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Abstract
We introduce a parametric representation of fuzzy numbers with bounded supports as well as

we consider a normed space including the set of fuzzy numbers, where the addition in the normed
space is the same one due to the extension principle but the difference and scalar products are
not the same as those of the principle. In this article we treat the Frechet difffferetial in a Banach
space of fuzzy numbers and we dicuss variational equations of fuzzy differential equations in order
to get improved results on the stability analysis of fuzzy differential equations.

1 Introduction
Let $I=[0,1]$ . Denote a set of fuzzy numbers with bounded supports by $\mathcal{F}_{b^{t}}^{\mathit{8}}$ as follows (e.g.
$[15, 16])$ : The following definition means that a fuzzy number can be identified $\mathrm{w}$ ith a membership
function.

Definition 1.1 Denote a set of fuzzy numbers with bounded supports and strict fuzzy convexity
by

$\mathcal{F}_{b}^{st}=$ { $\mu$ : $\mathrm{R}arrow I$ satisfying $(\mathrm{i})rightarrow(\mathrm{i}\mathrm{v})$ below}.

(i) $\mu$ has a unique number $m\in \mathrm{R}$ such that $\mu(m)$ $=1$ (normality);

(ii) supp(n) $=d(\{\xi\in \mathrm{R} : \mu(\xi/)>0\})$ is bounded in $\mathrm{R}$ (bounded support);

(iii) $\mu$ is strictly fuzzy convex on supp(\mu ) as follows:
(a) if supp(\mu )\neq $\{m\}$ , then

$\mu(\lambda\xi_{1}+(1-\lambda)\xi_{2})>\min[\mu(\xi_{1}), \mu(\xi_{2})]$

for $\xi_{1}$ , $\xi_{2}\in supp(\mu)$ with $\xi_{1}\neq\xi_{2}$ and $0<\lambda<1$ ;

(b) if supp(\mu ) $=\{m\}$ , then $\mu(m)=1$ and $\mu(\xi)=0$ for $\xi\neq m$ ;

(iv) $\mu$ is upper semi-continuous on R.

$\mu$ is called a membership function if $\mu\in \mathcal{F}_{b}^{st}$ . Fuzzy numbers are identified by membership func-
tions. In what follows we denote the a-cut sets of $\mu$ by

$\mu_{\alpha}=L_{\alpha}(\mu)=\{\xi\in \mathrm{R}:\mu(\xi)\geq\alpha\}$

for $\alpha$ $\in(0, 1]$ . By the extension principle due to Zadeh, the binary operation between fuzzy
numbers is nonlinear. It does not necessarily hold that $(k_{1}+k_{2})\mu=k_{1}\mu+k_{2}\mu$ for a membership
function $\mu\in \mathcal{F}_{b}^{st}$ and $k_{i}\in \mathrm{R}$ , $\mathrm{i}=1,2$ with $k_{1}+k_{2}>0$ , $k_{1}<0$ $<k_{2}^{\wedge}$ .
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We introduce the following parametric representation of $\mu\in \mathcal{F}_{b}^{st}$ as

$x_{1}( \alpha)=\min L_{\alpha}(\mu)$ , $2 $( \alpha)=\max L_{\alpha}(\mu_{J}^{\backslash }$

for $0<\alpha\leq 1$ and

$x_{1}(0)= \min$ supp(\mu ), $x_{2}(0)= \max$ supp(\mu ).

From the strict fuzzy convexity it can be seen that a fuzzy number $x=$ $(x_{1}, x_{2})$ means a bounded
continuous curve over $\mathrm{R}^{2}$ and $x_{1}(\alpha)\leq x_{2}(\alpha)$ for $\alpha\in I$ (see [17].)

In Section 2 we show that the set of fuzzy numbers $\mathcal{F}_{b}^{st}$ construct a linear space by the Puri-
Ralescue’s method and consider the completion of a normed space induced by the linear space.

In Section 3 we discuss differentiation and integration of fuzzy functions. In the case of dif-
ferentiation our representation of fuzzy numbers is enable to calculate addition, scalar product
and difference without difficulties, but it is not easy to calculate the difffference by the extension
principle. Moreover we define the integral of fuzzy functions by calculating end-points of a-cut
sets.

In Section 4 we treat two ways in analyzing $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}_{\tilde{1}}1\mathrm{i}\mathrm{t}\mathrm{y}$ of fuzzy differential equations: One is
parametric method and the other is fuzzy difffferential inclusions. Finally we introduce various
types of results on variational equations of ordinary differential equations and we discuss the
significancy of variational equations of fuzzy differential equations in Section 5.

