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1 Introduction
The concept of spherical design was introduced by Delsarte, Goethals and Seidel [8] in 1977 for
finite sets in the unit sphere $S^{n-1}$ (in the Euclidean space $\mathbb{R}^{n}$ ) . It measures how much the finite
set approximates the sphere $S^{n-1}$ with respect to the integral of polynomial functions. The exact
defimtlon is given as follows.

Definition 1.1. Let t be a positive integer. A finite nonempty subset $X\subseteq S^{n-1}\iota s$ called a spherical
$t$-design if the following condition holds:

$\frac{1}{|S^{n-1}|}\int_{S^{n-1}}f(x)d\sigma(x)=\frac{1}{|X|}\sum_{x\in X}f(x)$, (1)

for any polynomial $f(x)\in \mathrm{R}[\mathrm{x}\mathrm{i}, x_{2}, .) x_{n}]$ of degree at most $t$ , where $\sigma(x)$ is the $O(n)$ -invariant
measure on $S^{n-1}$ and $|S^{n-1}|$ is the area of the sphere $S^{n-1}$ .

The concept of spherical $t$-design was generalized by Neumaier and Seidel [12] in the following
two ways: (i) to drop the condition that it is on a sphere, (ii) to allow weight. The new concept
is called Euclidean $t$ -design. This concept is closely related to the cubature formulae in numerical
analysis and approximation theory, and a similar concept such as rotatable design has already
existed also in mathematical statistics (see, e.g., [6, 11].)

Recently, Bannai and Bannai [4], slightly modified the Neumaier and Seidel’s definition of
Euclidean $t$-design by dropping the assumption of excluding the origin. Wewill review the definition
below.

Let $X$ be afinite set in Rn, $n\geq 2$ . Let $\{r_{1}, r_{2}, . . . , r_{\mathrm{p}}\}=\{||x||, x\in X\})$ where $||x||$ is a
norm of $x$ defined by standard inner product in $\mathbb{R}^{n}$ and $r_{i}$ is possibly 0. For each $\mathrm{i}$ , we define
$S_{i}=\{x\in \mathbb{R}^{n}, ||x||=r_{i}\}$ , the sphere of radius $r_{i}$ centered at 0. We say that $X$ is supported by the
$p$ concentric spheres Sl $\mathrm{t}$ $S_{2}$ . . . . ’

$S_{\mathrm{p}}$ . If $r_{i}=0$ , then $s_{i}=\{0\}$ . Let $X_{i}=X\cap S_{i}$ , for $1\leq i\leq p$ . Let
$\sigma_{i}(x)$ be the $O(n)$-invaziant measure on the unit sphere $S^{n-1}\subseteq \mathbb{R}^{n}$ . We consider the measure $\sigma_{t}(x)$

on each $S_{i}$ so that $|S_{i}|=r_{i}^{n-1}|S^{n-1}|$ , with $|S_{i}|$ is the surface area of $s_{i}$ . We associate a positive
real valued function $w$ on $X$ , which is called a weight of $X$ . We define $w(X_{f})= \sum_{x\in X_{2}}w(x)$

. Here if
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$r_{i}=0$ , then we define $\frac{1}{|S_{i}^{n-1}|}\int_{S^{n-1}}.f(x)d\sigma_{i}(x)$ $=f(0)$ , for any function $f(x)$ defined on Rn. Let

$S=i=1\cup S_{i}^{n-1}p$ . Let $\epsilon s$ $\in\{0,1\}$ be defined by

$\in s=\{$
1, $\mathrm{O}\in S$

0, $0\not\in S^{\cdot}$

We give some more notation we use. Let $\mathrm{P}\mathrm{o}\mathrm{I}(\mathit{1}\mathrm{R}^{n})=\mathbb{R}[x_{1}, x_{2}, \ldots, x_{n}]$ be the vector space of
polynomials in $n$ variables $x_{1}$ , $x_{2}$ , $\ldots$ , $x_{n}$ . Let $\mathrm{H}\mathrm{o}\mathrm{m}\iota(\mathbb{R}^{n})$ be the subspace of Pol $(\mathbb{R}^{n})$ spanned by
homogeneous polynomials of degree $l$ . Let $\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}(\mathbb{R}^{\mathrm{n}})$ be the subspace of $\mathrm{P}\mathrm{o}1(\mathbb{R}^{n})$ consisting of all
harmonic polynomials. Let $\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}_{l}(\mathbb{R}^{n})=$ Harm(Rra) $\cap \mathrm{H}\mathrm{o}\mathrm{m}_{l}(\mathbb{R}^{n})$ . Then we have $\mathrm{P}\mathrm{o}1\ell(\mathbb{R}^{n})=$

