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1. INTRODUCTION

Let V = (V,Y,1,w) be a vertex operator algebra (VOA) and g be its automorphism of
finite order. Then the space V9 = {v € V' | gv = v} of fixed points of g in V' is a subalgebra
of V, which is called an orbifold of the VOA V. In the case where V is the lattice VOA
V;, associated with a positive definite even lattice L and the automorphism g is a lift of
the —1 isometry of the lattice L, the orbifold V¢ = V" has been studied extensively. In
fact, the construction of the Moonshine module V* by Frenkel, Lepowsky and Meurman
[7] is based on the study of V", where A denotes the Leech lattice. However, it is difficult
to develop the representation theory of an orbifold in general, even if the representation
theory of the original VOA V is well understood. Here the representation theory of a
VOA means the study of basic properties such as the rationality and the Ch-cofiniteness,
etc. together with the classification of simples modules and the determination of fusion
rules.

For a V-module (M, Yy ), we can define a new V-module (M o g,Yiso) by M = Mog
as a vector space and Yaro4(v, 2) = Yar(gv, 2) for v € V. Denote by M a complete set of
representatives of isomorphism classes of simple V-modules. Then M +— M o g induces a
permutation on M. If M = M o g, M is said to be g-stable.

For simplicity, assume that V' is rational, Co-cofinite, and of CFT-type. There are
known examples of simple V9-modules.

(1) If M € M is g-stable, then M(e) = {u € M |gu = £u}, 0 <e < |g| -1, are simple
V9-modules, where £ = exp(2mv/—1/|g}).

(2) If {MO° M, ..., MI9=1} is a g-orbit in M, then M*, 0 < ¢ < |g| — 1, are equivalent
simple V7-modules.

(3) If VT(g") is a simple gi-twisted V-module, then V7(g')(e) = {u € VT(¢")|g'u =
&u}, 0<e <jgl — 1,1 <4< lg] -1 are simple V9-modules.

Furthermore, those simple V9-modules are inequivalent (cf. [6, 15]). It is also known
that the number of inequivalent simple g*-twisted V-modules is less than or equal to the
number of inequivalent g-stable simple V-modules (cf. [4]).

It is natural to expect that any simple V9-module is one of the above mentioned simple
V9-modules. In fact, no simple V9-module of other type is known so far.

In this note we shall discuss an orbifold of a certain lattice VOA related to a ternary
code by an automorphism of order 3. We want to classify the simple modules for the
orbifold. Although the work is not finished yet, we shall show here the first step toward
the classification of simple modules.



2. VOA (V)"

In this section we briefly review the VOA (V5 4,)7» Which is the fixed point subalgebra
of a lattice VOA V 5,, by a certain automorphism 7 of order 3. Detailed description of
(V34,)7 can be found in [17].

Let a1, ap be the simple roots of type A; and set o = —(on + ag), so that {a;, ;) = 2
and {o;, ;) = —11if i 5 7. Set §; =20, and L = ZB + ZF, = V2A4,. Since {o, B) € 2Z
for all o, 3 € L, the central extension L of L considered in [3, 7] splits and the twisted
group algebra C{L} can be identified with the ordinary group algebra C[L]. We use the
same notation as in [8] to denote cosets of L in its dual lattice L* = {a € Q®zL[{(a, L) C
Z}. Thus

~B + B2 B — Ba

L b 3 +L, L ————3 .+. ,
Lo =1L, La—_“%"f'lz, Lb:%q'f‘L, Lc:%+L,

L) =L+ L7, ieK,je{0,1,2},

where K = {0,a,b,c} & ZoxZy is a Klein’s four-group. Note that L) e K,7€40,1,2}
are all the cosets of L in Lt and L*Y/L & Zy X Zy X Zs.
Now, set

z(a) = eV 4 gmVE yla) = eVl _ oVie, wla) = 1oz(wl)2 — z{o)

2
for o € {+ap, toy, o}, Moreover, set
w= %(%(—1)2 + an(—1)? + a(~1)?),
ot = %(w(al) + wlag) +w(a)), O =w—ah,
w' = %w(al), w? =t —wh.

