$PL$ and we obtain the following system, which restricts system (2.3) on $S$ :

$\{$

$\dot{x}=-h_{z}(x, \varphi(x, z), z)f(x, \varphi(x, z), z)$ ,
$\sim^{7=h_{x}(x,\varphi(x,z),z)f(x,\varphi(x,z),z)+h_{y}(x,\varphi(x,z),z)g(x,\varphi(x,z),z)}’.$.

(2.4)

(A5) All singular points of (2.4) are nondegenerate, that is, the linearization of (2.4) at
a singular point has two nonzero eigenvalues. Note that all pseudo singular points
are the singular points of (2.4).

Definition 2.4 Let $\lambda_{1}$ , $\lambda_{2}$ be two eigenvalues of the linearization of (2.4) at a pseudo
singular point. The pseudo singular point with real eigenvalues is called a pseudo singular
saddle point if $\lambda_{1}\lambda_{2}<0$ .

By means of methods in non-standard analysis, $\mathrm{B}\mathrm{e}\mathrm{n}\mathrm{o}^{\mathrm{A}}1\mathrm{t}$ proved the following theorem.

Theorem 2.5 If system (2.2) has a pseudo singular saddle point, then there exists $a$

duck solution in system (2.2).

2,3 Duck in $\mathbb{R}^{4}$

We consider a slow-fast system in $\mathbb{R}^{4}$ and reduce it to the system in $\mathbb{R}^{2}$ by following the
method in Tchizaw a [5], and provide the condition for the existence of a duck solution.

Consider the following system of differential equations:

$\{$

$\epsilon\dot{x}_{1}=h_{1}(x_{1}, x_{2},y_{1},y_{2})$ ,
$\epsilon\dot{x}_{2}=h_{2}(x_{1}, x_{2_{7}}y_{1},y_{2})$ ,

$\dot{y}_{1}=f_{1}(x_{1}, x_{2}, y_{1},y_{2})$ ,
$\dot{y}_{2}=f_{2}(x_{1}, x_{2}, y_{1)}y_{2})$ ,

(2.5)

where $f1$ , $f_{2}$ , $h_{1}$ , and $h_{2}$ are defined in $\mathbb{R}^{4}$ and $\epsilon$ is infinitesimally small. We put $x=$

$(x_{1},x_{2})_{\}^{\mathrm{T}}y=(y_{1},y_{2})^{\mathrm{T}}$ , $f=(f_{1}, f_{2})^{\mathrm{T}}$ , and $h=(h_{1}, h_{2})^{\mathrm{T}}$ . We assume that system $(2,5)$

satisfies the follow ing conditions
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(B1) $f$ is of class $\mathbb{C}^{1}$ and $h$ is of class $\mathbb{C}^{2}$ .

(B2) The slow manifold $S=\{(x, y)\in \mathbb{R}^{4}|h(x, y)=0\}$ is a two-dimensional differen-
tiable manifold and the generalized pli set $GPL= \{(x,y)\in S|\det(\frac{\partial h}{\partial x}(x, y))=0\}$

is a one-dimensional differentiate manifold.
(B3) Either the value of $f_{1}$ or that of $f_{2}$ is nonzero at any point $p\in GPL$ .

(B1) $\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(\frac{\partial h}{\mathit{8}y}(x, y))=2$ .

The implicit function theorem ensures that $y$ is uniquely described like as $y=\varphi(x)$ . On
the set $S$ , differentiating both sides of $h(x, \varphi(x))=0$ with respect to $x$ ,

$\frac{\partial h}{\partial x}(x, \varphi(x))+\frac{\partial h}{\partial y}(x, \varphi(x))D\varphi(x)=0$, (2.6)

where $D\varphi(x)$ is the Jacobian of $\varphi(x)$ . On the other hand, $\dot{y}=D\varphi(x)\dot{x}$ holds, where
$\dot{x}=$ $(\dot{x}_{1},\dot{x}_{2})^{\mathrm{T}}$ and $\dot{y}=(\dot{y}_{1},\dot{y}_{2})^{\mathrm{T}}$ . Then we can reduce the system to the following system:

$D\varphi(x)\dot{x}=f(x, \varphi(x))$ . (2.7)

Using (2.6), (2.7) is described by

.
$=-[ \frac{\partial h}{\partial x}(x,\varphi(x))||^{-1}\frac{\partial h}{\partial y}(x, \varphi(x))f(x, \varphi(x))$.

