
214

Automorphism Groups of Dimensional Dual Hyperovals
Satoshi Yoshiara

Department of Mathematics
Tokyo Woman’s Christian University

Suginami-ku, Tokyo 167-8585, JAPAN

1 Introduction
The notion of dimensional dual arcs were introduced by the author [15] as a higher
dimensional analogue of classical notion of arcs in a projective plane. Dimensional dual
arcs with maximum size are called dimensional dual hyperovals, which were defined and
investigated by A. Del Pra [3], C. Huybrechts and A. Pasini [6], earlier than the notion
of dimensional dual arcs appeared. Since then several works have been done with those
objects, including constructions of several infinite families.

In this article, we focus on their automorphism groups. After fundamental definitions
are reviewed in Section 2, a survey is given in Section 3 on the structure of automorphism
groups of known dimensional dual (hyper)ovals. In Section 4, it is shown that the sub-
strucure fixed by an invoiutive automorphism in a dimensional dual (hyper)oval gives rise
to a smaller dimensional dual (hyper)oval. This implies that the centralizer of an invo-
iution in the automorphism group of a dimensional dual (hyper)oval can be, in principle,
inductively determined. Motivated by this fact, I propose a possible direction of research,
which would be comparable with the classification of simple groups with given centralizer
of an involution.

2 Fundamental definitions
Definition 2.1 Let $q$ be a prime power, and let $V$ be a vector space over $GF(q)$ . $A$

family $A$ of $(d+1)-(vector)$ dimensional spaces of $V$ is called $a$ $d$-dimensional dual arc
over $GF(q)$ , if the following two conditions are satisfied, where $\dim(X)$ denotes the vector
dimension of a subspace $X$ of $V$ .

(1) $\dim(X\cap.Y)=1$ for every distinct members $X_{2}Y$ of $A$

(2) $X\cap Y\cap Z=\{0\}$ for every mutually distinct members $X$ , $Y$, $Z$ of $A$

The subspace \langle X|X $\in A\rangle$ of V spanned by the members of A is called the ambient
space of A, and is denoted $\mathrm{A}(A)$ .
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For a $d$-dimensional dual arc $A$, the following upper bound on the number of members
of $A$ can be easily obtained.

$|A|\leq\theta_{q}(d)+1$ ,

where $\theta_{q}(d):=(q^{d+1}-1)/(q-1)$ , the number of projective points of a d-(projective)
dimensional space $PG(d, q)$ over $GF(q)$ .

Definition 2.2 A $d$-dimensional dual arc A is called dual hyperoval (resp. dual ovalj
if $|A|=\mathrm{e}\mathrm{q}(\mathrm{d})+1$ (resp. $\theta_{q}(d)$).

We now define some maps between two dimensional dual arcs.

Definition 2.3 Let $A$ and $B$ be $d$-dimensional dual arcs with $|A|=|B|$ . A $GF(q)-$

semilinear map $\rho$ from $\mathrm{A}(A)$ to $\mathrm{A}(B)$ is called $a$ covering map, if $\rho$ sends each member

of $A$ to a member of B. A covering map from $A$ to $B$ is called an isomorphism, if it is
bijective. When $A=\mathcal{B}_{f}$ each isomorphism is called an automorphism of $A$ .

Definition 2.4 The group of all automorphisms of a dimensional dual arc $A$ (with respect
to composition of maps) is denoted $\Gamma L(A)$ , and its linear par$rt$, that is, the group of all
$GF(q)$ -linear bijections on $\mathrm{A}(A)$ preserving $A$ , is denoted $GL(A)$ :

$\Gamma L(A)$ $:=$ { $\rho\in\Gamma L(\mathrm{A}(A))$ $|X^{\rho}=X$ (VX $\in A)$ },
$GL(A)$ $:=$ $\{\rho\in GL(\mathrm{A}(A))|X^{\rho}=X(\forall X\in A)\}$

Notice that the group $Z$ of scalar trasfor mations on $\mathrm{A}(A)$ is always contained in $\Gamma L(A)$ .
In earlier papers $e.g$ . [$\mathit{6}f_{l}$ the automorphism group of $A$ is defined to be the quotient group

$Aut(A)$ $:=\Gamma L(A)/Z$ .