2 Induced Normed Space of Fuzzy Numbers

Let $g$ : $\mathrm{R}\mathrm{x}$ $\mathrm{R}arrow \mathrm{R}$ be an $\mathrm{R}$-valued function. The corresponding binary operat\’Ion of two fuzzy
numbers $x$ , $y\in \mathcal{F}_{b}^{st}$ to $g(x,y)$ : $\mathcal{F}_{b}^{st}\mathrm{x}$ $\mathcal{F}_{b}^{st}arrow \mathcal{F}_{b}^{st}$ is calculated by the extension principle of Zadeh.
The membership function $\mu_{g(x,y)}$ of $g$ is as follows:

$\mu_{g(x,y)}(\xi)=\sup_{\xi=g(\xi_{1},\xi_{2})}\min(\mu_{1}(\xi_{1}),\mu_{2}(\xi_{2}))$

Here $\xi,\xi_{1}$ , $\xi_{2}\in \mathrm{R}$ and $\mu_{1},\mu_{2}$ are membership functions of $x$ , $y$ , respectively. From the extension
principle, it follows that, in case where $g(x, y)=x+y$ ,

$\mu_{x+y}(\xi)$

$= \max_{=\xi\xi_{1}+\xi_{2}}\min_{i=1,2}(\mu_{i}(\xi_{i}))$

$= \max${ $\alpha\in I$ : $\xi=\xi_{1}+\xi_{2}$ , li $\in L_{\alpha}(\mu_{i}),\mathrm{i}=12$ }$\}$

$= \max\{\alpha\in I : \xi\in[x_{1}(\alpha)+y_{1}(\alpha),x_{2}(\alpha)+y_{2}(\alpha)]\}$ .

Thus we get
$x+y=(x_{1}+y_{1},x_{2}+y_{2})$ .

In the similar way we have
$x-y=(x_{1}-y_{2},x_{2}-y_{1})$ .

Denote a metric by

$d(x, y)= \sup\max(|x_{1}(\alpha)-y_{1}(\alpha)|, |x_{2}(\alpha)-y_{2}(\alpha)|)$

ac31

for $x=(x_{1}, x_{2})$ , $y=(y_{1},y_{2})\in \mathcal{F}_{b}^{st}$ .
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Theorem 2.1 $\mathcal{F}_{b}^{st}$ is a complete metric space in $C(I)^{2}$ .

Proof See [17].
According to the extension principle of Zadeh, for respective membership functions $\mu_{x\}}\mu y$ of

$x,y\in \mathcal{F}_{b}^{st}$ and A $\in \mathrm{R}$ , the following addition and a scalar product are given as follows :

$\mu_{x+y}(\xi)$ $= \sup\{\alpha\in[0,1]$ :
$\xi=\xi_{1}+\xi_{2}$ , $\xi_{1}\in L_{\alpha}(\mu_{x}),\xi_{2}\in L_{\alpha}(\mu_{y})\}$;

$\mu_{\lambda x}(\xi)$ $=$ $\{$

$\mu_{x}(\xi/\lambda)$ (A $\neq 0$ )
0 $(\mathrm{A}=0, \xi\neq 0)$

$\sup_{\eta\in \mathrm{R}}\mu_{x}(\eta)$
(A $=0\rangle\xi=0$ )

In [12] they introduced the following equivalence relation $(x, y)\sim(u, v)$ for $(x,y)$ , $(u, v)\in \mathcal{F}_{b}^{st}\mathrm{x}$

$\mathcal{F}_{b}^{st},\mathrm{i}$ . $\epsilon.$ ,

$(x,y)\sim(u, v)=$ $x+v=u+y$ . (2.1)

Putting $x=(x_{1},x_{2})_{\mathrm{J}}y=(y_{1},y_{2})$ , $u=(u_{1}, u_{2}),v$ $=(v_{1},v_{2})$ by the parametric representation, the
relation (2.1) means that the following equations hold.

$x_{i}+v_{i}=u_{\mathrm{i}}+y_{i}$ $(\mathrm{i}=1, 2)$

Denote an equivalence class by $\langle x, y\rangle=\{(u, v)\in \mathcal{F}_{b}^{st}\rangle\zeta \mathcal{F}_{b}^{st} : (u,v)\sim(x,y)\}$ for $x$ , $y\in \mathcal{F}_{b}^{st}$ and
the set of equivalence classes by

$(\mathcal{F}_{b}^{st})^{2}/\sim=\{\langle x, y\rangle : x, y\in \mathcal{F}_{b}^{st}\}$

such that one of the following cases (i) and (ii) hold:

(i) if $(x,y)\sim(u, v)$ , then $\langle x,y\rangle=\langle u, v\rangle\}$
.

(ii) if $(x,y) \oint(u, v)$ , then $\langle x,y\rangle\cap\langle u, v\rangle=\emptyset$ .

Then $(\mathcal{F}_{b}^{s\ell})^{2}/\sim$ is a linear space with the following addition and scalar product

$\langle x,y\rangle+\langle u_{\gamma}v\rangle=\langle x+u, y+v\rangle$ (2.2)

$\lambda\langle x, y\rangle=\{$ $\langle\lambda x,\lambda y\rangle\langle(-\lambda)y, (-\lambda)x\rangle$

$(\mathrm{A}<0)$

(A $\geq 0$)
(2.3)

for $\lambda\in \mathrm{R}$ and $\langle x, y\rangle$ , $\langle u, v\rangle\in(\mathcal{F}_{b}^{st})^{2}/\sim$ . They denote a norm in $(\mathcal{F}_{b}^{st})^{2}/\sim \mathrm{b}\mathrm{y}$

$|| \langle x, y\rangle||=\sup_{\alpha\in I}d_{H}(L_{\alpha}(\mu_{x}), L_{\alpha}(\mu_{y}))$ .