Moreover we consider the follow ing time scaled reduced system.

$\dot{x}=-\det(\frac{\partial h}{\partial x}(x, \varphi(x)))[\frac{\partial h}{\partial x}(x, \varphi(x))\ovalbox{\tt\small REJECT}^{-1}\frac{\partial h}{\partial y}(x, \varphi(x))f(x, \varphi(x)).$ (2.8)

Definition 2.6 A singular point of (2.8) is called a generalized pseudo singular point.

(B5) All singular points of (2.8) are nondegenerate.

Definition 2.7 Let $\lambda_{1}$ , A2 be two eigenvalues of the linearization of (2.8) at a generalized
pseudo singular point. The pseudo singular point with real eigenvalues is called a pseudo
singular saddle point if $\lambda_{1}\lambda_{2}<0$ .

By applying Benoit’s criterion, Tchizawa [5] finally obtained the following proposition.

Proposition 2.8 ij system (2,5) has a pseudo singular saddle point, then there exists $a$

duck solution in system (2.5).

3 Economic models

3.1 Goodwin’s business cycle model
The Goodwin model consists of a national income identity $y(t)$ , a consumption function
$c(t)$ , and an investment function $\dot{k}(t)$ :
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Figure 2 (a) The induced investment function, $\kappa$ is the acceleration coefficient, (b) The slow
curve of (3.3). The dotted line is the first term on the right hand side of (3.4) and the dotted
curve is the second one.

$y(t)=c(t)+\dot{k}(t)-\epsilon\dot{y}(t)$ ,
$c(t)=\alpha y(t)+\beta(t)$ , (3.1)
$\dot{k}(t+\theta)=\varphi[\dot{y}(t)]+l(t+\theta)\dot{/}$

where $k(t)$ denotes capital stock, $\epsilon(>0)$ a constant expressing a lag in the multiplier
process, a ( $0<$ a $<1$ ) the marginal propensity to consume, $\beta(t)$ an autonomous con-
sumption, $\varphi[\dot{y}(t)]$ the induced investment function as shown in Figure $2(\mathrm{a})$ , $l(t)$ is the
autonomous investment, and 0 the lag between the decision to invest and the correspond-
ing outlays, respectively. Goodwin finally obtained the following second-order differential
equation (see [3] for details):

$\epsilon\theta\dot{z}.+[\epsilon+(1-\alpha)\theta]\dot{z}-\varphi(\dot{z})+(1-\alpha)z=0$ , (3.2)

where $z$ is the deviations from the equilibrium income. Using graphical integration
method, Goodwin showed that (3.2) has a unique limit cycle.

By setting new variables, $z_{1}=z$ , $z_{2}=-\dot{z}_{1}+a$ , (3.2) becomes the following system:

$\{$

$\dot{z}_{1}=-z_{2}+a$ ,
$\epsilon\dot{z}_{2}=\frac{1-\alpha}{\theta}z_{1}-(\frac{\epsilon}{\theta}+1-\alpha)z_{2}-\frac{1}{\theta}\varphi(-z_{2}+a)+a(\frac{\epsilon}{\theta}+1-\alpha)$ ,

