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Abstract

This study is concerned with finite Markov decision processes(MDPs) whose tran-
sition matrices are unknown but the state is observable exactly. We develop a
learning algorithm of the reward-penalty type for the communicating case of
multi-chain MDPs by which an adaptively optimal policy and an asymptotic se-
quence of adaptive policies with nearly optimal properties are constructed under
the average expected reward criterion. Also, a numerical experiment is given to
show the practical effectiveness of the algorithm.
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1 Introduction and notation

Markov decision processes(MDPs) whose transition probabilities are unknown to a deci-
sion maker have been investigated by many authors (cf. [4, 5, 8, 9, 14, 15]). Kurano[10]
proposed a learning algorithms of the reward-penalty type(cf. [11, 16]) for the positive
case where all elements of the true transition matrices of finite MDPs are known to be
positive, by which adaptively optimal policy are constructed under the average expected
reward criterion. ,

In this paper, applying the idea of [10] extensively to a large class of uncertain MDPs,
we develop a learning algorithm for the communicating case of multi-chain MDPs and
construct an adaptively average optimal policy for a class of perturbed commuunicating
MDPs. For general communicating MDPs, an asymptotic sequence of adaptive policies
with nearly optimal properties is constructed by using the results of perturbed case.

In the reminder of this section, we will formulate finite MDPs whose transition matrices
are unknown but the state at each stage is observable exactly. Consider a controlled
dynamic system with finite state and action spaces, S and A, containing N < oo and
K < oo elements respectively. Let Q denote the parameter space of K unknown stochastic
matrices, that is Q = {qlg = (¢;;{a) : 1,5 € S,a € A),q:5(a) 2 0, jes gijla)=1fori,j€
S,a € A}

The sample space is the product space @ = (S X A)® such that the projections
X,, A, on the t-th factors S, A describe the state and action at the {-th stage of the
process(t 2 0). Let IT denote the set of all policies, ie., for m = (mg,m,...) € 1L, let
7, € P(A|(S x A)t x S) for all t 2 0, where, for any finite sets X and Y, P(X|Y) denotes
the set of all conditional probability distribution on X given Y. A policy 7 = (7o, 1y - +)
is called randomized stationary if a conditional probability v = (y(-|i): i € § ) € P(A]S)
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such that m,(-|zo, @, -.., %) = Y(:|z;) for all £ 2 0 and (zg,aq,...,%:) € (S x A)* x S.
Such a policy is simply denoted by v. We denote by F' the set of functions on S with
f(i) € Aforalli € S. A randomized stationary policy  is called stationary if there exists
a function f € F with v({f(i)}|¢) = 1 for all ¢ € S, which is denoted simply by f.

For any X =1,n € Il and ¢ = {g;;(a)) € Q, we assume that P(X,11 = j| X, Ao, - - -,
Xt = ?;,At = a) = qij(a) and P(At = a]Xg,Ag,...,Xt = ?,) = ﬂ't(G,IXO, A(},...,Xt =
i} (¢t 2 0). Then, we can define the probability measure P (-| Xy = 7,q) on €.

For a given reward function r on S x A, we shall consider the long-run expected average
reward associated with g € Q :

(1) (i, gm) = Hminfr oo 7 Br(3imp m(Xe, Ae)| Xo = i, )
where E.(-|Xo = 1, q) is the expectation operator w.r.t. Pr(-|Xo = 1,q). Let D be a subset

of Q. Then, the problem is to maximize ¥(%, g|m) over all w# € Il for any 1 € S and g € D.
Thus, denoting by (i, ¢) the value function, i.e.,