Then w is the Virasoro element of Vy, and w!, w?, and &? are mutually orthogonal con-
formal vectors of central charge 1/2, 7/10, and 4/5, respectively (cf.[5]). Note that
o' = w' + w? is a conformal vector of central charge 1/2 +7/10 = 6/5.
The subalgebra Vir(&*) generated by & is isomorphic to a Virasoro VOA of given
central charge. The commutants of Vir(@') and Vir(@?) in Vz, namely,
Mg = {U eV, ﬂ ((:12)11) = O}, Mto = {?} eV 1 ((:)1)1?) = 0}

are important for our discussion. They are in fact simple subalgebras of V. We set

2 3
We={veVi|(@w=zv}, W ={veVi|(@hv=0, W)hv=zgv}

5
Then WY is a simple Mg-module and W} is a simple M?-module. We have
1 7 11 7 3 4 4
O (L(= — =, = —, = MP = L(= L{=,3).
M= (L0 0L 0) e (LG e lpy) M LE0eLE:?)

Furthermore, Vi, = (M2 ® M?) @ (W2 ® WP) as an My ® M-module.
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We consider the following two isometries of the lattice (L, {:,+)):

6:62"“)—'ﬁ‘£7 i:132)
71— Ba— Bo— b

These two isometries lift to automorphisms of the VOA Vy. We use the same symbols
6 and T to denote these automorphisms. Since the conformal vectors &*, ¢ = 1,2 are fixed
by 8 and 7, M2, M?, and W? are invariant under them. However, W is not invariant
under 7, since w! is not fixed by 7.

Let us introduce two important weight 3 vectors J and K..

7= 2 (5:(=2)(8 — Bo)(~1) + Ba(=2)(Bo ~ B)(=1) + Ao(~2) (B ~ B)(~1)

— By = Bo)(~Dylan) — (Bo — Bu)(—L)y(ea) — (81 — Bo)(—L)y(cn),
K = —2(6 ~ B8~ Bo)(-1)(6o ~ B)(-1)

+ (B2 = Bo)(—1)a(en) + (Bo = Br)(—1)z(az) + (61 — B2)(=1)z(a0)-

Let M(0) = (M2)" = {u € MJ|7u = u}. The VOA M(0) was studied in [2]. Among
other things, the classification of simple modules, the rationality and the Cs-cofiniteness
for M(0) were established. It is known that M(0) is a W3 algebra of central charge 6/5
with the Virasoro element @!. In fact, M(0) is generated by &! and J. The VOA M}
was studied in [10, 14]. It is also rational and Ch-cofinite. The classification of simple
M?-modules was also established. Moreover, M} is a W3 algebra of central charge 4/5
with the Virasoro element & and it is generated by & and K. Since &? and K are fixed
by 7, M is contained in V] = {v € V| 7v = v}.

Let M = M(0) ® M?, which is a subalgebra of V7. Let W(0) = (WQ)" = {u €
W0 | ru = u} and W = W(0)@Wp. Then WP is a simple M%-module and V} = M°@W°,
More precisely, W0 is a simple highest weight M°-module with highest weight vector

P = ylen) + yloz) + y(o).

Actually, we have (@Y, P = (&), P = 0forn > 2, (@)1 P = (8/5)P, (@*)1P = (2/5)P,
and J,P = K,P=0forn > 2.

The VOA V7 is generated by the five vectors &', &%, J, K, and P. The Griess algebra
of V7, that is, the weight 2 subspace is of dimension 3 and we can take {@&',&?, P} as its
basis.

1t is known (cf. [17]) that V] is rational, Ch-cofinite, and there are exactly 30 inequiv-
alent simple V/-modules, which are

(1) VL(G’-?')(E)) j: €= 07 1127
(2) VL(°>j)7 .7 = 0x172)
(B) Vi (r')e) 4 e =0,1,2,i=1,2.

Here V, 7 (7%) is a simple 7-twisted V;-module. Note that {Vi .. |z € K,j € {0,1,2}}
is a complete set of representatives of isomorphism classes of simple Vz-modules by [1].
We have

Vien oT =V -1,
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where the action of 7 on K is defined by 7(0) =0 and 7 : a +— b — ¢ — a. Thus V;(n
is T-stable if and only if z = 0. In particular, there are exactly three 7-stable simple V-
modules. Furthermore, {Vj .5, Viesn, Viesn} is a 7-orbit under the action M + M o7
of 7. Thus Vi, Viesn, and Vi are equivalent simple V] -modules.