(3.3)

which is the type of the slow-fast system (2.1). The slow curve of (3.3) is

$z_{1}=( \frac{\epsilon}{1-\alpha}+\theta)(z_{2}-a)+\frac{1}{1-\alpha}\varphi(-z_{2}+a)$ (3.4)

and is draw $\mathrm{n}$ in Figure $2(\mathrm{b})$ . As the figure shows, there is a distance between the value
of the parameter $a$ and each extremum point of the slow curve, so that the condition of
Proposition 2.1 is not satisfied as far as the induced investment function is the type of
the function show $\mathrm{n}$ in Figure $2(\mathrm{a})$ . Therefore there does not exist a duck solution in the
Goodw in model. Tchizawa et $al[6]$ considered the Goodw in-like business cycle model
and slow ed that there exists the condition between the economic parameters under
which a duck solution occurs when we use a cubic polynomial as the induced investment
function,
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3.2 Two-region business cycle model
Now we present atwo-region business cycle model which is a natural extension of the
Goodw in model obtained by introducing interregional trade. More precisely, the model
consists of the following equations:

$y_{i}(t)=c_{\mathrm{i}}(t)+\dot{k}_{i}(t)-\epsilon_{i}\dot{y}_{l}.(t)+e_{i}(t)-m_{i}(t)$ ,
$c_{i}(t)$ $=\alpha_{i}y_{i}(t)+\beta_{i}(t)$ , (3.5)
$k_{i}^{\mathrm{J}}(t+\theta_{i})=\varphi_{i}[\dot{y}_{i}(t)]+l_{i}(t+\theta_{i})$ ,

where the subscript $\mathrm{i}(\mathrm{i}=1,2)$ denotes the region $\mathrm{i}$ , $e_{i}(t)$ the export of the region $i$ , and
$m_{i}(t)$ the import of the region $\mathrm{i}$ , respectively. For simplicity, we put $\epsilon_{1}=\epsilon_{2}=\epsilon$ and
$\theta_{1}=\theta_{2}=\theta$ . As to the export and import terms, we put

$e_{i}(t+\theta)=m_{j}(t+\theta)=a_{i}\psi_{i}(\dot{y}_{1}(t), rj_{2}(t))$ ,

where the subscript $j$ $(j=1, 2)$ denotes the region different from the region $\mathrm{i}$ , $a_{\mathrm{i}}\geq 0$ is
a constant, and $\psi_{i}$ is a suficiently smooth function.

By the same transformation as that in the Goodwin model, we have the following
second-order equation:

$\epsilon\theta\ddot{z}_{i}+[\epsilon+(1-\alpha_{i})\theta]\dot{z}_{i}-\varphi_{i}(\dot{z}_{i})-a_{i}\psi_{i}(\dot{z}_{1},\dot{z}_{2})+a_{j}\psi_{\mathrm{i}}(\dot{z}_{1},\dot{z}_{2})+(1-\alpha_{i})z_{i}=0$ .

Setting new variables, $x_{i}=\dot{z}_{i}(\mathrm{i}=1,2)$ , we obtain the following system:

$\{$

$\epsilon\dot{x}_{1}=-\frac{1-\alpha_{1}}{\theta}z_{1}-(\frac{\epsilon}{\theta}+1-\alpha_{1})x_{1}+\frac{1}{q}\varphi_{1}(x_{1})+\frac{a_{1}}{\theta}\psi_{1}(x)-\frac{a_{2}}{\theta}\psi_{2}(x)\equiv h_{1}$ ,

$\epsilon\dot{x}_{2}=-\frac{1-\alpha_{2}}{\theta}z-(\frac{\epsilon}{\theta}+1-\alpha_{2})x_{2}+\varphi_{2}(x_{2})+\frac{a_{2}}{\theta}\psi_{2}(x)-\frac{a_{1}}{\theta}\psi_{1}(x)\equiv h_{2}\overline{\theta}$,

$\dot{z}_{1}=x_{1}$ ,
$\dot{z}_{2}=x_{2}$ ,

(3.6)

where $x=(x_{1}, x_{2})^{\mathrm{T}}$ . System (3.6) is the specific case of system (2.8), so we can apply
Tchizawa’s result to (3.6) in order to investigate the existence of a duck solution.