$\oplus_{i=0}^{l}\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{i}$ (Rn). Let $\mathrm{P}\mathrm{o}1_{l}^{*}(\mathbb{R}^{n})=\oplus^{l}.0\leq\dot{\cdot}\leq\iota$
’
Homi$(\mathrm{R}\mathrm{n})\mathrm{o}\mathrm{m}_{i}(\mathbb{R}$ . Let $\mathrm{P}\mathrm{o}1(S)_{2}\mathrm{P}\mathrm{o}1_{l}(S)$ , $\mathrm{H}\mathrm{o}\mathrm{m}_{l}(S)$, Harm(5),

$\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}_{l}(S)$ and $\mathrm{P}\mathrm{o}1_{l}^{*}(S)$ be the sets of corresponding polynomials restricted to the union $S$ of $p$

concentric spheres. For example Pol(S)= $\{f|s, f\in \mathrm{P}\mathrm{o}1(\mathbb{R}^{n})\}$.
With the notation mentioned above, we define a Euclidean $t$-design as follows.

Definition 1.2. Let X be a finite set with a weight function w and let t be a positive integer. Then
(X, w) is called a Euclidean $t$-design in $\mathbb{R}^{n}\iota f$ the following condition holds:

$\sum_{i=1}^{p}\frac{w(X_{i})}{|s_{l}^{n-1}|}\int_{s_{\mathrm{l}}^{\mathrm{n}-1}}f(x)d\sigma_{i}(x)$

$= \sum_{x\in X}w(x)f(x)$
,

for any polynornial $f(x)$ $\in$ Pol(R”) of degree at most $t$ .

Let $X$ be a Euclidean $2e$-design in Rn. Then it is known that $|X|\geq\dim(\mathrm{P}\mathrm{o}1_{e}(\mathit{8}))$ . Let $X$ be
an antipodal $(2e+1)$-design in Rn. Then it is also known that $|X^{*}|\geq\dim(\mathrm{P}\mathrm{o}1_{e}^{*}(\mathit{8}))$ . Here $X^{*}$ is
an antipodal half part of $X$ satisfying $X^{*}\cup(-X^{*})=X$ and $X^{*}\cap(-X’)$ $=\{0\}$ or 0. Although
better lower bounds are proved in [9] and [12], $\dim(\mathrm{P}\mathrm{o}1_{\mathrm{e}}(S))$ and $\dim(\mathrm{P}\mathrm{o}1_{e}^{*}(S))$ are considered to
be very natural- We define the following tightness for the Euclidean designs $(\mathrm{c}.\mathrm{f}. [4, 5])$ .

Definition 1.3. Let $X$ be $a$ Euclidean $2e$-design supported by S. ij $|X|=\dim(Pol_{e}(S))$ holds we
call $X$ a tight $2\mathrm{e}$-design on S. Moreover if $\dim(Pol_{\mathrm{e}}(S))$ $=\dim(Pol_{e}(\mathbb{R}^{n}))$ holds, then $X$ is called
a tight Euclidean $2e$-design.

Definition 1.4. Let $X$ be an antipodal Euclidean $(\underline{?}e+1)$ -design supported by S. Assume $w(x)$ $=$

$w(-x)$ for any $x\in X$ . If $|X^{*}|=\dim(Po\Gamma_{e}(S))$ holds, we call $X$ an antipodal tight $(2e+1)-$

design on S. Moreover if $\dim(Pol_{e}^{*}(S))$ $=\dim\langle Po\Gamma_{\mathrm{e}}(\mathbb{R}^{n}))$ holds, then $X$ is called an antipodal tight
Euclidean $(2e +1)$-design.

In Section 2, we give some more basic facts about the Euclidean designs. In Section 3, we give
the definition of the strong non-rigidity of Euclidean designs. Our main theorem is Theorem 3.8,
in which we show that the following known examples of tight Euclidean designs are strongly non-
rigid: tight Euclidean 2e-design$\cdot$ in $\mathbb{R}^{2}$ , tight Euclidean 2-designs in $\mathbb{R}^{n}$ supported by one sphere, or
equivalently, tight spherical 2-designs. We also show that antipodal tight spherical 3-designs in $\mathbb{R}^{2}$

in the sense of Euclidean design as well as antipodal tight Euclidean 5-designs in $\mathbb{R}^{2}$ are strongly
non-rigid. The implication of these facts are the existence of infinitely many non-isomorphic tight
Euclidean designs with the given strength.

