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Robust D-stability of linear difference equations
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Abstract

We study robustness of D-stability of linear difference equations under multi-
perturbation and affine perturbation of coeflicient matrices via the concept
of D-stability radius. Some explicit formulae are derived for these D-stability
radii. The obtained results include the corresponding ones established earlier
in [3], [4], [9], [10] as particular cases.

1 Introduction and Preliminaries

Let D := D(a,r) be a open disk centered at (o, 0) with radius r in the complex plane.
A linear discrete-time (time-invariant) system is called D-stable if its characteristic
equation has only roots in D. In this paper, we study the robustness of D-stability
of linear discrete-time systems of the form

s+ =Axk)+ A zk—1)+-+Azlk-v), keENE>v (1)

under parameter perturbation of the coefficient matrices via the concept of D-
stability radius. It is important to note that the problems of computing of D(0,1)-
stability radii (or simpler, stability radii) of linear discrete-time systems have been
studied during the last twenty years by many mathematical researchers, see e.g.
[2]-[5], [9)-[11]. In particular, the problems of computing of stability radii of linear
discrete-time systems of the form (1) under single perturbations, affine perturbations
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and multi-perturbations have just been studied in the recent time, see [5], [9], [10].
It is also worth noticing that (robust) D-stability problems of linear discrete-time
systems have been received much attention from researchers for a long time. Some
sufficient conditions for the {robust) D-stability of the system (1) under parameter
perturbations were proposed in [1], [6], [8], [13]-[15]. However, to the best of our
knowledge, there is not any formula for the D-stability radii of the system (1) un-
der multi-perturbations or affine-perturbations in the case of D = D(a,7). In the
present paper, using our recent new results on the problems of computing of stability
radii (see e.g. [10]), we can compute the D(q,r)-stability radii of the system (1)
under multi-perturbations and affine perturbations. The obtained results are the
extensions of the corresponding results of [3], [4], [9], [10].

Let K = C or R and n, [, ¢ be positive integers. Inequalities between real matrices
or vectors will be understood componentwise. The set of all nonnegative [ X ¢-
matrices is denoted by RY%. If P € K9 we define [P| = (|pi;|) . For any matrix
A € K™*" the spectral radius of A is denoted by p(A4) = max{|A|: X € o(4)}, where
a(A) is the set of all eigenvalues of A. A norm || - || on K" is said to be monotonic
if |z] < |y| implies ||z{| < ||yl| for all z,y € K™. Every p-norm on K",1 < p < o0, is
monotonic. Throughout the paper, the norm || M|} of a matrix M € K'* is always
understood as the operator norm defined by || M|| = maxyy=; || My||, where K¢ and
K! are provided with some monotonic vector norms.

2 D-stability radii of linear discrete-time systems

Let D = D(a,r) be the open disk centered at («,0) with radius r in the complex
plane. Consider a dynamical system described by a linear discrete-time system of
the form

z(k+1) = Az(k), k€N, (2)

where A € R™ ™ is a given matrix. The system (2) is called D-stable if o(A) C D.

It is important to note that, the system (2) is asymptotically stable in the
Lyapunov’ s sense in the case of D = D(0,1) and is strong stable in the case of
D = D(0,7),0 < r < 1. We now assume that the system (2) is D-stable and the
system matrix A is subjected to one of the following perturbation types

A— A+ Ziil D;AE;, (multi-perturbation), (3)

A— A+ 6B, (affine perturbation). (4)



Here D; € R™*4 E; € R%** B; € R™"* ¢ € N := {1,2,..., N} are given matrices
defining the structure of perturbations and A; € K5%%, §; € K (i € N) unknown
disturbance matrices and scalars, respectively. For class of multi-perturbations of
the form (3), we always assume that the linear space Ag = K"*% x .. x KW XV of all
perturbation families A = (Aq, ..., Ay), with A; € K4*% is endowed with the norm
Y(A) = y(Ay, ..., Ax) = SO, [|A]], where the norms [|A;|| are operator norms on
K%*%  induced by given monotonic vector norms on the spaces K5, K%,i € N (K =

R, C).