4 Duck solutions in the two-region model
In this section, we examine whether (3.6) has a duck solution. Because we have

$\frac{\partial h_{1}}{\partial x_{1}}=-(\frac{\epsilon}{\theta}+1-\alpha_{1})+\frac{1}{\theta}\frac{\mathrm{d}\varphi_{1}(x_{1})}{\mathrm{d}x_{1}}+\frac{a_{1}}{\theta}\frac{\partial\psi_{1}(x)}{\partial x_{1}}-\frac{a_{2}}{\theta}\frac{\partial\psi_{2}(x)}{\partial x_{1}}$ ,

$\frac{\partial h_{1}}{\frac{\partial h_{2}\partial x_{2}}{\partial x_{2}}}=\frac{a_{1}}{\theta}\frac{\partial\psi_{1}(x)}{(\frac{\epsilon}{\theta}+1\partial x_{2}}-\frac{a_{2}}{\theta,2)}\frac{\partial\psi_{2}(x)}{+\frac{1}{\theta}\partial x_{2}},=\frac{a_{2}}{\theta}\frac{\partial\psi_{2}(x)}{\frac{\partial}{}\psi_{2}(x),\partial x_{2}\partial x_{1}}-\frac{a_{1}}{\theta}=--\alpha\frac{\mathrm{d}\varphi_{2}(x\frac{\partial h_{2}}{\partial x_{1}2)}}{\mathrm{d}x_{2}}+\frac{a_{2}}{\theta},-\frac{a_{1}}{\theta}\frac{\partial\frac{\partial\psi_{1}(x)}{\psi_{1}(x)\partial x_{1}}}{\partial x_{2}},$

’

an $\mathrm{d}$

$\frac{\partial h}{\partial z}(x, \varphi(x))=\ovalbox{\tt\small REJECT}^{-\frac{1-\alpha}{0^{\theta}}}\mathrm{A}$

’

$- \frac{1-\alpha_{2}0}{\theta}\ovalbox{\tt\small REJECT}$ ,
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where $h=(h_{1}, h_{2})^{\mathrm{T}}$ , $z=(z_{1}, z_{2})^{\mathrm{T}}$ , and $z=\varphi(x)$ , we obtain the following time scaled
reduced system projected onto $\mathbb{R}^{2}$ , which corresponds to (2.8):

$\{$

$\dot{x}_{1}=-\frac{(1-\alpha_{1})(\frac{\epsilon}{\theta}+1-\alpha_{2})}{\mathrm{f}(1-\alpha_{1})x_{1}+(1-\theta}x_{1}+\frac{1-}{\frac{a_{1}}{\theta^{2}}\theta}\frac{\mathrm{d}\varphi_{2}(x_{2})}{)-\frac{a_{2}^{2}}{\theta^{2}}\mathrm{d}x}-\alpha_{2})x_{2}\mathrm{J}\ovalbox{\tt\small REJECT}\frac{\partial\psi_{1}(x\mathrm{z}^{x_{1}}\alpha_{1}}{\partial x_{2}}\frac{\partial\psi_{2}(x)}{\partial x_{2}}||\equiv f_{1}$

,

$\dot{x}_{2}=-\frac{(\frac{\epsilon}{\theta}+1-\alpha_{1})(1-\alpha_{2})}{\mathrm{f}(1-\alpha_{1})x_{1}+(1-\theta}x_{2}+\frac{1-\alpha}{-}2^{\frac{\mathrm{d}\varphi_{1}(x_{1})}{1\mathrm{d}x_{1}+}}-\alpha_{2})x_{2}\mathrm{J}\ovalbox{\tt\small REJECT}\frac{\theta^{2}a_{1}}{\theta^{2}}\frac{\partial\psi_{1}(x)2x}{\partial x}\frac{a_{2}}{\theta^{2}}\frac{\partial\psi_{2}(x)}{\partial x_{1}}\ovalbox{\tt\small REJECT}\equiv f\cap‘$

.