The complete classification of tight Euclidean 2-designs in $\mathbb{R}^{n}$ is given in Section 4, We also
show that any finite subset $X\subseteq \mathbb{R}^{n}$ of cardinality $n+1$ is a Euclidean 2-design if and only if $X$ is a
1-inner product set with negative inner product value. Here we say $X\in \mathbb{R}^{n}$ is an $e$-inner product

set if $|\{\langle x,y\rangle, x, y\in X_{\}}x\neq y\}|=e$ holds. We remark that $|X|\leq\dim(\mathrm{P}\mathrm{o}1_{e}(\mathbb{R}^{n}))=(\begin{array}{l}n+\mathrm{e}e\end{array})$

holds for any $e$-inner product set $X$ in $\mathbb{R}^{n}$ .
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2 Basic facts on Euclidean designs

The following theorem gives a condition which is equivalent to the definition of Euclidean i-designs.

Theorem 2.1 (Neumaier-Seidel). Let $X$ be a finite nonempty subset in $\mathbb{R}^{n}$ with weight function
$u’$ . Then the following (1) and (2) are equivalent:

(i) $X$ is $a$ Eudldean t-design.

(2) $\sum_{u\in X}w(u)||u||^{2j}\varphi(u)=0$
, for any polynomial $\varphi\in \mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}_{l}(\mathbb{R}^{n})$

with $1\leq l\leq t$ and $0 \leq j\leq\lfloor\frac{f-l}{2}\rfloor$ .

We will use the condition (2) of Theorem 21 in what follows. Theorem 2.1 implies the following
proposition.

Proposition 2.2 ([4], Proposition 2.4). Let $(X, w)$ be $a$ Euclidean $t$ -design in $\mathbb{R}^{n}$ . Then the
$fof$ loweng (1) and (2) hold:

(1) Let $\lambda$ be a positive real number and $X’=\{\lambda u_{7}u\in X\}$ . Then $X’$ is also $a$ Euclidean t-design
with weight $w’$ defined by $w’=w( \frac{1}{\lambda}u’)\}u’\in X’$.

(2) Let $\mu$ be a positive real number and $w’(u)=\mu w(u)$ for any $u\in X$ . Then $X$ is also $a$ Euclidean
$t$ -design with respect to the weight $w’$ .

We also need the proposition below in the subsequent sections.

Proposition 2.3 ([4], Lemma 1.8). Let (X, w) be a tight Euclidean $2e$ -desegn or antipodal tight
Euclidean $(2e+1)$ -design in $\mathbb{R}^{n}$ . Then the weight function w is constant on each sphere.

Let $(X, w)$ be a finite weighted subset in $\mathbb{R}^{n}$ . Let $S_{1}$ , $S_{2)}\ldots$ , $S_{p}$ be the $p$ concentric spheres

supporting $X$ and let $S=\cup i=1pS_{i}$ .

For any $\varphi$ , $\psi$ $\in \mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}(\mathbb{R}^{n})\}$ we define the following inner-product

$\langle\varphi, \psi\rangle=\frac{1}{|S^{n-1}|}\int_{S^{n-1}}\varphi(x)\psi(x)d\sigma(x)$ .

Let $h\mathfrak{x}$ $=\dim(\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}\iota(\mathbb{R}^{n}))$ and $\varphi l,1$ , $\ldots$ , $\varphi l,h_{\mathit{1}}$ be an orthonormal basis of $\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{m}_{l}(\mathbb{R}^{n})$ with respect
to the inner-product defined above. Then,

$\{\{$

$||x||^{2j}$ , $0 \leq j\leq\min\{p-1$ , $[ \frac{e}{2}]\}\}\cup$

$||x||^{2j}\varphi p,i(x))1$ $\leq l\leq e$ , $1\leq i\leq h_{t}$ , $0 \leq j\leq\min\{$ $p^{-\in_{S}-1}\}$ $[ \frac{e-l}{2}]\}\}$

gives a basis of Pole (5).
Now, we are going to construct a more convenient basis of $\mathrm{P}\mathrm{o}\mathrm{I}_{e}(S)$ for our purpose. Let $\mathcal{G}(\mathbb{R}^{n})$

be the subspace of $\mathrm{P}\mathrm{o}1_{\mathrm{e}}$ $(S)$ spanned by $\{||x||^{2j}, 0\leq j\leq p-1\}$ . Let $\mathcal{G}(X)=\{g|x, g\in \mathcal{G}(\mathbb{R}^{n})\}$ .
Then $\{||x||^{2j}, 0\leq j\leq p-1\}$ is a basis of $\mathcal{G}(X)$ . We define an inner-product $\langle-,$ $-\rangle\iota$ on $\mathcal{G}(X)$ by