Definition 2.1. Let the linear discrete time system (2) be D—stable.

(a) The complez, real D{a, r)-stability radius of the system (2) with respect to multi-
perturbations of the form (8) are defined, respectively, by
Tc(A, (Di, Eg;)iej_v_;p) = 1nf{’y(A) : A€ Ag, O'(A -+ zfil DZA,,E“) 7 D},
rr(4, (Di, Bien; D) = mf{y(A) : A € Ag, o(A+ 3, DiAE;,) ¢ D}

(b) The complez, real D{(c, r)-stability radius of the system (2) with respect to affine
perturbations of the form (4) are defined, respectively, by
re(A, (Bi)ien; D) = inf{maxiey 6] : §;€ C,i € N, o(A+ YN, 8B;) ¢ D},
rr(A, (Bi)ien; D) = inf{maxiey |6;] : §; e Rys € N, o(A+ YN, 6B;) ¢ D}.

As noted in Introduction, the problems of computing of the stability radii (i.e.
D(0, 1)-stability radii) of the system (2) have been studied during the last twenty
years and have got the full results, see e.g. [3], [12], [4], [10]. We list here the
interesting results for the class of positive systems (i.e. A is a nonnegative matrix).

Theorem 2.2. [4] Let the system (2) be D(0,1)—stable and positive. Suppose the
system matriz A is subjected to affine-perturbations (4), where B; € RY",i € N.
Then

re(4, (Bi)iew; D(0,1)) = r&(A, (Bi)iew; D(0,1)) = -sv 5275

Theorem 2.3. [10] Let the system (2) be D(0,1)—stable and positive. Assume that
the matriz A is subjected to parameter multi-perturbations (3). If D; = D € R}
and E; € R*™ for everyi € N or E;=F € RY" and D; € RYY for every i € N,
then rc(A, (Ds, Bi)ien; D(0,1)) = ra (A, (D;, E)ien; D(0,1)) = maxieEHEi(lrwA)“fD,'u‘

The following theorem extends the above results to the general case of D = D(a, 7).

Theorem 2.4. Let the system (2) be D(a,r)—stable and A > al,,. (i) If the matriz
A is subjected to multi-perturbations (3), where D; = D ¢ R% and E; € RE™"
for everyi € N or B; = E € RY™, and D; € R for every i € N, then
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re(A, (Di, Bi)ien; D(e,r)) = rr(A, (D, Bi)ien; D( 7)) = s o= T5i-
(i) If the matriz A is subjected to affine-perturbations (4), where B; € RY*",i € N,
then T@(A, (Bi)ieﬂ; D(CE, 7")) = ’I’R(A, (Bz')ieﬂ; D(o:, ’I’)) = P(vazz Bg((a{kr)ln—A)“l)'

Proof. The proof is based on Theorems 2.2, 2.3 and the fact that the system z(k +
1) = Az(k),k € N is D(a,r)—stable if and only if the system z(k + 1) = (4 —
al,)z(k), k € Nis D(0,1)—stable. For sake of space, it is omitted here. O

The following is an extension of the main result of [7].

Corollary 2.5. Let P(2) := Lzt — A, 2" — ... — Ay be a given polynomial matriz.
Assume that lof < r,|a] +7 < 1 and |[[AoA1... Al < (r — |])**'. Then all the

-roots of the equation det P(z) = 0 lie inside the disk D(a,r).