In this case the number of inequivalent simple Ti-twisted V;-modules is equal to the
number of inequivalent 7-stable simple Vi-modules and all the simple ri-twisted V-
module Vg J(r%), 5 € {0, 1,2} can be obtained by the construction of Dong and Lepowsky
(3, 13] (cf. [12)).

3. LATTICE Loxp

We follow the notation in [8, 9, 10, 11}. A Zy x Zp-code of length ¢ means an additive
subgroup of Kf. For z,y € K, define

1 ife=y#0,
zoy=< —; ifrFyr#0,y#0,
0 iHz=0o0ry=0,

0 otherwise.

L
x_y___{ fz#y,2#0y#0,

Note that 2(zoy) = z -y (mod Z). For A = (M,..., A0), o = (1. .., pe) € KE, let
Ap= Ele A+ i € GF(2). The orthogonal form K¢ x Kt — GF(2); (A, p) = A - pon
Kt was used in [8, 11]. For a Zy x Zy-code C of length £, we define its dual code by

Ct={AeK X\ - u=0foralpueC}

A Zy x Zo-code C is said to be self-orthogonal if C' C C* and self-dual if C = C*. For
A=()1,..., ) € KY its support is defined by supp(A) = {i|A; # 0}. The cardinality of
supp(A) is called the weight of . We denote the weight of X by wt(A). A Zp x Zio-code
C is said to be even if wt(\) is even for every A € C.

In Section 2 we consider the action of 7 on K. Note that 7 also acts on K by 7(\) =
(T(A1), -, T(Ae)).

The following lemma can be obtained by a simple argument (cf. [8, 9]).

Lemma 3.1. Let C be a Zy X Zy-code of length £.
(1) If C is even, then C is self-orthogonal.
(2) If C is T-invariant, then C is even if and only if C' is self-orthogonal.

We can identify Z; x Z; with a quadratic extension GF(4) of GF(2) by

00, ael, b=71(a)erT, c=1(a) & 7%
If C is a T-invariant Zo X Zy-code, then it can be regarded as a GF(4)-code of the same
length through the above identification. Moreover, we can introduce a hermitian form
h\p) =8 A\, where 0=0,1=1,7=7% and 72 = 7 (cf. [9]).

Lemma 3.2. ([9, Lemma 3.2]) A T-invariant Zy x Zg-code C is self-orthogonal if and
only if it is a self-orthogonal G F(4)-code with respect to the hermitian form h{-, ).
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A ternary code of length £ is a subspace of the vector space GF(3)¢. For v = (71,...,%),
§ = (6,...,8) € GF(3)*, we consider the ordinary inner product v 4§ = Zle vb; €
GF(3). The dual code D+ of a ternary code D is defined by
Dt ={ye GF(3)*|y-§=0for all § € D}.

We define the support and the weight of v = (71,...,7) € GF(3)* in the same way as
before. That is, supp(y) = {i|7; # 0} and wt(y) is the cardinality of supp(7y).

Recall the 12 cosets L@, z € K, i € GF(3) of L = /24, in its dual lattice L*
considered in Section 2. For each z € K we assign S(z) € L+ as follows: §(0) = 0,

Bla) = B2/2, B(b) = Bo/2, and B(c) = B1/2. Then

L@ = {B(z) + (_;", +mq)B + (% +mg)fa | My, My € Z}.

We can identify K with GF(2)? by
0« (0,0), ae(0,1), be(L,1), c«(1,0).
We also write z € K as z = (z1,22) € GF(2)? by the identification. Then for

a=p(z)+ (——% +my)f + (% + mz) B2,

8= 50) + (=2 +r)8: + (& + o)

with z,y € K and 4,7 € {0,1, 2}, we have

4
{a, B) Eacoy—i—gi-j
+z1(7 +n2) + 22(j +11) + (i + M) +ye(i +my)  (mod 2Z)

(3.1)

and in particular,
(o, 8) = %x Y+ %z‘ - (mod Z). (3.2)
For A= (A1,...,A0) € Kfand v = (y1,..., %) € GF(3), let
Loy = L @@ LA ¢ (L4

where (L1)®¢ is an orthogonal sum of £ copies of L*. Moreover, for a Z; X Zs-code C of
length £ and a ternary code D of the same length, set

Lexp = U Linyy-
AeCyeD

Then Loyp is an additive subgroup of (L+)®%. However, Loy p is not an integral lattice
in general. The following lemma is a direct consequence of (3.2).