Here $d_{H}$ is the Hausdorff metric is as follows:

$d_{H}(L_{\alpha}( \mu_{x}), L_{\alpha}(\mu_{y}))=\max(\sup_{\xi\in L_{\alpha}}\inf_{(\mu_{x})^{\eta\in L_{\alpha}(\mu_{y})}}|\xi-\eta|,\sup_{\eta\in L_{\alpha}}\inf_{(\mu_{y})^{\xi\in L_{\alpha}(\mu_{x})}}|\xi-\eta|)$

It can be easily seen that $||\langle x, y\rangle||=d(x, y)$ . Note that $||\{x$ , $y\rangle$ $||=0$ in $(\mathcal{F}_{b}^{st})^{2}/\sim$ if and only if
$x=y$ in $\mathcal{F}_{b}^{st}$ .
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3 Fuzzy Differential and Fuzzy Integral
In this section we consider fuzzy function in a Banach space induced by the normed space $(\mathcal{F}_{b}^{st})^{2}/\sim$

. It can be seen that for $x,y\in \mathcal{F}_{b}^{s\mathrm{t}}$

$\langle x,y\rangle=\langle x$ , $0\}+\langle 0, y\rangle=\langle x, 0\rangle-\langle y, 0\rangle$ .

Denoting a set of fuzzy numbers by

$X_{0}=\{\langle x, 0\rangle\in(\mathcal{F}_{b}^{st})^{2}/\sim:x, 0\in \mathcal{F}_{b}^{st}\}$ ,

which is a Banach space ( see e.g., [17]). Then we have $(\mathcal{F}_{b}^{st})^{2}/\sim=X_{0}-X_{0}$ .
Denote the completion of $(\mathcal{F}_{b}^{st})^{2}/\sim \mathrm{b}\mathrm{y}$ $X$ . Let $J$ be an interval in R. In what follows we consider

a function $f$ : $Jarrow X$ as $f=\langle(f1, f_{2}), 0\rangle$ . Here $f$ has the parametric representation of $f=(/1, f_{2})$ ,
where $f_{i}(t, \alpha)$ for $\mathrm{i}=1,2$ are the end-points of the $\alpha$ -cut set of $f$ In this section we give definitions
of differentiation and integration of fuzzy functions

A fuzzy function $f$ : $Jarrow X$ is said to be difffferentiable at $t_{0}\in J$, if there exists an $\eta\in X$ such
that for any $\epsilon$ $>0$ there exists a $\delta>0$ satisfying

$|| \frac{f(t)-f(t_{0})}{t-t_{0}}-\eta||<\epsilon$

for $t\in J$ and $0<|t-t_{0}|$ $<\mathit{5}$. Denote $\eta$
$=f^{J}$ (to)=fd$dt(t_{0})$ . $f$ is differentiable on $J$ if $f$ is differentiable

at any $t\in J$. In the similar way higher order derivatives of $f$ are defined by $f^{(k)}=(f^{\langle k-1)})’$ for
$\mathrm{A}=2,3$ , $\cdots$ . (Cf. [7, 8])

In [12] they define the embedding $j$ : $\mathcal{F}_{b}^{st}arrow X$ such that $j(u)=\langle u$ , 0}. The function $f$ : $Jarrow \mathcal{F}_{b}^{st}$

is called differentiable in the sense of Puri-Ralescu, if $j(f(\cdot))$ is differentiable. Suppose that $f$ is
differentiable at $t\in J$ in the above sense, denoted the differential $f^{J}(t)\in \mathcal{F}_{b}^{st}$ . Then we have
$\frac{d}{dt}(j(f(t)))=\langle f^{r}(t),0\rangle$ , i.e., $f$ is differentiable in the sense of Puri-Ralescu. In $[9, 12]$ H-difference
and $\mathrm{H}$ differentiation of $f$ is treated as follows. Suppose that for $f(t+h)$ , $f(t)\in \mathcal{F}_{b}^{st}$ , there exists
$g\in \mathcal{F}_{b}^{st}$ such that $f(t+h)=f(t)+g$ , then $g$ is called to the $\mathrm{H}$-difference, denoted $f(t+h)-f(t)$ .
The function $f$ is called $\mathrm{H}$ differentiable at $t\in J$ if there exists an $\eta\in \mathcal{F}_{b}^{st}$ such that both

$\lim_{harrow+0}\frac{f(t+h)-f(t\}}{h}$ aanndd $h \varliminf_{+0}\frac{f(t)-f(t-h)}{h}$ exist and equal to $\eta$ . If $f$ is $\mathrm{H}$-differentiabie, then
$f^{\mathit{1}}(t)=\eta$ .