3 D-stability radii of linear discrete time-delay
systems

Consider a dynamical system described by a linear discrete time-delay system of the
form (1), where 4; € R**" i € 7:= {0,1,2,..., v}, are given matrices. For the linear
discrete time-delay system (1), we consider the stable region D = D(a,r),|a| <
r,7+ el <1, seeeg. [8], [13], [14]. We associate the system (1) with the following
polynomial matrix P(z) := (z**I, — A,2” — A,12"~ — ... — Ap), z € C. Denote
by o((4;)ic 7) = {2 € C : det P(z) =0} the set of all roots of the characteristic
equation of the linear discrete time-delay system (1). Then o((A;)ic ») is called the
spectral set of the linear discrete time-delay system (1) and p((4;)icz) := max {|s| :
s € 0((Ai)ic »)} is called spectral radius of the linear discrete time-delay system (1).
Recall that the system (1) is said to be D-stable if o((A;)ic ) C D. We now assume
that the system (1) is D-stable and the coefficient matrices A;,7 € U are subjected
to parameter perturbations

Ai — Az' -+ Zﬁ_—l DiinjEij; (multi—perturbation)

)

(6)
where Dy; € R™% E;; € R%*", (1 €7,5 € N:={1,2,..,N}); B; e R™", (i ¢
7,j € N) are given matrices defining the structure of perturbations and AV
Khixai (i € D,j € N) ; 6; € K,(i € 7,5 € N) are perturbation matrices, per-
turbation scalars, respectively. For the class of multi-perturbations of the form

A — Ai+2;~\.7:1 d:; Bij, (affine-perturbation)



(5), we define A = (Ao, Al, Caay A,,), where Ai = (Aﬂ, A,‘g, ceay AzN) < Kzﬂxq“ X
... x Khin=ax § ¢ 7. Then the size of each perturbation A is measured by y(A) :=
Yoo Z;V:I |Ai;||. With the class of affine perturbations of the form (6), we denote
§ = (o1, .y Oon); v (601, -, Sunv)) € K¥V and the size of each perturbation § is
measured by v(d) = maocza,,Je N |031-

Definition 3.1. Let the linear discrete time-delay system (1) be D-stable.

(a) The complez, real D(c, r)-stability radius of the system (1) with respect to multi-
perturbations of the form ( 5) is defined, respectively, by
r(D) = inf{y(A) : A= (Ao, AL, .., A), B = (Ai, Aigy o, Ainy)
S Clquzl X ... X CiiNXQiN,i € -17, g ((A, + z_;\'le DiinjEij)iGi) ¢ D},
T{Q(D) = mf{’y(ﬁ) B A = (Ao, Al, N ,A,,), Az = (Aﬂ, A,;g, Cany A’LN)
€ Rhaxar | x lexqw,z‘ €V, o ((A, + Z;'Vzl DiinjEij)ieﬁ) ¢ ’D}

(b) The complez, real D(c, r)-stability radius of the system (1) with respect to affine
perturbations of the form (6) is defined, respectively, by

r&(D) = inf{3(0) : 8 € C¥HIV o (A + YL, 8By)ier) ¢ D,
(D) = inf{y(8) 8 € RV o (4 + LI, 85Bi)ics) ¢ D

In particular case of D = D(0, 1), the problems of computing of the stability radii of
the linear discrete-time systems (1) under single perturbations, affine perturbations
and multi-perturbations have been done recently by ourselves (see [5], [9], [10]). We
summarize here some existing results of these problems. Recall that the system (1)
is positive if and only if system matrices Ay, Ay, ..., A, are nonnegative.

Theorem 3.2. [9] Suppose the linear discrete time-delay system (1) is D(0,1)-
stable, positive and the system matrices A;,1 € U are subjected to affine perturbations
of the form (6) where B;; € RY",i € 7,j € N. Then, TC(D(O 1)) =r(D(0,1)) =
———”P(I) —, where B := ZJ  Boj + Z B+t Ej_l B,;.

Remark 3.3. In the proof of Theorem 8.2, we showed that the real perturbation

§ = ((Bot, oy So1); oy (Bt ooy Ouy)) € REHIN; 55 = ;(;(11)_—13)"(7; €v,jeEN)is

a minimal size destabilizing perturbation. This fact will be used in the sequel.