Namely, $Aut(A)$ is the group of automorphisms of $PG(\mathrm{A}(A))$ (the projective space asso-
ciated with $\mathrm{A}(A),)$ which preserve $A$ .

For $d$-dimensional dual arcs $A$ and $B$ with $|A|=|B|$ , it is known [16, Proposition 13]

that there is a covering map from $A$ to fl if and only if there exists a subspace $K$ of $\mathrm{A}(A)$

with $\dim(K)=\dim(\mathrm{A}(A))-\dim(\mathrm{A}(B))$ such that

$K\cap\langle X, Y\rangle=\{0\}$ for every distinct members $X$ , $Y$ of $A$ .

Sometimes we consider dual arcs which can be embedded in polar spaces.

Definition 2.5 A $d$-dimensional dual arc $A$ is said to be of polar type (with respect to
$f)$ , if there exists a non-degenerate alternating, he rmitian or quadratic from $f$ on $\mathrm{A}(A)$

for which each rnernber of $A$ is a maximal totally isotropic subspace of $\mathrm{A}(A)$ .
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Notice that this definition gives very strong restictions between the dimension $d+1$ and
the dimension $n+1$ of the ambient space:
If $n+1$ is odd, then $f$ is either hermitian or quadratic and we have $n=2(d+1)$ .
If $n+1$ is even, then one of the following holds:
$n+1=2(d+1)$ and $f$ is either alternating, hermitian or quadratic form of positive type.
$n+1=2(d+2)$ and $f$ is a quadratic form of negative type.

It is known [16, Theorem 1] that if a #dimensional dual oval $A$ over $GF(q)$ with $q>2$

exists then
$2d+1\leq\dim(\mathrm{A}(A))$

$\leq d(d+3)+1$ .
2

It is conjectured that the same inequality holds even if $q=2$ , although the upper bound
obtained in [16, Theorem 1] is $\dim(\mathrm{A}(A))\leq(d(d+3)/2)+3$ .

3 Automorpshism groups of known dual (hyper)ovals

3.1 Matheiu dual hyperoval $\mathcal{M}$

It is known that a 2-dimensional dual hyperoval $\mathcal{M}$ over $GF(4)$ with $\dim \mathrm{A}(\Lambda \mathit{4})$ $=6$

exists. It is also of polar type with respect to a hermitian form $f$ . Its automorphism
groups are described as follows, where $M_{22}$ denotes the sporadic simple group of Mathieu
of degree 22:

$\mathrm{T}\mathrm{L}(\mathrm{M})\cong(3\cdot M_{22})$ : 2, $GL(\mathcal{M})\cong 3\cdot M_{22}$ , Aut(M) $\cong M_{22}$ : 2.

Notice that $|\mathcal{M}|=\theta_{4}(2)+1=22$ and the action of $\Gamma L(\mathcal{M})$ on $\mathcal{M}$ is equivalent to the
natural action of $M_{22}$ on 22 letters.

It can be verified that $GL(\mathcal{M})$ is a subgroup of the unitary group $GU_{6}(4)$ , the sub-
group of $GL(\mathrm{A}(\mathcal{M}))$ preserving the unitary form $f$ , and that the central extension
$GL(\lambda 4)/Z(GL(\lambda 4\rangle)$ does not split.

3.2 Veronesean dual ovals $A\mathcal{V}_{d}(q)$ over $GF(q)$

This infinite family was first constructed by J. Thas and H. van Maldeghem $[12, 11]$ . Here
we adopt its presentation given in [16, Subsection 3.1].