$\langle f, g\rangle_{l}=\sum_{x\in X}w(x)||x||^{2l}f(x)g(x)$
, for $1\leq l\leq e$ . (2)

We apply the Gram-Schmidt method to the basis $\{||x||^{2_{\mathrm{J}}}, 0\leq j\leq p-1\}$ to construct an
orthonormal basis

$\{g\iota,\mathrm{o}(x)\}g_{l,1}(x)$ , . . ., $gl,p-1$ $(x)\}$

of $\mathcal{G}(X)$ with respect to the inner-product $\langle-_{2}-\rangle_{l}$ . We can construct them so that for any $l$ the
following holds:

$g_{l,j}(x)$ is a linear combination of 1, $||x||^{2}$ , . . . ’
$||x||^{2j}$ , with $\deg(g_{\mathrm{I},g})=2J$ ,

for $0\leq j\leq p-1$ .
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For example, we can express $g\iota,0(x)$ as

$g\iota,0$ $(x) \equiv\frac{1}{\sqrt{a_{t}}}$ , with $a\iota$

$= \sum_{x\in X}w(x)||x||^{2l}$
. (3)

Now we are ready to give a new basis for $\mathrm{P}o1_{e}(S)$ . Let us consider the following sets:

$H_{0}=$

$H_{l}=\{$

$\{g_{0,j}|0\leq j\leq\min\{p$

$g_{l,j}\varphi_{l,i}|0\leq j\leq \mathrm{m}\mathrm{n}$ $\{$

-1, $[ \frac{e}{2}]\}\}$ ,

$p^{-\epsilon j}s-1$ , $[ \frac{e-l}{2}]\}7$ $1\leq i\leq f\iota_{l}\}$ , for $1\leq l\leq e$.

Then $ft$ $= \bigcup_{l=0}^{\mathrm{e}}?t\iota$ is a basis of $\mathrm{P}\mathrm{o}1_{e}(S)$ .

Proposition 2.4. ij (X, w) $\iota s$ a tight $2e$ -deszgn on S, then the following (1) and (2) hold:

(1) The weight function of $X$ satisfies

$0 \leq \mathrm{j}\leq\min\{p-\epsilon_{S}-1,[\frac{e-1}{2}]\}1\leq\iota_{-}\sum_{<e},||u||^{2t}g_{l,j}^{2}(u)Q_{l}(1)+\sum_{j=0}^{\min\{p-1,[\frac{\mathrm{e}}{2}]\}}g_{0,j}^{2}(u)=\frac{1}{w(u)}$
, for all $u\in X$. (4)

(2) For $ony$ distinct points $u$ , $\mathrm{t}’\in X$ , we have

$0 \leq j\leq \mathrm{m}\mathrm{i}\prime 1\{p-\sigma_{\mathrm{S}}-1,[\frac{e-l}{2}]\}1\leq l\epsilon\sum_{\underline{<}},||u||^{1}||\iota’||^{l}g_{l,j}(u)g_{l,j}(\iota))Q_{l}(\frac{\langle u,v\rangle}{||u||||v||})+\sum_{j=0}^{\min\{p-1,[\frac{\mathrm{e}}{2}]\}}g_{0,j}(u)g0,j(v)=0$
. (5)

Fere $\langle u, v\rangle$ is the standard inner-product in Eudidean space $\mathbb{R}^{n}$ and $Q_{l}(u)$ is the Gegenbauer
polynomial of degree 7. Moreover, for the case $e=1$ the converse is also true, namely, if (1) and
(2) hold, then $X$ is a tight 2-design on $S$ .

3 Rigidity of spherical and Euclidean designs

We call a spherical $t$-design non-rigid (resp. ngi4 if it cannot be (resp. can be) deformed locally
keeping the property that it is a spherical $t$-design. The exact definition is given as follows $(\mathrm{c}.\mathrm{f}$ .
[2] $)$ .

