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1. Introduction

This is a joint work with Takasi Senba (Miyazaki University) and Takashi Suzuki {Osaka Uni-
versity).  We consider the following parabolic-elliptic system describing chemotactic aggregation
of the slime molds: o

%:V-(VU—XUVU), (z,t) € X x (0,T),

(Z) W 0= Av —yv — )P v + au, (z,t) € Q% (0,T),
du Ov .
%—5:0) (ac,t)E@Qx(O,T),

| u(z,0) = uo{z), z €Q,

where Q is a bounded domain in R? with smooth boundary 8Q and T > 0. Here u(z,%) is the
cell density of the cellular slime molds and v(z,t) is the concentration of the chemical substance
at place = and time ¢, respectively. X, @, (3, v are positive constants and 1 < p < c0. v denotes
the unit cutward normal vector to 8Q. The term F = Vu — xuVwv is the flux of u so that effect
of diffusion V - Vu and that of chemotaxis xV - (uVv) are competing for u to vary.

For the problem (CZ), in the case of § = 0, Nagai [6] has confirmed the conjectures of
Childress and Percus [4], which is chemotaxis collaps can occur if a total cell number on QCR?
is larger than a critical number, but can not occur for the total cell number on € less than i,
and he find the critical number is %. While Senba and Suzuki [11] have made clear the blowup
mechanism.

Here we study the blowup solution to the simplest Keller-Segel model (CZ) in the case of
3 # 0. For the initial function ug we suppose

1. up > 0 and ugp is not identical to 0 on £%,
2, ug is smooth on 2.

H. Chen and X.H. Zhong [2] has shown that the system (CZ) has a unique classcal positive
solution (u,v), (z,1) € Q X [0,Tmax). under the assumptions that 1 < p < 400 for spatial
dimension N =2 and 1 < p < %_Lg for N > 3, where Tiax = sup{T > 0; (u,v) exists for x €
Q,t € [0,T)} denotes the maximal time of existence for the solution of (CZ). And they (3]

obtained that if luplj,r = A < 3—; then Timax = 400 and ||u(t)]lc < C. Moreover they showed

the critical number is 8%, which determines occurence of blowup in case that ug is radially

- aX !
symmetric.



In this paper we show the blowup results of the problem. Henceforth we can assume that
X = o = 3 =y = 1 without loss of generality. The main theorem is as follows. The first theorem
justifies the teminology blowup.

Theorem 1. If Thnax < 00, then

1 t = 00.
1 Jim (8l = 00

Regarding this, we define the blowup set B of u
B={z € Q: ther exist tg * Tmax and T — To
such that u(zg, ;) — 00 as k — oo}

(2)

and call each zg € B a blowup point. Condition Thax < +oc implies B # @, but more impor-
tantly, the finiteness of blowup point follows.

Theorem 2. If Thax < o, then §B is finite.

Remark 3. Keller and Segel(1970) discussed the iniation of cell aggregation as instability of the
spatially homogeneus steady state. As concerned dynamics aspects of solutions, Nanjundiah [8]
has posed a conjecture that cell density u(z, t) will blow up in a finite time and form a §-function
singularity. Such a result is estanblished in [11].We expect a similar blowup mechanism for (CZ)
system.

2. Preliminaries

First of all we recall the Gagliard-Nirenberg inequality in two dimensional cace;

(3) lwlZe < K2 (lwlle + wlfy),  weWHi(9),

where K is a constant determined by €.
In this part we shall show some inequalities (3) for later use. Henceforth, we set Bg(zg) =
{z € R?: |z — 29| < R}. We introduce the cut-off function ¢ satisfying

(4) 0<p<1 inR? g—‘izo on Of.

Given zg € Q, we have 0 < R < R with Bap(zp) € Q. Then we take ¢ satisfying

1 (a’: 6 BR’(.’E(]))

(5) Poo b RT) = {0 (z € R®\Bg(z)).