Theorem 3.4. [10] Let the linear discrete time-delay system (1) be positive, D(0,1)-
stable. Assume that the system matrices A;, i € m are subjected to the multi-
perturbations of the form (5) where D;; = D € R, E;; € R%™™ for all i €
7,je€ N o Ey:=FEc¢cBR¥ Dy e R foralli € 7,j € N. Then,
e (D(0,1)) =rg(D(0,1)) = =

max{[|E;; P(1)~! Dy;li€v,jeN}”
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Theorem 3.5. Let the linear discrete time-delay system (1) be D{c, r)-stable. Sup-
pose the coefficient matrices A;,t € U are subjected to the multi-perturbations (5),
where Dy == D € R¥™, E; € R (i € 7,5 € N) or Dy € Ry E; = E €
RU™ie?,j€N). Ifa<0 and Ag, A1, ..., Av1, (A — aly) € RY, then

1
maxie 7, jen ||(@+ 7)iE; Pla+ )~ 1Dyl

r¢(D(a,r)) = rg(D(e, 7)) =

Proof. Assume Dj; := D € R™ E;; € R "(i € 7,j € N). Consider the compan-
ion matrix of the polynomial matrix P(z) = (2*111, ~ A,2" — Ay12"7 1 — ... — Ag) :

0 I, 0 .. 0 0]
0 0 0

0 I ..

Aci= | . .| €READCAD
0 0 0 .. 0 I
Ay A o . A

and similarly A.(A) for the perturbed polynomial matrix Pz (z) := 2", —> i (Ai+
Sy Dy Ey) 2, where A i= (Ag, A, ., AL), A= (Aig, Aig, -, Aiy) € KXo x
.. x K*@r ;e 7. Then the matrix A.(A) can be represented by the following form
AC(A) = A, + Z;\;I f)AOngj + 2;\;1 ﬁAle’Ij + ot Z;\;l BA,,jE,,j, where

D,;j = D = [0, ey 0, DT]T € R(%H)nﬂ; on = [on,(), ,O] c Rqux(y+1)n,

Eu = [0, E1;,0,...,0] € Re <+ Eyj :=10,...,0,E,] € Rlvi*(wtln

for every 1 € 7, j € N. It follows from the equality det Pz (z) = det (2lp41yn —
A(A)) ’Ehat~a((Az- + Zjvzl Di;AiiEij)iew) = o(A(A)). So, we get r&(D{a, 7)) =
re(Ae, (Dyg, Bij)ievgens D(e, 7)) @ (D(e, 7)) = mr(Ae, (Dij, Bijiejen; D(e, 7). By
the assumption o < 0, Ag,4y,...,4v-1, (A — alp) € R, Dy € R E;; €
RY™(i € 7,j € N), we have A, > aly41), and D € RYPV™ By e RECH(
v,j € N). Hence, from Theorem 2.4, we get re(Ae, (Diy, Bij)ievjen; Dia,7)) =
rr(Ac, (Dij, Eij)ievjen; D{oyr)) = 1 On the other

maxie 7, jen |[(Bij((e+r) i1y, —Ac) L Dijll”

hand, it is easy to check that

[ P(z)”
2P(z)7t

\ 2P )



Therefore, 78 (D(e, 7)) = rg(D{a, 1)) = e > j_eﬂ”(a+j)iEijp(a+,.)~1Dij”. The proof
of the case of D;; € Rnxz” E;:=E ¢ RY"(i €7,j € N), can be done by a similar

way. This completes our proof. O

We now turn to the problem of computing of the complex, real D-stability radius
under affine perturbations (6). For every i € U, let us define

1 . ) . ,
A= e (ij"a""‘Au + OV T A, L+ A C;’J:ll ity ) (7)
where C} := #lv),, u,v € N,u > v. The following theorem is an extension of

Theorem 3.2 to the general case of D = D(a, 7).