Proposition 3.1 if f is differentiable at tQ, then f is continuous at $t_{0}$ .

Theorem 3.1 Denote a parametric representation of f by f $=\langle(fi, f_{2}),$ 0\rangle . Here fl, $f_{2}$ are func-
tions defined on I $\mathrm{x}$ $J$ to $\mathrm{R}$ and the left-, right-end point of the a-cut set $L_{\alpha}(f(t))$ . If $f$ is

differentiable at $t_{0}$ , then it follows that there exist $\frac{\partial}{\partial t}f1(t, \alpha)$ , $\frac{\partial}{\partial t}f_{2}(t, \alpha)$ and that

$f^{l}(t_{0})=( \frac{\partial}{\partial t}f_{1}, \frac{\partial}{\partial t}f_{2})(t_{0})$ .

Theorem 3.2 It follows that $f’(t)\equiv 0$ if and only if $f(t)\equiv const\in X$ .

In the following definition we give one of integrals of fuzzy functions.

Definition 3.1 $Lei$ $J=[a,b]$ and $f$ be a mapping from $J$ to X. Divide the interval $J$ such that
$a=t_{0}<t_{1}<\cdots<t_{n}=b$ and $\tau_{i}\in[t_{i-1},t_{i}]$ for $\mathrm{i}=1,2$ , $\cdots$ , $n$ . $f$ is integrable over $J$ if there

exists the limit $\lim_{|\Delta|arrow 0}\sum_{i=1}^{n}f(\tau_{i})\Delta_{i}$ , where $\Delta_{i}=t_{i}-t_{i-1}$ , $| \triangle|=\max_{1\leq\dot{\mathrm{z}}\leq n}\Delta_{i}$. Define

$\int_{a}^{b}f(s)ds=\lim_{|\Delta|arrow 0}\sum_{i=1}^{n}f(\tau_{i})\triangle_{\mathrm{i}}$ .
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Proposition 3.2 Let f be integrable over J. Then the following statements $(\mathrm{i})-(\mathrm{i}\mathrm{i})$ hold.

(i) $f$ is bounded on $J_{l}\mathrm{i}.e.$ , there exists an $M>0$ such that $||f(t)||\leq M$ for $t\in J$.

(ii) If $f(?)\in X$ for $t\in J$, then $\int_{a}^{t}f(s)ds\in X$ for $t\in J$.

Proposition 3.3 If $f$ is continuous on $[a, b]$ then $f$ is integrable over the interval

Theorem 3.3 Let $f$ : $Jarrow X$ with $f=\langle$ ( $fi$ , Zz), $0\rangle$ be integrable over $[a, b]$ . Then it follows that

$\int_{a}^{b}f$ (sa) $ds= \langle(\int_{a}^{b}f_{1}(s)ds, \int_{a}^{b}f_{2}(s)ds)_{;}0\rangle$

Conversely, if $f1$ , $f_{2}$ are continuous on $[a, b]\mathrm{x}I$ , then $f$ is integrable over $[a, b]$ .

Proposition 3.4 Let f be continuous on the interval [a, b].

Denote $F(t)= \int_{a}^{t}f(s)ds$ . Then the following properties (i) and (ii) hold.

(i) $F\iota s$ differentiable on $[a, b]$ with $F(t)\in X$ and $F’=f$ ;

(ii) For $t_{1}$ , $t_{2}\in[a, b]$ and $t_{1}\leq t_{2)}$ we have $I_{t_{1}}^{t_{2}}f(s)ds=F(t_{2})-F(t_{1})$ .

Proposition 3.5 Let f is continuous on [a, $\ ]$ . Then it follows that

$|| \int_{a}^{b}f(s)ds||\leq\int_{a}^{b}||f(s)||ds$ .

Theorem 3.4 Let f : [a,$b]arrow X$ be continuous on [a, b] and differentiable on (a, b), Then it
follows that there exists a number $c\in(a,$ $b_{J}^{\backslash }$ such that

$||f(b)-f(a)||\leq$ $(b-a)||f^{l}(c)||$ .

Definition 3.2 Let $f$ : $Jarrow X^{n}$ such that $f(t)=(fi(t), f_{2}(t)$ , $\cdots$ , $f_{n}(t))^{T}$ . $f$ is differentiable on $J$

if each $f_{i}$ is differentiable on $J$ for $i=1,2$ , $\cdots$ , $n$ . Define the derivative $f’(t)=(f_{1}^{J}(t), f_{2}’(t)$ , $\cdots$ , $f_{n}’(t_{J}^{1})^{T}$ .