Given zg € 99, we take a smooth conformal mapping X : Bag(z¢) N Q + R2 satisfying zg — 0
and

X(Bar(zo) N Q) C {(z1,22) : 72 > 0}
X(BgR(,’EQ) n 89) C {(.Tl, :L‘g) 1&g = 0}
X(Bp (20) N Q) € B3(0), X(2\Br(0)) C R*\Bi(ao)

for 0 < R < 1. Then we have set ¢ = ((X(z)). It holds that

d oX
%COX—E-(VgoX)=O on 09,



because %% is proportional to (0,1) on 89, and such a ¢ satisfies (4) and (5). Then, ¢ =
6
(‘on,R’ ,R) satisfies

_ 1 (.’L‘ S BR’(IEQ))
©) ¥o) = {0 (z € R*\Bg(zs)),
0<7¥ <1 inR2 ‘;—fzo on 8.

And it holds that
(7 Vil < ApS,  |Ay] < By,

where A > 0, B > 0 are constants determined by 0 < R <1<l
For the estimate of u, we have the following lemma from Gagliard-Nirenberg inequality and
the characteristic of the cut-off function .

Lemma 4. [11] The follwing inequalities hold for any s > 1, where C > 0 is a constant:

2
(8) / wpdz < 2K / udz / u”HVu|*dr + K2(-4— + 1) |full%1
Q Br(co)NS Q 2
2 2K* —1 ~19,,12 210, 112 2
9) widz < =— [ (ulogu+e tdz [ w | Vul’de + 2K |lul[7. 4+ 35°|€
Q logs Ja 0

3 72K* -1 2
updz < (ulogu+e Mdz | |Vul*ydz
Q log s J/Bg(ze)nn 0

(10)
+ O”u”%l(BR(:Eo)ﬂQ) + 10}9‘33

We can obtain the estimate of v. From u > 0, v > 0 and the sceond equation, we get

(11) follpy + lolife = llulle-
We rewrite the second equation of v
(12) —~Av+v=hin{, %zOonaﬂ

by putting h = u — [v[P~*v. From (11) we find
(13) IBlizs < Nullzs + ol < 2lullz

Then the L' estimate (H.Brezis and W.Strauss [1]) to the second equation of (CZ) gives

(14) oSup {lv@lwia@ll + vl } < Clr)ulle

_t_tmax

for g € [1,2) and r € [1,00).
3. Characterization of blowup point

Henceforth, we always assume that Trax < oo and B denotes the blowup points. By using
the estimate (14) and the first equation of (CZ), we lead to the following lemma.

Lemma 5. 2o € © is a blowup point of u if and only if

(15) limsup/ ulogudzr = +o0
t /Tmax ¥ Bp{zo)N2

for B> 0 sufficiently small.



Proof. We start to prove the ’if’ part. Let be 0 < R < 1 and ¢ = (i, ’R)ﬁ. We assume that
(15) holds. Multiplying the first equation of (CZ) by w1, we have

(16) La / wPepde + / |Vu®ypdz + ] uVu - Vipdr = / whVo - Vudz + / w?Vv - Vepdz.
2dt Jg Q Q Q Q

The first integral term of the right hand side in (16) is
(17) /w/)Vu-Vvdazz —-l/
0 2

Q
By the second equation of (CZ), the equation (17) is treated to get

1
/uszu-V'uda: = }-/ uw?vipdr — -1-/ uglv]p_lvdx-{-if udrpdr — —/ Vv - Vipda
Q 2 Jo 2 Jo 2 Ja 2 Ja

< 1/u3¢dm—l/u2VU-V1,[)dx
2 Ja 2 Ja

1
w2 Av - pdz — 5/ uw?Vu - Vipdz.
Q

1
(18) -1 / udtpdz + ! / oV (u?)pds + = / w?vAdde.
2 Ja 2 Ja 2 Jo
On the other hand, about the second integral term of right side in (16) we get
(19) /UZVQ/) - Vodz = —/ oV (u?) - Vipdz ~ / u?vApdz.
Q o) Q
Therefore we have
(20)
1d

/u 'tpd:n—i-/ ]Vu|2'z,bdsc/uVu Vidz = 1/u31/1d£—l/vV(u2)V2/)dx—/u%Aﬂ}Jdm.
2d 3/, 5 /o 0