Let $q$ be any prime power. We take natural numbers $d$ and $D:=d(d+3)/2$ . Consider
vector spaces $V$ and $W$ of dimensions $d+1$ and $D+1$ over $GF(q)$ respectively. Let
$I:=\{0, \ldots, d\}$ and let $J$ be the set of ordered pairs $(\mathrm{i}, j)$ of $\mathrm{i},j\in I$ with $\mathrm{i}\leq j$ . As
$|I|=d+1$ and $|J|=D+1$ , we may use I and $J$ to index bases for $V$ and $W$ respectively.
Let $\{\mathrm{e}_{i}|\mathrm{i}\in I\}$ and $\{\mathrm{e}_{(\iota,j)}|(\mathrm{i},\mathrm{i})\in J\}$ be bases of $V$ and $W$ respectively. We define
natural biliner forms $b$ and $B$ on $V$ and $W$ respectively as follows: $b( \sum_{i\in I}x_{i}\mathrm{e}_{\dot{\mathrm{t}}}, \sum_{i\in I}y_{i}\mathrm{e}_{i}):=$
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$\Sigma_{i\in I}x_{i}y_{i}$ , $B(\Sigma_{(i,i)\in J}x_{(i,j)}\mathrm{e}_{(i,j)}, \Sigma_{(i,j)\in J}y_{(i,j)}\mathrm{e}_{(i,j)}):=\Sigma_{(i,p)\in J}x_{(i,g)}y_{\{\mathrm{z},j)}$.
The Veronesean map $\langle$ is a map from $V$ to $W$ given by

$\sum_{i\in I}x_{i}\mathrm{e}_{i}\mapsto\sum_{(i,j)\in J}x_{i}x_{j}\mathrm{e}_{(i,j\rangle}$
.

Let $\mathrm{P}(V)$ be the set of projective points of the projective space $PG(V)$ associated with
$V$ . For each $P\in \mathrm{P}(V)$ , consider a subspace $A(P)$ of $W$ defined by

$A(P):=(\zeta(P^{[perp]}))^{[perp]}$ ,

where $P^{[perp]}:=\{\mathrm{v}\in V|b(\mathrm{v}, P)=0\}$ is the dual space to $P$ in $V$ with respect to the form
$b$ , and $Y^{[perp]}:=$ { $\mathrm{w}\in W|B$ ( $\mathrm{w}$ , $\mathrm{y})=0$ (Vy $\in Y)$ } is the subspace of $W$ dual to a subset $Y$

(or the subspace $\langle Y\rangle$ ) of $W$ with respect to $B$ . Finally we set

$\mathcal{V}_{d}(q):=\{A(P)|P\in \mathrm{P}(V)\}$ .

In [16, Subsection 3.1], the following are shown. The family $\mathcal{V}_{d}(q)$ is a d-dimensional
dual oval over $GF(q)$ with $\mathrm{A}(\mathcal{V}_{d}(q))=W$ . For $q$ even, $\mathcal{V}_{d}(q)$ is uniquely extended to a
$d$-dimemsional dual hyperoval $\tilde{\mathcal{V}}_{d}(q)=\mathcal{V}_{d}(q)\cup\{H\}$ over $GF(q)$ .

We now calculate the automorphism group of this dual oval

Proposition 3.1 We have $Aut(\mathcal{V}_{d}(q))\cong Aut(PG(V))\cong P\Gamma L_{d+1}(q)$ . In particular,
$Aut(\mathcal{V}_{d}(q))$ is transitive on $\mathcal{V}_{d}(q)$ .

For $q$ even, $Aut(\overline{\mathcal{V}}_{d}(q))=Aut(\mathcal{V}_{d}(q))$ has two orbits $\mathcal{V}_{d}(q)$ and $\{H\}$ on $\overline{\mathcal{V}}_{d}(q)$ .

Sketch of proof It can be shown that $Aut(PG(V))$ induces a subgroup of $Aut(PG(W))$

preserving the image of the Veronesean map. This shows that $Aut(\mathcal{V}_{d}(q))$ contains a
subgroup inherited from $Aut(PG(V))$ . The point of the proof is to show the converse.

From [16, Proposition $7(2)$ ], we have the following.

For mutually distinct projective points $P$, $Q$ , $R$ in $PG(V)$ ,
they lie on a line of $PG(V)$ iff $\langle \mathrm{A}(P), A(Q)\rangle\geq A(R)$ .
Moreover, $H$ is always contained in $\langle A(P), A(Q)\rangle$ , if $q$ is even.