Let $f$ : $[a, b]arrow X^{n}$ such that $f(t)=(fi(t), f_{2}(t))\cdots$ , $f_{n}(t))^{T}$ . $f$ is integrable over $[a, b]$ if $f_{i}$ is
integrable over $[a, b]$ for $\mathrm{i}=1,2$ , $\cdots$ , $n$ . Define the integral

$\int_{a}^{b}f(s)ds=(\int_{a}^{b}f_{1}(s)ds,\int_{a}^{b}f_{2}(s)ds,\cdots)\int_{a}^{b}f_{n}(s)ds)^{T}$ .

It can be easily proved that similar theorems and propositions concerning to $X^{n}$ -vaiued functions
to ones in this section hold.

4 Stability of Fuzzy Differential Equations and Inclusions
In [18] they discuss exponential decay problems, $e.g.$ , machine replacement and oil well extraction,
etc. They analyze optimization problems for each oil well to determine its optimal replacement
schedule. Denote the quality remaining in the well at time $t$ by $x(t)$ and denote the rate of oil
extraction by $D>0$ . Then they get the following rate of oil extraction $x(\prime t)=-Dx$ with $x(0)=\iota/$.
Then $x(t)=\nu e^{-Dt}$ .

In what follows we consider the rate of oil extraction $D$ as a constant fuzzy number $D=$
$(D_{1}, D_{2})\in \mathcal{F}_{b}^{st}$ , where $D_{1}(\alpha)$ is the left end-point of the a-cut set and $D_{1}(\alpha)>0$ for a $\in I$ .
Then we assume that the oil quality $x(t)=(x_{1}(t), x_{2}(t))\in \mathcal{F}_{b}^{st}$ is a fuzzy function which mean
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the quality remaining in the well at time $t$ and $\nu$ $\in \mathcal{F}_{b}^{st}$ . Consider an initial value problem of fuzzy
differential equation

$\frac{dx}{dt}(t)=-(Dx)$ , $x(0)=\nu$. (4.4)

The above problem has a unique solution

$x(t)=\nu$ $+ \int_{0}^{t}(-(Dx(s)))ds$ .

See [11],
It follows that as long as $x_{1}(t)\geq 0$ , by the extension of principle

$\frac{d}{dt}(x_{1}(t), x_{2}(t))$ $=$ $-(D_{1}, D_{2})(x_{1}, x_{2})$

$=$ $-(D_{1}x_{1}, D_{2}x_{2})$

$=$ $(-D_{2}x_{2}, -D_{1}x_{1})$ .

Then we have two ordinary differential equations such as

$x_{1}(t)=-D_{2}x_{2}’$ , $x_{2}^{J}(t)=-D_{1}x_{1}$

with $x(0)=(\iota/_{1}, \nu_{2})\in \mathcal{F}_{b}^{st}$ . Therefore

$x_{1}(t)= \frac{(\nu_{1}+\iota/_{2}\sqrt{\frac{D_{2}}{D_{1}}})e^{-\sqrt{D_{1}D_{2}}t}}{2}+\frac{(\nu_{1}-\nu_{2}\sqrt{\mathrm{r}DD_{1}})e^{\sqrt{D_{1}D_{2}}t}}{2}$,

$x_{2}(t)= \frac{(\nu_{1}\sqrt{\frac{D}{D}21}+\nu_{2})e^{-\sqrt{D_{1}D_{2}}t}}{2}-\frac{(\nu_{1}\sqrt{\frac{D}{D}2\mathrm{L}}-\nu_{2})e^{\sqrt{D_{1}D_{2}}t}}{2}$

for $t\geq 0$ . Then we get the unstable result of solution $x=$ $(x_{1},x_{2})$ such that

$\lim_{tarrow+\infty}d(x(t), 0)=+\infty$ ,

where $\mathrm{O}\in \mathrm{R}$ , $\mathfrak{B}$ well as it follows that

$\lim_{tarrow+\infty)}\sup_{\alpha\in I}|\sqrt{D_{1}(\alpha)}x_{1}(t, \alpha)+\sqrt{D_{2}(\alpha)}x_{2}(t, \alpha)|=0$.

(see [14]). In this case of $x’=-Dx$ by the method of parametric representation, the equation
leads to the unstable result.

In what follows we introduce the idea of fuzzy differential inclusions in [2, 3, 6, 11] In analyzing
the equation $x=-Dx$’ via the inclusions method, we find that the same equation is stable in the
similar way to the theory of ordinary differential equations.

Example. Consider an initial value problem of fuzzy differential equation (4.4). According to
the idea of fuzzy differential inclusions in which a family of differential inclusions plays an impor-
tant role in finding some kind of fuzzy sets of (4.4) (See [1]). Let $F(\xi, \alpha)=[-D_{2}(\alpha)\xi, -D_{1}(\alpha)\xi]\subset$

$\mathrm{R}$ defined on $\mathrm{R}\rangle\langle$ I to the set of compact and convex sets $K_{C}^{1}$ in R. Then one $\cap.\mathrm{a}\mathrm{n}$ solve the following
differential inclusions