By using Young's inequality and the estimate of 1, we have

1 2 1 [ 4 B .
(21) -1 | v vAYdz| < = | vwPdz + —|vll3,
2\Ja 3 Jo 6
6
(22) /’“V“' Vipdz| < E/ !VU|2¢dw+1/u3wdx+£4~]Q\
Q 4 Q 3 Q
and
1
(23) 3 /vVu - Vapdz| < / |Vul*pdr + = f uSpdz + “‘i“”“s
Q
From (20)-(23) we obtain
(24) la / ulypdz + L / |Vu|?pdz < 3 f udipde + Cy.
2dt Q 2 Q -2 Q
From (10) of Lemma 4 with s < 1, we have
d
(25) 7 / w?epdr + = / |Vul?pdz < C.
This implies |
(26) sup fu2¢d:c < +oo.
0<t<Tmax J 02

In similar way, multiplying the first equation of (CZ) by u?+ and integrating by parts, we have

(27) jt whids + 2 / Vwltpds < 4 / Wz + C



3 .
for w = u?2. In particular, we have

sup / w logwdz < 400,
Ost<Tma.x B (Lﬂo)ﬂﬂ

sup flwliLys,,

+00.
0<t< Timax R (eg)re)

Therefore, taking R' ¢ (O,Rl), we can apply the argument with u, R, and ¢ = (¢, g 2%
replacing by w, R, and ¢ = (PR, )%, respectively. Similar to (26) it follows that

2
3
B lolZe(s, (moyney = o<t l[ull 23(B, (zoyner) < +o0

for any r € (0, R), because R €(0,R) and R" € (0,R') are arbltrary From second equation of
(CZ) this implies supg<iet,.., [V[lw2 3(B 1 (ao)n@) < +00 for r € (0,r). Therefore

28 z <+
(28) Osfgigmax “UHcl(Br( 0)N0Y) o0

holds for any 7 € (0, R). Repeating the argument once more, we have

(29) sup  ||ullLa(B, (5o)na) < 00
0<t<Tmax

Next we take 7 € (0, R) and put 91 = (¢ o ,r)ﬁ. For p > 1 we multiply the first equation of
(CZ) by uPyPT and get

p+1dt / (uppr)da = — / V(g - Vudz + / uV (WP - Vodz = —1 +11.
Here we have

I = [(pup_lprVu-FupV'qpr) Vudz

(p + 1) % 1+2p
> 2 [ |9t [ de - ZE il ( ], ()
On the other hand, estimate (28) means that

wlto

L= sup ||Vo|lpee(s, mo)nn) < +o0-
0<t<Tmax

We obtain

5

Ir< —-w/ ‘V(‘U'I/Jl = +4L2(p+1)[Q(quﬂpﬂdzr—i—llfl(p-!—l)Huoﬂéxm) (/Q(Wl)ugpdm)e
It holds that

(30)

2
(ul)p+1d$< /‘V(ul)g}i dz

2 8
3,\ 3
+03(p+1)2/ u1{+1d$+03(p+1)2 (([ u;+zp> + (/ 1“”’51”) )’
Q 9] Q

where u; = u1. Here, Cs > 0 is independent of p > 1 and we can apply an iteration sheme of
Moser’s type. As a result, we have

dt

NG
(31) sup HmHLw(n)SOmaX{( sup Hulﬂéfx(gﬁ*l) ,d}

0<t<Trmax 0<t<Trmax



where d = |Jug}| () + 1. By using (29), we obtain

(32) sup  fuillpeeqy =  sup  [luplizeay < +00,
0<t<Tmax 0<t< max o

or limsup; s, ”U“L“’(B  (zo)n) < +oo. This means zo ¢ B.

On the other hand, the only if "part is clear, because zp ¢ B implies (15) for 0 < R < 1 by
the definition. The proof of Lemma 5 is complete.

|
4. Proof of Theorem 1

The global version of Lemma 5 is expressed as follows:

(33) limsupf wlogudzr < +00
t T Jo
implies
(34) limsup flufleo < +o0.
t /T

In fact, this is proven just by replacing the cut-off function ¢ with the constant function 1. If
(34) follows, then general theory of parabolic equation yields that the solution u is continued
after £ = T. We shall show that (33) follows from '

(35) lim inf[ ulog udx < +oo0.
t/T Jjo

Then .y < 0o holds only if

(36) lim inf/ ulog udx = +oo.
t /T 0

And in particular relation

37 li =

(37) lin oo = 00

follows.