Definition 3.1. A spherical $t$ -design $X=\{x_{i_{1}}1\leq i\leq N\}\subseteq S^{n-1}\iota s$ called non-rigid or deformable
in $\mathbb{R}^{n}$ if for $any\in$ $>0$ there exists another spherical $t$ -deszgn $X’=\{x_{l}’, 1\leq i\leq N\}\underline{\subseteq}S^{n-1}$ such
that the following two conditions hold:

(t) $||x_{i}-x_{i}’||<\epsilon$ , for $1\leq \mathrm{i}\leq N$ ; and

(2) there is no any transformation $g\in O(n))$ with $g(x_{i})=x_{i}’$ , for $1\leq i\leq N$ .

Motivated by the above definition and Proposition 2.2, we define a similar concept of rigidity
and non-rigidity for Euclidean $t$-design, depending upon whether the designs can be transformed
to each other by orthogonal transformations, scaling, or adjustment of the weight functions. In the
definition below, $o^{*}(n)=\langle O(n),gx$ , $g^{\mu})$ denotes a group generated by an orthogonal group $O(n)$ ,
a scaling $\mathit{9}\lambda$ of $X$ :

$\{$

$\mathit{9}\lambda$ : (X., $w$ ) $arrow$ $(X_{7}’w’)$

$x$ $rightarrow$ $x’=\mathrm{A}\mathrm{x}$

$w’(x’)=w(x)$
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and an adjustment $g^{\mu}$ of weight function $w$ :

$\{$

$g^{\mu}$ : $(X, w)$ $arrow$ $(X’, w’)$

$x$ – $x’:=$
$w’(x’)=\mu w(x)$

Definition 3.2. $A$ Euclidean $t$ -design $X=(\{x_{i}\}_{\iota=1}^{N}, w)\subseteq \mathbb{R}^{n}$ is called non-rigid or deformable in
$\mathit{1}\mathrm{R}^{n}$ if for any $\epsilon$ $>0$ there eists another Euclidean $t$ -design $X’=(\{x_{l}’\}_{\mathrm{z}=1}^{N}, w’)\subseteq \mathbb{R}^{n}$ such that the
$fol$ lott $mg$ two conditions hold:

(1) $||x_{i}-x_{i}’||<\epsilon$ , and $|w(x_{i})-w’(x_{i}’)|<\epsilon$, for $1\leq \mathrm{i}\leq N$ ; and

(2) there zs no any transfo rmation $g\in O’(\mathrm{n})$ , with $g(x_{i})=x_{t}’$ for $1\leq i\leq N$ .

It is well known that any tight spherical $t$-design is rigid, because the possible distances of any
two points in the design are finitely many in number and determined by only $n$ and $t$ (see Theorem
5.11 and 5.12 in [S] $)$ . A natural question is whether tight spherical $t$-designs are rigid aB Euclidean
$t$-designs. We have the proposition below.

Proposition 3.3. Any tight spherical 2e-design is rigid as a Euclidean design, for e $\geq 2$ .

On the other hand, as we will show later, any tight spherical 2- and 3-design are non-rigid as
Euclidean designs.

Now, let us consider the following two examples of tight Euclidean 4-designs in $\mathbb{R}^{2}$ given by
Bannai and Bannai [4] and also antipodal tight Euclidean 5-designs in $\mathbb{R}^{2}$ given in Bannai [5].

Example 3.4 (see [4]). Let $X(r)=X_{1}\cup X_{2}(r)$, where $X_{1}=\{(1,0)$ , $(- \frac{1}{2},$ $\frac{\sqrt{3}}{2}))$ $(- \frac{1}{2},$ $- \sum_{2}3)\}$

and $X_{2}(r)$ $=\{(-r, 0)$ , $( \frac{r}{2}$ , $\frac{\sqrt{3}}{2}r)$ , $( \frac{r}{2},$ $- \frac{\sqrt{3}}{2}r)\}$ . Let $w(x)=1$ for $x$ $\in X_{1}$ and $w(x)= \frac{1}{r^{3}}$ for
$x\in \mathrm{X}2(\mathrm{r})$ . if $r\neq 1$ , then $X(r)$ is a tight Euclidean 4-design.

Example 3.5 (see [5]). Let $X(r)=X_{1}$ LJ $X_{2}(r)$ where $X_{1}=$ { $(\pm 1,0)$ , (0, Ll)} and $X_{2}=$

$\{(\pm\frac{r}{\sqrt{2}})\pm_{T^{r_{2}}})\}$ . Let $w(x)=1$ for $x\in X_{1}$ and $w(x)=\tau_{\tau}^{1}$ for $x\in X_{2}(r)$ . If $T$ $\neq 1$ , then
$X(\uparrow\cdot)$ is an antipodal tight Eudidean 5-deszgn.