$\xi_{\alpha}^{J}(t)\in F(\xi_{\alpha}, \alpha)$ , $\xi_{\alpha}(0)\in L_{\alpha}(\iota/)$ ,

where $L_{\alpha}(l/)=[\nu_{1}(\alpha)_{2}\nu_{2}(\alpha)]$ for $\alpha\in I$ , which means that differential inequalitie

$-D_{2}(\alpha)\xi_{\alpha}(t)\leq\xi_{\alpha}’(t)\leq-D_{1}(\alpha)\xi_{\alpha}(t)$

$u_{1}(\alpha)\leq\xi_{\alpha}(0)\leq\iota/_{2}(\alpha)$
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for $\alpha\in I$ . Then we emphasize that the function $\xi_{\alpha}$ is $\mathrm{R}$-valued function defined on $\mathrm{R}$ without
information on the grade of fuzzy number $x$ , so $\xi_{\alpha}(t)$ is a real numbers but not fuzzy number. By
basic calculation we get $\xi_{\alpha}(0)e^{-D_{2}(\alpha)t}\leq\xi_{\alpha}(t)\leq\xi_{\alpha}(0)e^{-D_{1}(\alpha)t}$ with $\xi_{\alpha}(0)\in L_{\alpha}(\nu)$ . Therefore we
have
$\xi_{\alpha}(t)\in[\iota/_{1}(\alpha)e^{-D_{2}(\alpha)t}, \nu_{2}(\alpha)e^{-D_{1}(\alpha)t}]$ for a c3 $I,t\in \mathrm{R}$ , which is called a solution set denoted by

$S_{\alpha}(L_{\alpha}(\iota/), ?)$ $=[\nu_{1}(\alpha)e^{-D_{2}(\alpha)t}, \nu_{2}(\alpha)e^{-D_{1}(\alpha)t}]$ . The solution set $S_{\alpha}(L_{\alpha}(\nu), t)$ is the a-cut set of
the param etric representation of a fuzzy number $(l/1e^{-D_{2}},{}^{t}\nu_{2}e^{-D_{1}t})$ . Thus we get a fuzzy solution
of (4.4) as
$x(t)=(\iota/_{1}e^{-D_{2}}, {}^{t}\nu_{2}e^{-D_{1}t})$ for $t\in \mathrm{R}$ .

In classical analysis of the initial value problem (4.4) we observe the unstability of solutions by
the method of parametric representation of fuzzy numbers. By applying difffferential inclusions to
fuzzy differential equations(FDE) the same results of FDE as those in theory of ordinary differential
equations. Much richer properties in fuzzy differential inclusions is significant but, in considering
$K_{C}^{1}$ -valued function $F(\xi, \alpha)$ , one treats each fuzzy number $x(t)\in \mathcal{F}_{b}^{st}$ as a real number $x(t)\in \mathrm{R}$ .
Finally, we get solution sets which are the $\alpha$ -cut sets of a fuzzy set. By treating many practical
modeling of real systems with uncertainty we can get better conclusions on comparison between
fuzzy differential inclusions and the parametric representation of fuzzy numbers.

5 Variational Equations
In order to discuss the asymptotic behaviors of solutions to ordinary differential equations(ODE)
the variational equation of ODE plays important roles 1n analyzing parametric dependence of
solutions to ODE ( see [19]). Consider an ODE

$y^{l}=f(t, y)$ (ODE) $)$

provided that there exists the Jacobian matrix $f\partial\partial y$ . The following equation $y^{l}=f\partial(\partial yt, \phi(t;\tau,\eta))y$ is
called a variational equation of (ODE). Here $\phi(t;\tau,\xi)$ is a solution of (ODE) with $y(\tau)=\eta$ .

One tries to derive the properties of the solutions $x(t)$ to

$x’=f(t, x)+h(t, x)$ (P)

from the corresponding to properties of the solutions to (P). In [13] Vlasov’s theorem is as follows:
(i) Suppose that for all $\eta$ and for $t\geq\tau$ , the $n\mathrm{x}$ nmatrix $y_{\eta}$ satisfies $||y_{\eta}(t_{\mathrm{J}}.\tau, \eta)||\leq a(\tau)$ with a

continuous function $a(\tau)$ ;
(ii) Suppose that $||h(t,x)||\leq p(t)q(||x||)$ in which $p(t)$ is continuous, $\int_{0}^{\infty}p(t)dt<\infty$ , and

$q(r)>0$ ia a non-decreasing function with $f_{0}^{\infty} \frac{r}{q(r)}=\infty$ ;
(iii) Suppose that $\int_{0}^{\infty}p(t)a(t)dt<\infty$ .

If the above conditions (i) - (iii) hold, then the boundedness of solutions to (ODE) implies the
same to (P).