Since the inclusion relation among subspaces of $W$ is preserved by $Aut(\mathcal{V}_{d}(q))$ , this implies
that the collinearity relation for the points of $PG(V)$ is preserved by $Aut(\mathcal{V}_{d}(q))$ . Thus
$Aut(\mathcal{V}_{d}(q))$ induces a subgroup of $Aut(PG(V))$ . It is easy to see that the kernel is trivial,
whence $Aut(PG(V))\cong Aut(\mathcal{V}_{d}(q))$ .

Furthermore; the latter property above shows that $H$ is always stabilized by $Aut(\tilde{V}_{d}(q))$

if $q$ is even. Thus we have the claims when $q$ is even. q.e.d
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3.3 Characteristic dual hyperovals $\mathrm{S}(X_{\mathrm{i}})(i=0,1)$ over $GF(2)$

Let $W$ be a $(d+2)$-dimensional vector space over $GF(2)$ . Choose a chain $V\subseteq H$ of
subspaces of $W$ with $\dim(V)$ $=d$ and $\dim(H)$ $=d+1$ , and a vector $e_{0}$ of $H$ not contained
in $V$ . Take subsets $X_{0}:=\emptyset$ and $X_{1}:=V\backslash \{0\}$ of $V$ .

Associated with $X_{i}(\mathrm{i}=0,1)$ and $e_{0}$ , Buratti and Del Fra [1] constructed a d-
dimensional dual hyperoval $\mathrm{S}(X_{i})$ over $GF(2)$ with ambient space $\mathrm{A}(\mathrm{S}(X_{i}))=W$ A $W$ .
(The isomorphism class of $\mathrm{S}(X_{i})$ depends only on $X_{i)}$ not on the choice of $e_{0}$ , whence we
do not indicate $e_{0}.$ )

It is a bit complicated to give the explicit shapes of members of $\mathrm{S}(X_{i})$ . Thus we do not
attempt to do so here (see the paragraphs before [4, Proposition 4] for the details). The
main future of this dual hyperoval is that we can define a structure of a Steiner quadruple
system on the members of $\mathrm{S}(X_{i})(\mathrm{i}=0,1)$ . It turns out that $\mathrm{S}(X_{0})$ coincides with the so
called Huybrechts dual hyperoval, which was first constructed by Huybrechts [7].

The automorphism group of $\mathrm{S}(X_{i})$ is determined by Del FYa and the author [4, The-
orem 2].

Proposition 3.2 Assume that $d\geq 3$ . Then Au#(S $(X_{0})$ ) $\cong 2^{d+1}$ : $GL_{d+1}(2)$ , which is
doubly transitive on $\mathrm{S}(X_{0})$ . While, $Aut(\mathrm{S}(X_{1}))\cong 2^{d+1}$ : $2^{d}GL_{d}(2)$ , which is transitive
but not primitive on $\mathrm{S}(X_{1})$ .
In the statement above, the normal subgroup of $Aut(\mathrm{S}(X_{i}))$ denoted by $2^{d+1}$ corresponds
to the group of “translations” by vectors in $H$ . The complements $GL_{d+1}(2)$ and $2^{d}GL_{d}(2)$

respectively correspond to the general linear group on $H$ and its parabolic subgroup
stabilizing the specified vector $e_{0}$ .

3.4 Dual hyperovals $\mathrm{S}_{\sigma,\phi}^{d}$ over $GF(2)$

Take a natural number $d$ with $d\geq 2$ and let $F:=GF(2^{d+1})$ . Choose a generator $\sigma$ of
a Galois group $Gal(F/GF(2))$ . Let $\phi$ be the bijection on $F$ induced by an o-polynomial
$\phi(X)$ in $F[X]$ (see e.g. [5, Subsection 8.4] or [22]).

Inside the direct sum $V=F\oplus F$ , regarded as a $2(d+1)$-dimensional vector space
over $GF(2)$ , consider the following subspaces $X(t)$ for each $t\in F$ and the family $\mathrm{S}_{\sigma,\phi}^{d+1}$ :

$X(t)$ $:=$ $\{(x,x^{\sigma}t+xt^{\phi})|x\in F\}$ ,
$\mathrm{S}_{\sigma,\phi}^{d+1}$ $:=$ $\{X(t)|t\in F\}$ .