In both examples above, we can easily see that if we move all the points on $X_{2}(r)$ simultaneously
by changing the radius $r$ while the other points remain sitting on the original position, the resulting
designs are again Euclidean designs of the sa me type. This kind of transformation is not contained
in the group $O^{*}(n)$ since $X(r)$ and $X(r’)$ are not similar to each other for any $r\neq r’$ . Hence the
designs are non-rigid.

In the deformation explained above, all points on the same sphere move to the new one. One
natural question is, what will happen if we defo rn $X$ so that some two points from the same sphere
move to distinct two spheres? This question bring us to the notion of strong non-rigidity, a special
kind of non-rigidity.

Definition 3.6 (strong non-rigidity). $Lei$ $X=(\{x_{i}\}_{\mathrm{z}=1}^{N}, w)$ be $a$ Euclidean $t$ -design in $\mathbb{R}^{n}$ . ij
$X$ satisfies the $fol$ fowing conchteon we say $X$ is strongly non-rigid in $\mathbb{R}^{n}$ :
For $any\in$ $>0$ there eists $a$ Euclidean $t$ -design $X’=$ $(\{x_{\mathrm{i}}’\}_{i=1}^{N}, w^{J})$ such that the following two
conditions hold:

(i) $||x_{i}-x_{i}’||<\epsilon$ and $|w(x_{i})-w’(x_{i}’)|<\epsilon_{;}$ for any $1\leq i\leq N$ ; and

(2) There eist distinct $\mathrm{i},j$ satisfying $||x_{i}||=||xj||$ and $||x_{i}’||\neq||x_{j}’||$ .

Remark 3.7. It is clear that any strongly non-rigid Euclidean $t$ -design is non-rigid, since the
condition (n) above impfies that the transforrnation:

$x_{i}\mapsto x_{i}’$ , $1\leq \mathrm{i}\leq N$,

is not contained in $O^{*}\langle n)$ .
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Here is our main theorem.

Theorem 3.8. The following tight Euclidean $t$ -designs are strongly non-rigid:

(1) Tight spherical 2-designs in $S^{n-1}$ considered as tight Euclidean 2-designs.

(2) Antipodal tight spherical 3-designs in $S^{1}$ considered as tight Euclidean 2-designs.

(3) Tight Euclidean $A$-designs in $\mathbb{R}^{2}$ supported by 2 concentric spheres.

(4) Antipodaf tight Euclidean $t$ -designs zn $\mathbb{R}^{2}$ supported by 2 concentric spheres.

Theorem 3.8 implies the following corollary.

Corollary 3.9. There are infinitely many tight Euclidean designs of the following type:

(1) 2-designs in $\mathbb{R}^{n}$ supported by $p=2,3$ , . . , $n+1$ concentric spheres, respectively.

(2) Antipodal 3-designs zn $\mathbb{R}^{2}$ supported by 2 concentric spheres.

(3) $t$-designs in $\mathbb{R}^{2}$ supported by 3 and 4 concentric spheres.

(4) Antipodal 5-designs in $\mathbb{R}^{2}$ supported by 3 and 4 concentric spheres.

Corollary 3.9 says about the existence of quite plenty of tight Euclidean $t$-designs, contrary to
the initial guess made by Neumaier and Seidel and also Delsarte and Seidel respectively in [12] and
[9]. We remark here that antipodal tight Euclidean 3-designs in $\mathbb{R}^{n}$ have been completely classified
in [5].

We may prove Theorem 3.8 using the implicit function theorem described below.
Let $X$ be a tight Euclidean bdesign in $\mathbb{R}^{n}$ . Let $|X|=N$, $X=\{u_{i}, 1\leq \mathrm{i}\leq N\}$ and $u_{i}=$