Let $X$ , $Y$ be Banach spaces and $S$ an open subset of $X$. Let $f$ : $Sarrow Y$ be such that

$f.(u+h)=f(u)+f’(\mathrm{u})\mathrm{h}$ $+$ $w(u, h)$

for every $h\in X$ with $u+h\in S$ , where $f’(u)$ : $Xarrow Y$ is a linear operator and $\lim_{harrow 0}\frac{||w(u,h)||}{||h||}=0$ .
Then $f’(u)h$ is called the Fr\’echet difffferential of $f$ at $u$ with increment $h$ , $f^{l}(u)$ is called the R\’echet
derivative of $f$ at $u$ and $f$ is called Fr\’echet difffferentiable at $u\in S$ . In the case that a function
$f$ : $\mathrm{R}\mathrm{x}\mathrm{R}^{n}arrow \mathrm{R}^{n}$ has the Jacobian matrix $f\partial\partial y(t, y)$ , then $f$ is Fr\’echet differentiable at $u\in \mathrm{R}^{n}$
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and the Fr\’echet derivative $f’= \frac{\partial f}{\partial y}(t, y)$ . Kartsatos[10] dealt with the existence and uniqueness of
solutions to the following problem:

$x’=F(t,x)+f(t)$ (5.5)
$Ux=r$ (5.6)

Theorem 8.24 in [10] is as follows:
(i) Let $\mathrm{R}_{+}=[0, \infty).F$ : $\mathrm{R}_{+}\mathrm{x}$ $\mathrm{R}^{n}arrow \mathrm{R}^{n}$ is continuous and $F(\mathrm{R}_{+}\mathrm{x} M)$ is bounded for every

bounded set $M\subseteq \mathrm{R}^{n}$ . Moreover there exists the Jacobian matrix $F_{x}(t, x)$ which is continuous on
$\mathrm{R}_{+}\mathrm{x}$

$\mathrm{R}^{n}$ ;
(ii) For every bounded set $M\subset \mathrm{R}^{n}$ , $F_{x}(\mathrm{R}_{+}\cross M)$ is bounded and for every $\epsilon$ $>0$ there exists

$\delta(\in)>0$ such that $||F_{x}(t,u_{1})-F_{x}(t,u_{2})||<\epsilon$ for $(t,u_{1}, u_{2})\in \mathrm{R}+)\zeta M\mathrm{x}M$ ;
(iii) Suppose that the operator $U$ : $C_{n}^{1}(\mathrm{R}_{+})arrow \mathrm{R}^{n}$ is continuous and R\’echet differentiable at

every $x0$ $\in C_{n}^{1}(\mathrm{R}_{+})$ . Here $C_{n}^{1}(\mathrm{R}_{+})$ is a set of continuously difffferentiable functions from $\mathrm{R}_{+}$ to $\mathrm{R}^{n}$ ;
(iv) $S\subseteq C_{n}^{1}(\mathrm{R}_{+})$ is any open set. For $\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{y}\in$ $>0$ there exists $\delta(\epsilon)>0$ such that $||[U^{l}(x_{1})-$

$U’(x_{2})]h||\leq\epsilon$ $||h||_{\infty}$ for every $x_{1}$ , z2 $\in S$ , $h\in C_{n}^{1}(\mathrm{R}_{+})$ . Here $||\cdot$ $||_{\infty}$ is the $\sup$ norm in $C_{n}^{1}(\mathrm{R}_{+})$ ;
(v) Let $f_{0}$ be continuous on $\mathrm{R}_{+}$ and $r_{0}\in \mathrm{R}^{n}$ . Let $x_{0}\in C_{n}^{1}(\mathrm{R}_{+})$ be a solution to

$x_{\acute{0}}=F(t, x_{0}(t))+f_{0}(t)$ (5.7)
$Ux_{0}=r_{0}$ (5.8)

for $?\in \mathrm{R}_{+}$ . Suppose that the following linear problem

$x^{l}=F_{x}(t, x_{0}(t\rangle)x$ (5.9)
$U’(x_{0})x=0$ {5.10)

has only the zero solution in $C_{n}^{1}(\mathrm{R}_{+})$ ;
(vi) Suppose that

$t \in \mathrm{R}\sup_{+}\int_{0}^{t}||X(t)X^{-1}(s)||ds<\infty$

where $X(t)$ is the fundamental matrix of $x’=F_{x}(t, x_{0}(t))x$ .
If the above conditions (i) - (vi) hold, then there exist numbers $\alpha,\beta>0$ such that for every
( $f$ , r) $\in C_{n}^{1}(\mathrm{R}_{+})\rangle\langle \mathrm{R}^{n}$ with $||(f-f_{0}, r-r_{0})||\leq\beta$ , there exists a unique solution $x\in C_{n}^{1}(\mathrm{R}_{+})$ to
$((5.6), (5.6))$ such that $||x||\leq\alpha$ .

In [4] the Jacobian matrix plays an important role in proving the Brauwer’s fixed point theorem
in finite dimensional linear space.