Lemma 3.3. {a € (Q®z L)®|{a, Loxp) CZ} = Leiyp: .

Thus Loy p is an integral lattice if and only if both of C and D are self-orthogonal. By
(3.1) and (3.2) we also have the following lemma.

Lemma 3.4. (1) If C is even and D is self-orthogonal, then Loxp is an even lattice.
(2) If both of C and D are self-dual, then Loyp 1s a unimodular lattice.



Example. Let £ =4 and

a a 0 0
[ 5500 (1 110
C= 00 a a |’ Dﬂ(l—lOl)’
0 0 b b

where we denote C' and D by their generating matrices. Then Loxp & Fg. Note that D
is a ternary tetra code. If C is the zero code, then Lp = Loxp = V2Es.

In the case where £ = 12 and D is a orthogonal sum of three copies of a ternary tetra
code, we can choose a T-invariant Zy X Zy-code C such that Lexp = A; the Leech lattice
(cf. [8, 9)).

4. SIMPLE MODULES FOR (Vi )7

From now on we assume that C is a 7-invariant even Zy X Zg-code of length £ > 3 and D
is a self-orthogonal ternary code of the same length. Thus Leoxp is an even lattice. Since
C is T-invariant, 7 induces an isometry of the lattice Loxp. In fact, 7{Lpy)) = Lirpym
for A\ € C and v € D. Note that 7 is fixed-point-free on Loxp.

Let V1., , be the lattice VOA associated with Loxp. The isometry 7 of Loy p lifts to an
automorphism of Vi, of order 3. We denote it by the same symbol 7. Let Vs, )" be
the orbifold of Vi, , by 7. Using the argument in Introduction we obtain three families
of simple (Vz, ) -modules. Since

(Loxp)t/Loxp = {Lpy + Loxp | A € C,y € D}y = C+/C x D*/D,

{Vim+Lexn | A € CL/C,~ € D*/D} is a complete set of representatives of isomorphism
classes of simple Vi, ,-modules by {1]. Now,

VL(A,7)+LCXD 0T = VL(T—I()\)‘W)"‘LCXD'

Thus Vi, +Loxp 18 T-stable if and only if A = 0. Hence the number of 7-stable simple
Vio, ,-modules is {D*+/D|. Tt follows from [12] that all simple rh-twisted Vi, ,-modules
can be obtained by the construction in [3]. Actually, we can describe the simple 7'-twisted
Vie,p-modules Vg:i (1), n € D+ explicitly. It turns out that 145 () = Viﬁp(r") if
and only if n =7 (mod D).

In'this way we have the following simple (Vi) -modules.

(l) VL(0,7)+LCXD(6)’ v e DL/D, e=20,1,2,

(2) Vigytlowps 0FAEC/T, v € D+/D,

(3) VI (e),n€ DY/D,e=0,1,2,i=1,2,
where C/7 denotes the set of T-orbits in C.

Toward the classification of simple (Vi ,)7-modules, we should try to show that any
simple (V7. ) -module must be isomorphic to one of the above listed known simple
(Vieyp) -modules.

Let M be a simple (Vi ,) -module. Since (V7)® C (Vig,,)7, We can study M as a
(V7)®-module. Since V7 is rational, (V7 )®* is also rational. Thus M can be decomposed
into a direct sum of simple (V7 )®*modules. Each simple (V7 )®¢_module is isomorphic to
a tensor product of £ simple V7 -modules. Let M'® - -- ® M* be a simple (V} Y®¢-module

17



18

which appear in M as a direct summand. We divide the 30 simple V/-modules into the
following three families.

S = {Vion(e), Viwen 14,6 =0,1,2},
T ={V9(r)(e) 14,6 =0,1,2},
To={V. (7€) l4,e =0,1,2}.

Theorem 4.1. For a simple (V7 )®¢-submodule M' ®--- @ M* of M, one of the following
three cases occurs.

(WHYMseS foralll <s< 4.