Then $\mathrm{S}_{\sigma,\phi}^{d+1}$ is a $d$-dimensional dual hyperoval over $GF(2)$ with ambient space $\mathrm{A}(\mathrm{S}_{\sigma,\phi}^{d+1})=V$

or a hyperplane of $V$ according to $\sigma\phi\neq \mathrm{i}d_{F}$ or $\sigma\phi=id_{p}$ [ $14$ , Lemma 1,2], [13, Proposition
2.1].

In the case $\sigma=\phi$ , this construction does not give an essentially new dual hyperoval,
because $\mathrm{S}_{\sigma,\sigma}^{d+1}$ is covered by the Huybrechts dual hyperoval $\mathrm{S}(X_{0})$ [ $8$ , Proposition 6.8]
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However, except this case, $\mathrm{S}_{\sigma,\phi}^{d+1}$ with a lying in $Gal(F/GF(2))$ is not properly covered by
other dimensional dual hyperovals in general [9, Conjecture].

The automorphism group of $\mathrm{S}_{\sigma,\phi}^{d+1}$ is determined in [14] in the case when $\phi$ lies in
$Gal(F/GF(2))$ , which is generalized in [13] (with some correction to the arguments in the
proof of [14, Lemma 6] $)$ to the case when $\phi(X)$ is a monomial polynomial.

Proposition 3.3 Assume that $\sigma\phi\neq \mathrm{i}d_{F}$ .
(1) [$\mathit{1}\mathit{4}f$ Proposition $7J$ If $\phi\in Gal(F/GF$(2)$)$ , then $Aut(\mathrm{S}_{\sigma,\phi}^{d+1})\cong 2^{d+1}.Z_{2^{d+1}}-1\cdot Zd+1$ for

$d\geq 2$ , except when $d=2$ and a $=\phi$ . In the exceptional case, we have $\mathrm{I}ut(\mathrm{S}_{\sigma,\phi}^{d+1})$
$\cong$

$2^{d+1}.GL_{3}(2)$ . For $d\geq 2_{f}Aut(\mathrm{S}_{\sigma,\phi}^{d+1})$ is loubly transitive on $\mathrm{S}_{\sigma,\phi}^{d+1}$ .

(2) [13, Theorem 1.1] Assume that $\phi(X)$ is monomial but $\phi\not\in Gal(F/GF(2))$ . Then
$Aut(\mathrm{S}_{\sigma,\phi}^{d+1})\cong Z_{2^{d+1}-1}.Z_{d+1}$ for $d\geq 3$ , and $Aut(\mathrm{S}_{\sigma,\phi}^{d+1})\cong GL_{3}$(2) if $d=2$ .

For $d\geq 2$ , $Aut(\mathrm{S}_{\sigma,\phi}^{d+1})$ stabilizes $X(0)$ and is transitive on $\mathrm{S}_{\sigma,\phi}^{d+1}\backslash \{X(0)\}$ .

In the above statement (1), $2^{d+1}$ corresponds to the group of translations by $F$ . In both
statements, $Z_{2^{d+1}}-1$ and $Z_{d+1}$ correspond respectively to the group of multiplications by
$F^{\mathrm{x}}$ and the group of field automorphisms of $F$ .

3.5 Taniguchi’s dual ovals $\mathcal{T}_{\sigma}(F)$ over $GF(q)$

The construction below is first given by Taniguchi [10] in the case when $q$ is even; and is
generalized later [21] to the general case.