$(u_{\iota,1}$ , $u_{i,2}$ , . . . , $u_{\tau,n})$ for $1\leq i\leq N$ . Let $w(u_{\iota})$ be the weight of $u_{i}$ , for $1\leq i\leq N$ . Then we consider
$(u_{l,1}, u_{i,2}, \ldots, u_{i_{7}n)}\mathrm{w}\{\mathrm{u}\mathrm{i}),$ $1\leq \mathrm{i}\leq N)$ as a vector $\eta=(\eta_{1}, \eta_{2}, \ldots , \eta_{(n+1)N})\in \mathbb{R}^{(n+1)N}$ whose entries

are given by Uijl, $u_{i,2}$ , . . . , $u_{i,n}$ , $w(u_{i})$ , for $1\leq i\leq N$ . Let $\xi=(\xi 1, \xi 2, \ldots, \xi(n+1)N)\in \mathbb{R}^{(n+1)N}$ be
the vector variable whose entries are defined by $(x_{i,1}, x_{i,2}, . ., x_{\mathrm{q}n},, w(xi)_{1}1\leq i\leq N)$ . Then 7 is
a common zero point of a given set of polynomials $f_{1}(\xi)$ , $f_{2}(\xi))\ldots$ $7fx$ $(\xi)$ in the vector variable $\xi$

( $\mathrm{c}.\mathrm{f}$ . Theorem 2.1 (2)). Let $I=\{i, 1\leq \mathrm{i}\leq(n+1)N\}$ and $I’\subseteq I$ . We denote by $J’$ the Jacobian

$J’=( \frac{\partial f_{f}}{\partial\xi_{k}})1\leq \mathrm{t}\leq K_{1}k\in t\backslash I’$

Assume $|I\backslash I’|=K$ and that rank( $=K$ holds at 77. We may assume $I\backslash I’=\{1,2, -\cdot., K\}$ by
reordering the components of the vectors 4 and $\eta$ . Let $\xi’=(\xi_{i}, \mathrm{i}\in I’)$ and $\eta’=(\eta_{i}, i\in I’)$ . Then
the implicit function theorem tells us that there exist unique continuously differentiable function
$\Psi(\xi’)=(\psi_{i}(\xi’))i\in I\backslash I’)$ satisfying the following conditions:

(1) For any $1\leq j\leq K$ ,
$f_{j}$ $(\psi_{1}(\xi’), \psi_{2}(\xi’)$ , $\ldots$ , $\psi_{K}(\xi’)$ , $\xi’)=0$

holds in some small neighborhood of $?7^{J}$ .

(2) $\psi_{i}(\eta’)=\eta_{ir}$ for any $1\leq \mathrm{i}\leq K$ .

Let $\xi_{i}=\psi_{i}(\xi’)\rangle$ for $1\leq \mathrm{i}\leq K$ . Then for any $\xi’$ in a small neighborhood of $\eta’$ , $X’=\{\xi_{i}, i\in I\}$

is a Euclidean $t$-design. Since $\psi_{i}(\xi’)$ , $1\leq \mathrm{i}\leq K$, are continuous function of $\xi’$ , we can make
$|\xi_{i}-\eta_{i}|<\epsilon$ for any given positive real number $\epsilon$ . For example, if $X$ is a tight Euclidean $2e$-design
and $I’$ contains all the indices corresponding to the variables $w_{1}$ , $w_{2}$ , . . ., $w_{N}$ , then we can make
every point in $X’$ having distinct weight values. Since, by Proposition 2,3, a tight Euclidean 2e-
design $X’$ must have constant weight on each sphere which support $X’$ , every point of $X’$ must be

on the different spheres.
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4 Tight Euclidean 2-designs in $\mathbb{R}^{n}$

In the previous section we have shown that tight spherical 2-designs in $\mathbb{R}^{n}$ axe strongly non-rigid
and hence there exist infinitely many (non-isomorphic) tight Euclidean 2-designs in $\mathbb{R}^{n}$ supported
by 2, 3, . ., $n+1$ concentric spheres, respectively. The aim of this section is to give the complete
classification of tight Euclidean 2-designs in $\mathbb{R}^{n}$ .

By Proposition 2.4 (2) and the fact that in $\mathbb{R}^{n}$ the Gegenbauer polynomial of degree 1 satisfies

Qi $(y)=ny$,

we obtain
$\langle u, v\rangle=-\frac{a_{1}}{na_{0}}$, for any distinct vectors $u$ , $v\in X$.

Therefore every tight Euclidean 2-design $X$ is a 1-inner product set with negative inner product
value $- \frac{a_{1}}{na_{0}}$ . In general, a subset $X\underline{\mathrm{C}}$]$\mathrm{R}^{n}$ is called $e$-inner product set if

$|\{\langle x,y\rangle, x, y\in X, x\neq y\}|=e$

holds. The cardinality of $e$-inner product set in $\mathbb{R}^{n}$ is known to be bounded from above by $(\begin{array}{l}n+ee\end{array})$

(see [7]). In particular, a 1-inner product set is bounded above by $n+1$ which is attained by regular
simplices which is also tight spherical 2-designs and tight Euclidean -designs at the same time.