(2) ¥{i,q) = supyen ¥(i, glm),

7 € II will be called g-optimal if (3, ¢|n*) = ¥(i,q) for all i € S and called adaptively
optimal for D if #* is g-optimal for all ¢ € D. A sequences of policies {#"}32, C II
is called an asymptotic sequence of adaptive policies with nearly optimal properties for
D if limpoco ¥(i,q|m™) = (i,q) for all g € D. Let QF = {q = (g;;{a)) € Q l gij{a) >
0 foralli,j € Sandae A}. In [10], a learning algorithm of the reward-penalty type
(cf. [11]) was given, by which an adaptively optimal policy for Q was constructed by
applying value iteration and policy improvement algorithms (cf. [3, 4, 5]). In this paper,
we treat with the communicating case of multi-chain MDPs applying the idea of [10]
extensively. The transition matrices ¢ = (g;;(a)) € Q is said communicating (cf. [1, 6,
17]) if for any 4, € S there exists a path from i to j with positive probability, i.e.,
it holds that g;;,(a1)gisi,(a2) ¢, ,5(a-1) > 0 for some {3; = i,49,...,4 = j} € §
and {ay,ag,...,m1} C Aand 2 £ 1 S N. It is easily shown that ¢ = (gi(a)) is
communicating if and only if there is a randomized stationary policy v = (y(:]i) : i € S)
satisfying that the transition matrix ¢{7v) = (g;;(7)) induced by v defines an irreducible
Markov chain(cf. [7]) where g;;(7) = 3 ,c 4 %ij(a)7(ali) for i,5 € S.

Let B(S) be the set of all functions on S. The following fact is well-known(cf. [17, 18]).
Lemma 1.1 ([17, 18]). Let ¢ = (gi;(a)) € Q. Supposed that there exists a constant g and
av € B(S) such that
(3) (i) = maxeea{r(i,a) + 3 o qii(a)v(j)} —g foralli€ S.

Then, g is unique and g = P(i,q) = (i, qlf) fori € S, where f € F is g-optimal and
f(i) s a mazimizer in the right-hand side of (3) for all i € S.

Let Q* be the set of all communicating transition matrices. In order to treat with
the communicating case with ¢ € QF, we use the so-called vanishing discount approach
which studies the average case by considering the corresponding (1 — 7)-discounted one
as letting 7 — 0. The expected total (1 — 7)-discounted reward is defined by

(4)  wldqlm) = Ex(3020(1 = 7)r( X, A Xo = 4,¢) forie S,ge Qand el

and v (i, q) = Sup,en v (4, g|n) is called a (1—7)-discounted value function, where (1—7) €
(0,1) is a given discount factor. For any ¢ = (g;;(a)) € Q and 7 € (0, 1), we define the
operator U,{q} : B(S) — B(S) by

(6) Ur{g}u(s) = maxgea{r(i,a) + (1 - 1) > jes Gii(@)u(j)} for all i € S and u € B(S).
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We have the following.

Lemma 1.2 ([17, 18]). I holds that (i) the operator U {q} is a contraction with the
modulus (1 —7) and (ii) the (1 — )-discount value function v.(i,q) is a unique fized point
of Unr{q}, ice,

(6) Vr = UT{Q}UTv

(iii) v, (1,q) = v.(i,q|f-) and im g 7v.(i,q) = (i, q), where f, is a mazimizer of the
right-hand side in (6).

In Section 2, continuity of the value function for perturbed transition matrices is
proved, by which an adaptively optimal policy for the perturbed communicating MDPs
is constructed through a learning algorithm of reward-penalty type in Section 3. Also,
Section 3 is devoted to the construction of an asymptotic sequence of adaptive policies
with nearly optimal properties. In Section 4, a numerical experiment is implemented to
show the practical effectiveness of the learning algorithm given in Section 3.

2 Continuity of the value function

First we give a key lemma for guaranteeing the validity of the vanishing discount approach
to study the average case.
Lemma 2.1. Let ¢ = (g;;(a)) € Q*. Then, there exists a constant M such that

(7) limsup, _g [v-(i,q) —v-(, )| E M forall i,j€S.
Proof. See Appendix.y

Let P(S) be the set of all probability distributions on S, i.e., P(S) = {u= (g1, 1n)]
w2 0,5 g = 1forall i€ S} Let g = (g;;(a)) € Q. For any 7 € (0,1) and

p= (g, pa, - - -, uv) € P(S), we perturb g to g™ = (q;?“(a)) which is defined by

(8) g(a) = Ty + (1 — 7)gi;(a) fori,j€Sandac A
The matrix expression of (8) is ¢™* = 7ep + (1 — 7)g, where e = (1,1,...,1) is a
transpose of N-dimensional vector (1,1,...,1). Then, we find that (6) in Lemma 1.2 can

be rewritten as follows.

(9) U‘F(i! Q) = maxo.EA{T(i: CL) + Ejgs ij,T(a')UT(ja Q)} -7 EjES 'uj'v"“(j? Q) foralli e S.