Let $q$ be any prime power, and let $d$ and $n$ be positive integers with $2\leq d\leq n$ .
Inside $GF(q^{n+1})$ , regarded as an $(n+1)$-dimensional vector space over $GF(q)$ , take a
subspace $F$ of dimension $d+1$ over $GF(q)$ . Choose a generator $\sigma$ of the Galois group
$Gal(GF(q^{n+1})/GF(q))$ . Regard $V:=GF(q^{n+1})\oplus GF(q^{n+1})$ as a vector space over $GF(q)$ .
As in Subsection 3.2, $\mathrm{P}(F)$ denotes the set of projective points of the projective space
$P$ $(F)\cong PG\{d,$ $q$) associated with $F\mathrm{P}(F)$ . For a projective point $P=\{at |\alpha\in GF(q)\}$ ,
$t\in F$ , of $\mathrm{P}(\mathrm{F})$ , define a subspace $T(P$} of $V$ and a family $\mathcal{T}_{\sigma}(F)$ as follows:

$T(P)$ $:=$ $\{(xt,x^{\sigma}t+xt^{\sigma})|x\in F\}$ ,

%(F) $:=$ $\{T(P)|P\in \mathrm{P}(F)\}$

Then $\mathcal{T}_{\sigma}(K)$ is a $d$-dimensional dual oval over $GF(q)$ [$21$ , Subsection 2.2]. For $q$ even,
$\tilde{\mathcal{T}}_{\sigma}(K):=\mathrm{T}(\mathrm{P})\cup\{T(\infty)\}$ forms a $d$-dimensional dual hyperoval, where $\mathrm{T}(\mathrm{o}\mathrm{o})$ denotes
the subspace $\{(x^{2},0)|x\in F\}[10]$ .

The ambient space $\mathrm{A}(\mathcal{T}_{\sigma}(F))$ (and $\mathrm{A}(\tilde{\mathcal{T}}_{\sigma}(F))$ for $q$ even) is described as follows. Let
$\{e_{i}|\mathrm{i}\in I\}$ be a basis of $F$ , where $I=\{0, \ldots, d\}$ . Then $\mathrm{A}(\mathcal{T}_{\sigma}(K))$ (and $\mathrm{A}(\tilde{\mathcal{T}}_{\sigma}(F))$ for $q$

even) is spanned by
$e_{(i,j)}:=(e_{l}e_{j}, e_{i}^{\sigma}e_{j}+e_{i}e_{j}^{\sigma})$ ,
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where $(\mathrm{i},j)$ ranges over the set $J$ defined in the same way as in Subsection 3.2. Notice
that the vectors $e(i,j)$ $((\mathrm{i},j)\in J)$ may be linearly dependent over $GF(q)$ . We can verify
that the map $\rho$ from $\mathrm{A}(\mathcal{V}_{d}(q))$ to $\mathrm{A}(\mathcal{T}_{\sigma}(F))$ sending each $\mathrm{e}(i,j)$ to $e(i,j)$ is a covering map
of %(F) by Vd(q) [21, Proposition 1]. If $q$ is even, the same map is a covering of $\tilde{\mathcal{T}}_{\sigma}(F)$

by $\tilde{\mathcal{V}}_{d}(q)$ .
Let $K:=Ker(\rho)$ . Then we can verify that every element of $\Gamma L(\mathcal{V}_{d}(q))(\cong\Gamma L_{d+1}(q))$

stabilizing $K$ induces an element of $\Gamma L(\mathcal{T}_{\sigma}(F))$ . Since $\mathcal{V}_{d}(q)$ is, in a sense, the universal
cover of $\mathcal{T}_{\sigma}(F)$ , it is expected that every element of $\Gamma L(\mathcal{T}_{\sigma}(F))$ is induced by an element
of $\Gamma L(\mathcal{V}_{d}(q))$ stabilizing $K$ . However, the author have not yet verified this.

4 Substructure fixed by an involution
Assume that $A$ is a $d$-dimensiona) dual arc $A$ over $GF(q)$ with ambient space $V$ . For
$\alpha\in\Gamma L(A)$ , set

$A(\alpha):=\{X\in A|X^{\alpha}=X\}$ .

For each $X\in A(\alpha)_{7}$ consider the subset $C_{X}(\alpha):=\{x\in X |x^{\alpha}=x\}$ of $X$ fixed by
$\alpha$ . If $\alpha\in GL(A)$ , Cx{ $\mathrm{o}\mathrm{t})$ is a subspace of $X$ over $GF(q)$ , but not in general. It is just
a subspace over $GF(p)$ , where $GF(p)$ is the prime subfield contained in $GF(q)$ . We now
set

$A[\alpha]:=\{C_{X}(\alpha)|X\in A(\alpha)\}$ .