(4.1)

In what follows, we put $\alpha_{1}=\alpha_{2}=\alpha$ and $\varphi_{i}(x_{i})=\tanh(x:)(i=1,2)$ , and assume that

$\frac{\partial\psi_{i}(x)}{\partial x_{i}}=\frac{\partial\psi_{i}(x)}{\partial x_{j}}$ $(\mathrm{i},j=1,2,j\neq \mathrm{i})$ (4.2)

holds. Note that the hyperbolic tangent is a typical example of the function as shown in
Figure $2(\mathrm{a})$ . Then the generalized pseudo singular points of (3.6), that is, the singular
points of (4.1) are determined by the following system:

$\{$

$- \frac{(1-\alpha)(\frac{\epsilon}{\theta}+1-\alpha)}{\theta}x_{1}+\frac{1-\alpha}{\theta^{2}}x_{1}\frac{\mathrm{d}\varphi_{2}(x_{2})}{\mathrm{d}x_{2}}-(1-\alpha)(x_{1}+x_{2})[\frac{a_{1}}{\theta^{2}}\frac{\partial\psi_{1}(x)}{\partial x_{2}}-\frac{a_{2}}{\theta^{2}}\frac{\partial\psi_{2}(x)}{\partial x_{2}}]=0$ ,

$- \frac{(\frac{\epsilon}{\theta}+1-\alpha)(1-\alpha)}{\theta}x_{2}+\frac{1-\alpha}{\theta^{2}}x_{2}\frac{\mathrm{d}\varphi_{1}(x_{1})}{\mathrm{d}x_{\mathrm{J}}}-(1-\alpha)(x_{1}+x_{2})[-\frac{a_{1}}{\theta^{2}}\frac{\partial\psi_{1}(x)}{\partial x_{1}}$$\%\frac{a_{2}}{\theta^{2}}\frac{\partial\psi_{2}(x)}{\partial x_{1}}]=0$ .
(4.3)

In case $x_{1}=-x_{2}(\neq 0)$ , because $\mathrm{d}\varphi_{1}(x_{1})/\mathrm{d}x_{1}=\mathrm{d}\varphi_{2}(x_{2})/\mathrm{d}x_{2}$ holds, (4.3) can be reduced
to the equation:

$- \frac{(1-\alpha)(\frac{\Xi}{\theta}+1-\alpha)}{\theta}x_{1}+\frac{1-\alpha}{\theta^{2}}x_{1}\frac{\mathrm{d}\varphi_{1}(x_{1})}{\mathrm{d}x_{1}}=-\frac{1-\alpha}{\theta^{2}}x_{1}\ovalbox{\tt\small REJECT}-(\frac{\epsilon}{\theta}+1-\alpha)\theta+\frac{\mathrm{d}\varphi_{1}(x_{1})}{\mathrm{d}x_{1}}\ovalbox{\tt\small REJECT}=0$.

Therefore the generalized pseudo singular points are solutions of the equation:

$\frac{\mathrm{d}\varphi_{1}(x_{1})}{\mathrm{d}x_{1}}=\epsilon+(1-\alpha)\theta$. (4.4)

In case $x_{1}=x_{2}(\neq 0)$ , because (4.2) holds, (4.3) can be reduced to the foltow ing equation:

$- \frac{2(1-\alpha)}{\theta^{2}}x_{1}\ovalbox{\tt\small REJECT}-(\frac{\epsilon}{\theta}+1-\alpha)\theta+\frac{\mathrm{d}\varphi_{1}(x_{1})}{\mathrm{d}x_{1}}\ovalbox{\tt\small REJECT}=0$ ,

which implies that the generalized pseudo singular points satisfy (4.4). Because $\varphi_{1}(x_{1})=$

$\tanh(x_{1})$ and $\epsilon$ $+(1-\alpha)\theta>0_{\}}$ we have

$\exp(x_{1})+$ $\exp(-x_{1})=\sqrt{\frac{4}{\epsilon+(1-\alpha)\theta}}\equiv Y$ .