(2 Ms €T foralll1 <s< L.

By MseT; foralll <s <UL

Proof. Suppose M™ € S and M® € T; UT; for some 1 < 1,5 < £. We use the following
fusion rules for simple V7 -modules (cf. [16]).

Vi(e1) X Viean{es) = Vien (e + €2),
VL(S) X VL(C,,') = VL(c,j),
Tk Tk
Vi(er) X Vo (T)(e2) = Vi 7 (T)(e1 + €2),
Vi(e1) x VEH () (e2) = Vi *(7%)(2e1 + €2).
Let

T 8

U=Vi(0)® - ®Vi(e) ® - ®V(2) ® - @ VL(0) C (Vigyn)

for ¢ = 1,2. That is, the r-th component and the s-th component of U are Vi (¢) and
VL(2€), respectively, and the other components are V,(0). Since M” € S, the difference
between the minimal weight of V(¢) X M" and that of M" is an integer. On the other
hand the difference between the minimal weight of V7,(¢) x M* and that of M*® belongs
to ﬂ:% + Z, since M*® € 71U 7;. Then the difference between the minimal weight of
Ux (M'®- - ® M%) and that of M' ® --- ® M? is not an integer. Since M' @ --- ® M*
is contained in a simple (Vi ) -module, this is a contradiction.

Next, suppose M" € T; and M*® € T; for some 1 < r,s < £. Then M™ & Vfip’i(T)(Ul)

and M* & Vg’j(rz)(ng) for some 4,7,m1,70 € {0,1,2}. Since £ > 3, the above result

implies that there is some ¢ # 7, s such that M* € 7; UT;. Then M* = V,"*(7)(ns) or
Mt 22 VI*(12) () for some k, 73 € {0,1,2}. Recall the fusion rules V(1) x VIF(r)e) =
VIR (1 4 €) and V(1) x VE*(12)(e) = VI *(7%)(2 + €). Note that

(minimal weight of Vg’k(r)(l +¢)) — ( minimal weight of Vf’k(r)(s)) € -g— +7,

(minimal weight of Vg’k(’rQ)(Z + ¢)) — (minimal weight of VLT’k(Tz)(E)) € % + Z.

Now, consider

T 8 t

U=V,(0)® @V (1)@ @V,(1)® - @VL(1)® - ®VL(0) C (Vigyp) -

We see that the difference between the minimal weight of U x (M'®---® M*) and that of
M'®:--® M* belongs to +3 4 Z, which is a contradiction. This completes the proof. O
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Lemma 4.2. Assume that M® € S for all 1 < s < £ and let M* = Vi (€s), 05,65 €
{0,1,2} or M® 2 Vi, s € {a,b,¢}, 85 € {0,1,2}. Then § = (61,...,6;) € GF(3)" is
orthogonal to D, that is § € D+.

Proof. We note that

0 (modZ) ifj=0,

1 (mod Z) ifj=1,2,

2 x (the minimal weight of Vi .5 (€)) = {
3

0 (modZ) ifj=0,

2 x (the minimal weight of Vp(.5) = { (mod Z) ifj=1,2
mo ifj=1,2

[SEIT

Then

2 x (the minimal weight of M*' ® -~ ® M% = -wt(8) (mod Z).

LI

Take v = (71,...,7) € D and let
U= VL(om)(U) R- & Vmee)(O) - (VLCXD)T‘
Then by the fusion rules

VL(O,’Ys) (O) X VL(O,és)(ss) = VL(0‘75+59)<53),
VL(O:’YS) (0) X VL(NS:‘SS) = VL(F‘s”‘/s‘FGS),
it follows that

2 x (the minimal weight of U x (M' ® ---® M*)) = %Wt(’y +4) (mod Z).

Thus I wt(y+ ) =  wt(é) (mod Z). Hence wt(y + &) = wt(6) (mod 3Z). Note that
Vv = wt(v) +3Z for any v € GF(3)*. Thus we have (y+38)-(y+6) = 6-6. This implies
that v+ & =0, since v € D and D is self-orthogonal. Thus the assertion holds. U

The above theorem and lemma tell us rough structure of an arbitrary simple (Vg )™
module. Much work still remains to be completed for the classification of all simple
(Vigyp) -modules.
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