A general version of the next theorem was first announced in [19], but its prototype
has already appeared in [14, Lemma 4]. There are several vesions of this statement: one
for automorphisms of prime order, and one for dual arcs with large members (specifically
ovals). However, we restrict the situation given in the statement for simplicity.

Theorem 4.1 Let q be a power of 2. Assume that S is a $d$-dimensional dual hyperoval
over $GF(q)$ with ambient space V. Then one of the following holds:

(1) The order of a Sylow 2-subgroup of $GL(\mathrm{S})$ divides $|\mathrm{S}|$ $=\theta_{q}(d)+1$ .
(2) There exists a subset 0 of $\mathrm{S}$ with $|\Omega|=1$ or 2 which is invariant under the action

of any 2-elements of $GL(\mathrm{S})$ .

(3) $GL(\mathrm{S})$ has strongly embedded subgroup $H_{f}$ that is, $H$ is a subgroup of even order
such that $|H\cap H^{g}|$ is odd for every $g\in GL(\mathrm{S})$ $\backslash H$ .

(4) There exists an involution $\alpha$ of $GL(\mathrm{S})$ such that $\mathrm{S}$ [ce] is an $e$-dimensional dual
hyperoval for some $0\leq e\leq d-1$ , where a 0-dimensional dual hyperoval is understood
to be just a set of two members
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The crucial point of the claim in case (4) is that $\dim(C_{X}(\alpha))$ does not depend on the
particular choice of $X$ in $\mathrm{S}(\alpha)$ .

Now we examine the substructure $\mathrm{S}[\alpha]$ fixed by an involution a for the examples $\mathrm{S}$ of
dual (hyper)ovals given in Section 3.

$\mathcal{M}$ : There is a single class of involutions in $GL(\mathcal{M})\cong 3M_{22}$ . For an involution a of
$\mathrm{G}\mathrm{L}(\mathrm{M})$ , we have $|\mathcal{M}(\alpha)|=6=|\theta_{4}(1)|+1$ . The substructure $A4[\alpha]$ is a l-dimensional
dual hyperoval over $GF(4)$ with ambient space of dimension 3 (that is, the classical dual
hyperoval on the projective plane over $GF(4))$ . The centralizer $CcL(\mathcal{M})(\alpha)$ of a in $GL$ ( 4)

induces a transitive permutation group $S_{6}$ on $\mathcal{M}[\alpha]$ .
On the other hand, there are two classes of involutions in $\Gamma L(\mathcal{M})\backslash GL(\mathcal{M})$ . Involutions

in one class do not fix any members of $\mathcal{M}$ , while $|\mathcal{M}(\beta)|=8=2^{2+1}$ for each involution
$\beta$ in the other class. In fact $\mathcal{M}[\beta]$ forms a 2-dimensional dual hyperoval over $GF(2)$ ,

the prime subfield in $GF(4)$ . Notice that involutions in $\Gamma L(\mathcal{A}4)\backslash GL(\mathcal{M})$ induce odd
permutations on $\mathcal{M}$ .

$\mathcal{V}_{d}(q)$ : We use the same notation as in Subsection 3.2. Let $q$ be even. Assume that $\alpha$

is an involution of $GL(\mathcal{V}_{d}(q))\cong GL(V)\cong GL_{d+1}(q)$ . Then $\mathcal{V}_{d}(q)(\alpha)$ corresponds to the
set of projective points of $PG(Cv(\alpha))$ , where $Cv(\alpha)$ is the subspace of $V$ fixed by $\alpha$ . If
$\dim(C_{V}(\alpha))=e+1$ , then Vd(g)[a] is isomorphic to the $e$-dimensional dual oval $\mathcal{V}_{e}(q)$ .

Similar statement holds for $\tilde{\mathcal{V}}_{d}(q)$ .