Putting $Z=\exp(x_{1})(>0)$ , we obtain

$Z= \frac{Y\pm\sqrt{Y^{2}-4}}{2}$ .
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We will restrict ourselves to case where $Y^{2}-4>0$ , that is, $\epsilon$ $+(1-\alpha)\theta<1$ holds since
$\epsilon$ and 0 are small and $0<\alpha<1$ . Then we get the follow ing four generalized pseudo
singular points:

$\mathrm{P}_{1}=(X, -X)^{\mathrm{T}}$ , $\mathrm{P}_{2}=(-X, X)^{\mathrm{T}}$ , $\mathrm{P}_{3}=(X, X)^{\mathrm{T}}$ , $\mathrm{P}_{4}=(-X, -X)^{\mathrm{T}}$ ,

where $X=\log((Y+\sqrt{Y^{2}-4})/2)$ .
Next we investigate the eigenvalues of the linearization of $(4,1)$ at these generalized

pseudo singular points. Note that

$Df(x)=(\begin{array}{ll}A+B+C D+B+EF+I+G H+I+J\end{array})$ ,

where

$A=- \frac{(1-\alpha)(\frac{\epsilon}{\theta}+1-\alpha)}{\theta}+\frac{1-\alpha}{\theta^{2}}\frac{\mathrm{d}\varphi_{2}(x_{2})}{\mathrm{d}x_{2}}$ , $B=-(1- \alpha)[\frac{a_{1}}{\theta^{2}}\frac{\partial\psi_{1}(x)}{\partial x_{2}}-\frac{a_{2}}{\theta^{2}}\frac{\partial\psi_{2}(x)}{\partial x_{2}}]$ ,

$C=-(1- \alpha)(x_{1}+x_{2})[\frac{a_{1}}{\theta^{2}}\frac{\partial^{2}\psi_{1}(x)}{\partial x_{2}\partial x_{1}}-\frac{a_{2}}{\theta^{2}}\frac{\partial^{2}\psi_{2}(x)}{\partial x_{2}\partial x_{1}}]$ , $D= \frac{1-\alpha}{\theta^{2}}x_{1}\frac{\mathrm{d}^{2}\varphi_{2}(x_{2})}{\mathrm{d}x_{2}^{2}}$ ,

$E=-(1- \alpha)(x_{1}+x_{2})[\frac{a_{1}}{\theta^{2}}\frac{\partial^{2}\psi_{1}(x)}{\partial x_{2}^{2}}-\frac{a_{2}}{\theta^{2}}\frac{\partial^{2}\psi_{2}(x)}{\partial x_{2}^{2}}]$ , $F= \frac{1-\alpha}{\theta^{2}}x_{2}\frac{\mathrm{d}^{2}\varphi_{1}(x_{1})}{\mathrm{d}x_{1}^{2}}$ ,

$G=-(1- \alpha)(x_{1}+x_{2})[-\frac{a_{1}}{\theta^{2}}\frac{\partial^{2}\psi_{1}(x)}{\partial x_{1}^{2}}+\frac{a_{2}}{\theta^{2}}\frac{\partial^{2}\psi_{2}(x)}{\partial x_{1}^{2}}]$ , $H=- \frac{(1-\alpha)(\frac{\epsilon}{\theta}+1-\alpha)}{\theta}+\frac{1-\alpha}{\theta^{2}}\frac{\mathrm{d}\varphi_{1}(x_{1})}{\mathrm{d}x_{1}}$ ,

$I=-(1- \alpha)[-\frac{a_{1}}{\theta^{2}}\frac{\partial\psi_{1}(x)}{\partial x_{1}}+\frac{a_{2}}{\theta^{2}}\frac{\partial\psi_{2}(x\rangle}{\partial x_{1}}]$ , $J=-(1- \alpha)(x_{1}+x_{2})[-\frac{a_{1}}{\theta^{2}}\frac{\partial^{2}\psi_{1}(x)}{\partial x_{1}\partial x_{2}}+\frac{a_{2}}{\theta^{2}}\frac{\partial^{2}\psi_{2}(x)}{\partial x_{1}\partial x_{2}}]$ .