For any positive real numbers $R_{1}$ , $R_{2)}\ldots$ , $R_{n}$ , we define afunction $f_{k}$ of $k$ variables $R_{1}$ , $R_{2}$ , . , $R_{k}$

by the recurrence relation as follows:

$\{f_{k}f_{1}$ $==$ $f_{k-1}(1R_{1},+R_{k})- \prod_{i=1}^{k-1}(1+\mathrm{R}\mathrm{i}1$

for $2\leq k\leq n$ .
(6)

Then we have the following theorem.

Theorem 4.1. Let X $=\{x_{k}, 1\leq k\leq n+1\}$ be an $(n+1)$ -subset in Rn. Let also $R_{k}=||x_{k}||^{2}$ ,
for $1\leq k\leq n+1$ . If X is a 1-inner product set satisfying

$\langle x_{2}y\rangle=-1$ , for any $d\iota stmct$ $x$ , $y\in X$ . (7)

then the following two conditions hold.

(i) $f_{k}>0$ , for $1\leq k\leq n$ .

(2) $1+R_{\mathrm{n}+1}= \frac{\prod_{i=1}^{n}(1[perp] R_{i})}{f_{n}}$ .

Conversely, if the conditions (1) and (2) hold, then there exists 1-inner product set $X=\{xk$ , $1\leq$

$k\leq n+1\}\underline{\subseteq}\mathbb{R}^{n}$ satisfying the condition (7).

In view of Proposition 2.4, we have the theorem below.

Theorem 4.2. (X,$w)\subseteq \mathbb{R}^{n}$ is a tight Euclidean 2-design if and only if (X, w) is a weighted l-inner
product set m $\mathbb{R}^{n}$ of negative inner-product value.

The theorem 4.1 above enables us to derive the complete classification of 1-inner product set
having negative inner product value, while the last theorem guarantees the our 1-inner product set
is nothing but the tight Eucldiean 2-designs. Hence, from the above two theorem we have:
(Up to the action of an orthogonal treformation $O(n)$ ) Any tight Euclidean 2-designs $X=$
$\{x_{k}, 1\leq k \leq n+1\}\underline{\subseteq}\mathbb{R}^{n}$ is of the following form:

$x_{1}=$ $(\sqrt{R_{1}},0,0, . . ., 0)$ ,
$x_{k}=$ ( $b_{1}$ , $b_{2}$ , $b_{3}$ , . .., bk-u $x_{k,k}$ , 0, . . ., 0),

for $2\leq k\leq n$ ; and
$x_{n+1}=$ $(b_{1}, b_{2}, b_{3}, .. ., b_{n})$ ,
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where $b_{k}$ and $Xk,k>0$ are determined recursively by

$b_{1}=- \frac{1}{\sqrt{R_{1}}}$ ,

$Xk,k=\sqrt{\frac{f_{k}}{f_{k-1}}}$, for $2\leq k\leq n$ ,

$b_{k}=- \cdot.\frac{\prod_{=1}^{k-1}(1+R_{\mathrm{i}})}{f_{k-1^{X}k,k}}$ , for $2\leq k\leq n$ ,

and weight function given by
$w(x)= \frac{1}{1+||x||^{2}}$ , $x\in X$ .

5 Concluding Remarks
(1) Neumaier and Seidel and also Delsarte and Seidel conjectured that the only tight Euclidean

$2e$-designs in $\mathbb{R}^{\tau\iota}$ are regular simplices (See [12, Conjecture 3.4] and [9, pp. 225]). Recently,
Bannai and Bannai [4] has disproved this conjecture providing the example of Euclidean tight
4-designs in $\mathbb{R}^{2}$ supported by two concentric spheres, i.e., which are not regular simplices.
However, constructing a tight Euclidean design is not so easy in general. In this paper we
introduce a new notion of a strong non-rigidity of Euclidean $t$-designs. An alternative way,
and in fact a very trivial way, to disprove the conjecture comes from the method we use to
investigate the strong non-rigidity of the designs.

(2) Regarding the existence of tight Euclidean designs, we believe in the following conjecture:

Conjecture 5.1. ij a tight Euclidean 2e-design or an antipodal tight Euclidean $(2e+1)$ design

supported by more than $[ \frac{e+\epsilon_{S}}{2}]+1$ concentric spheres eists, then there eist infinitely many

tight Euch dean $2e$ -designs or antipodal tight Euclidean $(2e+1)$ -designs, respectively.
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