Theorem 3.6. Let the linear discrete time-deloy system (1) be D(a,r)-stable. Sup-
pose the system matrices A;,1 € U are subjected to affine perturbations (6), where
B;; e RY™(i € v,j € N). If either a < 0 and A, Ay, ..., A1, (4 — aly) € RY,
ora > 0 and AF € R¥" i € 7, then r&(D{e, 7)) = r&(D(a,7)) = mfm,

where B =Y . _, (Zj\;l Bz‘j) (a+r)"

Proof. In the case of « < 0 and Ay, A1, ..., Av_1, (4, — al,) € RY*", the proof is
similar to that of Theorem 3.5, based on the result of Theorem 2.4(i). Then, we
have r&(D(a, ) = r&(D{ey 1)) = m. We now assume that o > 0 and A] €
R™" i € 7. Denote by P*(2) i= 2", — A52¥ — .. — A} Let s € C[s ~a| 2 7
satisfy det P(s) = 0. Setting z = #=2,]2| > 1, by a direct computation, we have
det P(s) = 0 if and only if det P*(2) = 0. So the discrete time-delay system (1) is
D(a, r)-stable if and only if the following discrete time-delay system

sk+1)=Alz(k) + A, _zlk— )+ ..+ Ajz(k—v), keN k>v, (8)
is D(0, 1)-stable. Similarly, the perturbed system
N n
p(k+1) = (Ay+ Y 8,Bu)s(k)+...+ (Aot  doBoj)e(k—v), keN, k2w, (9)
Jj=1 ) j=1

is D(c, r)-stable if and only if the following discrete time-delay system is D(0,1)-
stable

2k +1) = (A% + Bo(k) + ..+ (A + B)a(k—v), keN, k>w.  (10)

13

Here) B: = (Z V](TV+1—1 CU—_ v 'LBU‘Q)+EJ_ 5()} 1)j(ru+1 —1 OV 1 U.—l ZB(V._l)])‘g'

+Z;.V=1 5Z-j(r,,+1_, ZJ,)), i € 7. Since By; € R™™, (i €7,j € N), we have

1 i ped 1 1
v—i  V—i ye—l-i p—1-%
pr+i—i CV o BVJ’ u—i—l —i C’/ T B (v=1)js - u+1 -1

By e RY™, iev,jeN.
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It follows from Theorem 3.2 that the system (10) is D(0, 1)-stable for every J satis-
fying max;e v,jeN léijl < -p(—PT(-ll—):iE.)—’ where

1

G Z (Z 7-1/-!—1——2 G::“Z V“EB”J +Z z/+1 —i CL’F]% oo zB(V 1)]

=0 7=1 g=1

N
1
. +Z7Tu’€ii7' Bij). (11)
j=1

Hence, the perturbed system (9) is D{«, r)-stable for every complex perturbation §
such that max;e 7 en 055 < W By the definition of the complex D{a,r)-
stability radius of the system (1) under affine perturbations of the form (6), we
get 7&(D(a,r)) > ;;(T(})—TCT)' On the other hand, taking Remark 3.3 into ac-
count, the system (10) is not D(0, 1)-stable if § := ({(So1, ..., Sonw); -3 (6u1s -y Ouny)) €
ROHON, G, = 5?1—’7%)—‘1?) (i € 7,7 € N). Then the perturbed system (9) is not

D(a, r)-stable if
1

§ 1= (8o, oy Son); v Bty vy Gun)) ERWHIN. 6 —
(( 01, ,GN) ’( 1 N)) J p(P*(l)_lG)

(ie 7,j€N).

We derive that r&(D(a, 7)) < So we get the following inequalities

1 __
PP (1)7I6)

1 1
—— i SreDlar)) <mp(Dleyr) € —————.
P76 T ) p(P*(1)7'G)
Therefore r&(D(a, r)) = rg(D{a,r)) = (T*(z)_lG)" Finally, by a direct computation,
we get P*(1)7'G = P(a + r)~'B. This completes our proof. O
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