At the generalized pseudo singular points, $A=H=0$ holds. It follows from the property
of the hyperbolic tangent that $D=F$ holds. Moreover $C+J=0$ and $B+I=0$ can be
easily seen because $\psi_{\mathrm{z}}$ is a suficiently smooth function and satisfies (4.2).

At $\mathrm{P}_{1}$ and P2, we have $C=E=G=J=0$. Therefore the characteristic equation
is as follows:

$\lambda^{2}-D^{2}=0$ .

A similar result can be obtained at P3 and $\mathrm{P}_{4}$ assuming that

$\frac{\partial^{2}\psi_{i}(x)}{\partial x_{i}^{2}}=\frac{\partial^{2}\psi_{i}(x)}{\partial x_{j}^{2}}$ and $\frac{\partial^{2}\psi_{i}(x)}{\partial x_{j}\partial x_{i}}\approx\frac{\partial^{2}\psi_{i}(x)}{\partial x_{\mathrm{i}}^{2}}(\mathrm{i},j=1,2,\mathrm{j} \neq \mathrm{i})$

hold. Then we have $E+G=0$ and $C\approx E$ , and the characteristic equation becomes as
follows:

$0=\lambda^{2}+(2B+C+E)(E-C)-D^{2}\approx\lambda^{2}-D^{2}$ .

Because at each generalized pseudo singular point,

$|D|=| \frac{1-\alpha}{\theta^{2}}X\frac{\partial^{2}\varphi_{1}(X)}{\partial x_{1}^{2}}|=\frac{8(1-\alpha)X\sqrt{Y^{2}-4}}{\theta^{2}Y^{3}}\neq 0$ ,

system (3.6) has pseudo singular saddle points. Therefore, the following theorem is
esta blished by Proposition 2.8.
Theorem 4.1 If $\alpha_{1}=\alpha_{2}$ , $\varphi_{i}(x:)=\tanh(x_{i})(\mathrm{i}=1_{7}2)$ , and (4.2) hold, then there exist
duck solutions in system (3.6)
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Figure 3 (a) The periodic solution of (3.6) projected onto the $(x_{1}, x_{2})$ plane. The dotted lines
are $GPL$ and the four intersection points are the generalized pseudo singular points $\mathrm{P}_{1^{-}}\mathrm{P}_{4}$ . (b)
The periodic solution and the slow manifold of (3.6) projected onto the $(x_{1}, x_{2}, z_{1})$ space.

5 Numerical example

Finally, we present a numerical example. In the experiment, we put

$\psi_{1}(x)=\psi_{2}(x)=\frac{1}{1+\exp(-b(x_{1}+d))}\cross$ $\frac{1}{1+\exp(-b(x_{2}+d))}7$

which is a monotonically increasing function with upper and lower limits, and satisfies
the assumptions mentioned above. The values of the parameters are as follows:

$\alpha=0.9$ , $\epsilon=$ 0.005, $\theta=1$ , $a_{1}=0.01$ , $a_{2}=0.02$ , $b$ $=0.5$ , $d=30$ .

The values of $a_{1}$ and a2 mean that the export of the region 1 is less than that of the
region 2. The results shown in Figure 3 are calculated by using the forth-order Runge-
Kutta method. Figure $3(\mathrm{a})$ shows a two-dimensional projection of the solution to (3.6)
onto $(x_{1}, x_{2})$ plane. Note that the four intersection points of the dotted lines in Figure
$3(\mathrm{a})$ are the generalized pseudo singular points we calculated. After the solution passes
through the generalized pseudo singular points P3 and P4, it slides along $GPL$ and then
it jumps. Figure $3(\mathrm{b})$ shows a three-dimensional projections of the solution and the slow
manifold of (3.6) onto $(x_{1}, x_{2}, z_{1})$ space. The solution moves along the attracting part
of the slow manifold till it crosses the fold of the slow manifold, and then it slides along
the repelling part before it jumps to the other side, which can be interpreted as a duck
solution.
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