Next we multiply logu by the first equation of (CZ). By using the second equation of (CZ),
we have

(38) jt[ulogudx—{—f 1[Vuf2dz+fuv~/ wldz.

The right hand side is dominated by the second inequality (9) of Lemma 4. It follows that

d 2K?
(39) ~/ ulogudz + (1 — —-——/(u logu + e Ndz) | | Vul2de < Cllug|?, + 35%Q).
dt Q IOgS Q Q
Taking s = s(t) = exp (2K? Jqulogu+ e 1) dz > 1, we obtain

dJ
dt
where J = [, (ulogu+e!)dz. Inequlity (40) and lim inf; »p J(t) < co implies lim sup, Ard(t) <
oo by the comparison theorem for ordinary differential equation. In particular, inequality (36)
implies (33). The proof is complete.

(40) < Clluol3: + 319 exp (4K2T),



5. Proof of Theorem 2

In this part we show the finiteness of blowup points. Given zg € Q, we take 0 < R << 1

6
and set ¢ = (1/1% B ,R) . Let G = G(z,y) be the Green’s function of the operator £+ 1, so that
it solves

(A + )G =d(y~z) (ye)
with 3‘?7; =0 (ye€ 89Q) for z € Q. From the elliptic regularity, it is extended to a smooth

function on @ x O\ {(z,z) : z € Q}. Also the symmetry G(z,y) = G(y, z) follows. Here we have
the following. '

Lemma 6. [11] The function p(z,y) = Vi(z)ViG(z,y) + Vi (y)VyG(z,y) belongs to L=(Q x
Q).

And we have

Lemma 7. [11] It holds that

d 1 1 2 "9
(41) Eifn(ulogu)ipdx—sznu \Vu|“ydz SQ/Qu pdz + Cs.

We start to prove Theorem 2. There is g > 0 such that any 2o € B and 0 < R < 1 admit
the estimate :

(42) lim sup / udz > £g.
t/Tmax BR(ZZJO)QQ

) 6
Take R € (0, R) and set i = ((p o, R) . From (41) and the first inequlity (8) of Lemma 4, we
have

(43) 4 / (ulogu)wdm+3 1-16K2 / udz f u™ V| ?pdz < Cy.
dt Q 4 Bgr{zo)Nf2 Q

Therefore, if limsup; 7, . f Ba(z0)nQ udr < gy = 1—6—1K—§, then

(44) lim sup] ulog udz < limsup f (ulogu)ypdr < +oo.
£/ Tmax J B y (20)NQ t P Tinax 49

This implies 2o ¢ B by Lemma 5, that is a contradiction.
Next we show that

d 1
(45) 5 [ wbs] < Bl + Glelhmaen ol
The first equation of (CZ) gives
(46) 4 updr = / uApdz + / uVo - Vipdz.
dt Jo 0 Q

The second integral term of the right side in (46) is
/ uVo - Vipdr = / f u(z, 1) Vip(z) - Vo G(z,y)u(y, t)dydz
Q ala
1
(«7) = 5 [ [ plovputo tuty, sy
nJo



From Lemma 6 we have
[ [ plo. vtz puty, sy
aJa

Since, it is obvious that [, uApdz < Bllugl|z:, we get inequlity (45). This means that the value

< HlpllooaxeluoliZ:-

Tmax d
4 1i dz = d+f (_/u-,t dm)dt
(49) i [upds= [wea s [ (5 [ w00
exists. Because 0 < R < 1 is arbitrary, (4) and inequality (42) are improved as
(49) lim inf / udz > lim updz > limsup / udz > £9.
t, Tmax J Bp(z0)N0 t/ Tmax J t/Tmax J Bpy (z0)n02

Therefore, by using the L! norm preserving |[uflp: = ljuollp:{ 0 £ < Tmax), we conclude

(50) 1B < Tuollr
]

The proof of Theorem 2 is complete.
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