$\mathrm{S}(X_{\iota})(\mathrm{i}=0,1)$ : Let $\alpha$ be an involution of $GL(\mathrm{S}(X_{i}))$ which fixes at least three
members. Then there exists a subspace $W$ of $V$ containing $e_{0}$ fixed by $\alpha$ such that
$\mathrm{S}(X_{i})[\sigma]=\mathrm{S}(X_{i}’)$ , where $X_{0}’=\emptyset$ , regarded as a subset of $W$ , and $X_{1}’=W-\{0\}$ .

$\mathrm{S}_{\sigma,\phi}^{d+1}$ : If $\alpha$ is an involution of $GL(\mathrm{S}_{\sigma,\phi}^{d+1})$ fixing a member, then a corresponds to a field
automorphism. Thus such an involution exists only when $d+1$ is even. In this case, we
have $\mathrm{S}_{\sigma,\phi}^{d+1}(\alpha)=\{S(t)$ $|t\in GF(2^{(d+1)/2})$ and $\mathrm{S}_{\sigma,\phi}^{d+1}[\alpha]=\mathrm{S}_{\sigma,\phi’}^{(d+1)/2},$ , vzhere $\sigma’$ and $\phi’$ are
restrictions of a and $\phi$ to the subfield $GF(2^{(d+1)/2})$ fixed by $\alpha$ .

Motivated by the above theorem, the author would like to propose the following tyPe

of problem.

Problem 4.2 Let $q$ be a power of 2, Given $e$-dimensional dual hyperoval $\mathcal{T}$ over $GF(q)$ ,

deter mine $d$-limensional dual hyperovals $\mathrm{S}$ over $GF(q)$ such that $GL(\mathrm{S})$ contains an
involusion $\alpha$ with $\mathrm{S}[\alpha]$ isomorphic to $\mathcal{T}$ .

There are several versions of this problem; replace $\mathrm{S}$ by dual hyperovals over some field
containing $GF(q)$ and replace $GL(\mathrm{S})$ by $\Gamma L(\mathrm{S})$ ; or replace dual hyperovals by ovals



222

In the above strict version, there are finitely many possibilities for $\mathrm{S}$ , because we have
the following inequality:

$d+1$ $\leq 2(e+1)$ .
This can be easily verified as follows. Choose a member $X$ of $\mathrm{S}(\alpha)$ . Since $X$ (with respect
to the addition defining a vector space structure on $X$ ) is an elementary abelian 2- roup
on which an involution a acts, we have $C_{X}(\alpha)\leq[X, \alpha]:=\{x+x^{\alpha}|x\in X\}$ and the
map $X\ni x\mapsto x+x^{\alpha}\in[X, \alpha]$ is a $GF(2)$-linear surjection with kernel $C_{X}(\alpha)$ . Thus
$|X/C_{X}(\alpha)|=|[X, \alpha]|\leq|C_{X}(\alpha)|$ . Hence

$q^{d+1}=|X|\leq|C_{X}(\alpha)|^{2}=q^{2(e+1)}$ ,

because Cx(a) is a member of an $e$-dimensional dual hyperoval $\mathrm{S}[\alpha]\cong \mathcal{T}$ over $GF(q)$ .

I conclude this article by the following result, which can be thought of as a partial
solution for this type of problem.

Theorem 4.3 Let $\mathcal{T}$ be $a$ 1-dimensional dual hyperoval in $PG(2, q)$ . Assume that $\mathrm{S}$ is
a $d$ -limensional dual hyperoval over $GF(q)$ such that there is an involution $\alpha$ of $GL(\mathrm{S})$

with $\mathrm{S}[\alpha]$ isomorphic to $\mathcal{T}$ . Assume, furthermore, that $\mathrm{S}$ is of polar type. Then one of
the following holds:

(1) $(q, d)=(4,2)$ and $\mathrm{S}$ is isomorphic to the Mathieu dual hyperoval $\mathrm{A}\not\in$ .

(2) $(q, d)=(2,2)$ and $\mathrm{S}$ is isomorphic to the Huybrechts dual hyperoval $\mathrm{S}(\mathrm{X}\mathrm{Q})(=\mathrm{S}_{\sigma,\sigma}^{3})$ .
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