In analyzing ordinary differential equations, the variational equation plays a significant role in
the above results. In the similar way it is expected that analysis of the variational equation of
fuzzy differential equations leads to various results on asymptotic behaviors of solutions of fuzzy
differential equations(FDE). When we consider the varitional equation of (FDE), it is need to
calculate the Fr\’echet derivative of (FDE). Let $X$ , $Y$ be Banach spaces of fuzzy numbers. Let $S$ be
an open subset of $X$ . Let a fuzzy function $f$ : $Sarrow Y$ be such that

$f(u+h)=f(u)+f’(u)h+w(u, h)$

for every $h\in X$ with $u+h\in S$ , where $f’(u)$ : $Xarrow Y$ is an operator and $\lim_{harrow 0}\frac{||w(u,h)||}{||h||}=0$ .

Then $f^{l}(u)h$ is called the Frechet differential of $f$ at $u$ with increment $h$ , $f^{J}.(u)$ is called the Frechet
derivative of $f$ at $u$ and $f$ is called Fr\’echet differentiable at $u\in$ $S$ . In the case of Fr\’echet differential
of fuzzy function, it is necessary to consider the product $f’(u)h$ with an operator $f’(u)$ and a fuzzy

number $h$ . As mentioned in Section 4 there are two ways in analyzing the stability of solutions to
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(FDE). One is the parametric representation method, in which the $\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}_{011}x’=-x$ is unstable
and the other fuzzy differential inclusions, where the same equation implies the stability. It is
possible that analyzing the variational equations of (FDE) will find a suitable method for stability
theory of (FDE).

References
[1] J.P. Aubin and A. Celina: Differential Inclusions, Springer Verlag, New York (1984).

[2] P. Diamond: Time-Dependent Differential Inclusions, Cocycle Attractors and Fuzzy Differ-
ential Equations, IEEE Trans, on Fuzzy Systems, Vol. 7 No. 6, pp,734-740 (1999).

[3] P. Diamond: Stability and Periodicity in Fuzzy Differential Equations, IEEE Trans, on Fuzzy
Systems, Vol. 8, No. 5, pp.583-590 (2000).

[4] N, Dunford and J.T. Schwartz :Linear Operators Part I: General Theory, Wiley Interscience
(1988).

[5] R. D. Driver, Ordinary and Delay Difffferential Equations, Springer-Verlarg; New York, 1977.

[6] E. H\"ullermeier: An Approach to Modeling and Simulation of Uncertain Dynamical Systems,
Int. J. Uncertainty, Fuzziness, Knowledge-based Systems, Vol. 5, $\mathrm{p}\mathrm{p}.117-$ $137(1997)$ .

[7] Jr. R. Goetschel, W. Voxman, Topological Properties of Fuzzy Numbers, Fuzzy Sets and
Systems 9 (1983) 87-99.

[8] Jr. R. Goetschel, W. Voxman, Elementary Fuzzy Calculus, Fuzzy Sets and Systems 18 (1986)
31-43.

[9] 0. Kaleva, The Cauchy Problem for Fuzzy Differential Equation, Fuzzy Sets and Systems 35
(1990), 389-396.

[10] A.G, Kartsatos: Advanced Ordinary Differential Equations, Mariner (1980).

[11] V. Lakshmikanthan and R.N. Mohapatra: Theory of Fuzzy Differential Equations and Inclu-
sions, Taylor & Francis, London (2003).

[i2] M.L. Puri, D.A. Ralescu, Differential of Fuzzy Functions, J. Math. Anal Appl. 91(1983)
552-558.

[13] R. Reissig, G. Sansone and R. Conti: Non-linear Differential Equations of Higher Order,
Noordhoff International Publ. (1974).

[14] S. Saito: On Some Topics of Fuzzy Differential Equations and Fuzzy Optimization Problems
via a Parametric Representation of Fuzzy Numbers, “Contemporary Differential Equations
and Applications” , $\mathrm{e}\mathrm{d}$ . by Cho $\mathrm{Y}.\mathrm{J}$ . etc., Nova Science Publishers, Inc., New York: pp.49-66
(2004).

[15] S. Saito: Qualitative Approaches to Boundary Value Problems of Fuzzy Difffferential Equations
by Theory of Ordinary Differential Equations, J. Nonlinear and Convex Analysis $5(2004))$

121-130.

[16] S. Saito: Boundary Value Problems of Fuzzy Differential Equations, Proceedings of 3rd In-
ternational Conference on Nonlinear Analysis and Convex Analysis $(\mathrm{T}\mathrm{o}\mathrm{k}\mathrm{y}\mathrm{o},2003)$ , 481-491



233

[17] S. Saito: On the Schauder’s Fixed Point Theorem in Complete Metric Spaces of Fuzzy Num-
bers and Applications to Fuzzy Boundary Value Problems (preprint) .

[18] S. P. Sethi, G. L. Thopson and V. Udayabhanu: Profit Maximization Models for Exponential
Decay Processes, European J. OR, Vol. 22, pp.101-115(1985).

[19] M. Yamamoto : Stability of Ordinary Difffferential Equations(in Japanese), Zikkyo Publ.
(1979).

[20] T. Yamanaka, Theory of Fr\’echet Difffferential and Its Applications Japanese)} Tokai Univ.
Pub., Tokyo, 1992