Thus, applying Lemma 1.1, we have the following. ‘

Lemma 2.2. For any g € Q,7 € (0,1) and p € P(S), it holds that (i) (i, q"") =

T Y ies v, (4, q) for alli € S, (i) fr is q"*-optimal, where f, is given in Lemma 1.2.
From Lemma 2.2, since 9(i,¢™") is independent of i € S, we shall put (g™} =

(i, ¢™*). The T-continuity of /(¢™") is given in the following.

Theorem 2.1. Let ¢ € Q*. Then, we have that (i) ¥(5,q)(:= ¥(q)) is independent of

i € S and there ezists a u € B(S) satisfying the average optimality equation:

(10) u(i) = maxeea{r(i, a) + Xjes gis(@)u(f)} — ¥lg) (€ 5),
(i) for any p € P(S),¥(g"") — ¥(g) as 7 — 0.
Proof. See Appendixy

We note that (i) in Theorem 2.1 derives the single average optimality equation for the
communicating MDPs, which has been given first by [1]. In general, the value function
(i, q) is known to be continuous on each equivalent class of Q (cf. [19, 20}), but (i) in
Theorem 2.1 gives as example in which ¥(i,¢) is continuous in ¢ across the equivalent
classes.
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3 Learning algorithms and analysis

In this section, we give a learning algorithm of reward-penalty type for MDPs with the
t1ansition matrices ¢ € Q*, by which the adaptive policy is constructed.

For any 1 € S and a € A, a sequence of stopping times {o"(7,a)}2, will be defined
as follows.

(11) a%(i,a) = 0,0™(i,a) = inf{tft > o™ (i,a), Xy = i, Ay =a} (n 2 1).

Let W =g aesxa W (i, a). where W(i,a) = (\;2,{0"(i,a) < oo}. We note that w € W
means that for any (i,a) € S x A the event {X,(w) = i, Ay(w) = a} happens in infinitely
many stages. The following is an extension of Lemma 1 in [9] to the communicating case.
Lemma 3.1. Let = = (my,m,...) be any policy satisfying that there exists o decreasing
sequence of positive numbers {€:}2, such that (i) for each t 2 0,m(alhs) = &, for all
a € A and hy = (zg,a9,...,%:) € Hy and (i) 3 el = oo. Then, P(W|Xy =1,q) =1
forallge Q" andi€ S.
Proof. See Appendix.g

We note that as a example, the sequence {t~% }%2, satisfies (i) of Lemma 3.1.

For each i,j € S and a € A, let Np(i,jla) = > Iix,=i,ac=a,Xep1=5} a0d Np(ila) =
>0 Lixi=i,ai=a}, wWhere Ip is the indicator function of a set D.

Let qi(a) = No(i, jla)/Nnu(ila) if Nu(ila) > 0, 0 otherwise. Then, g% = (q%(a))) is
the maximum likelihood estimator of the unknown transition matrices.

For any given ¢° = (q%(a,)) € Q, we define §* = (eﬂ’j(a)) € Q by ¢i(a) = ¢(a)
if Ny(ila) > 0, ¢);(a) otherwise. We consider the following iterative scheme which is a
variant of the non-stationary value iteration scheme proposed by [3]:

(12) . T~}0 = 07 'an+l = Ur{én}ﬁn (n g 0)

For each i € S and n(n 2 0), let d,.1(i) denote an action which maximizes the right-hand
side of the second equation in (12). For any sequence {b,}%, of positive numbers with
bo = 1,0 < bpyy < 1 and b, > by for all n 2 0, let ¢ be any strictly increasing function
such that ¢ : [0,1] — [0,1] and ¢(b,) = bpy1 for all n 2 0.

Here, we define a learning algorithm based on @,+; and ¢. For each n(n 2 0), letting
T (kli) = P(An = k| Xo, Aq, ..., Xy, = i) we propose to update #7 as follows:
If1 for each i € S, &n+1(z’) = G;,

(13) riilalt) = 1= 30, #(F(li)), 77y (li) = ¢(77(ali)) (o # ).

In (13), the probability of choosing the action a; at the next stage increases and that of
choosing one of the other actions decreases, such that the algorithm (13) is a learning algo-
rithm of the reward-penalty type(cf. [11, 16, 21]). Note that given 77, 7" = (77,%],...) €
I and 7] (n 2 1} is successively determined by (12) and (13).

We need the following condition.
Condition A. (i) b, — 0asn — coand} oo bY = 00, (ii) #5(ali) > Oforalli € S,a € A.
Lemma 3.2. Let g € Q*. Then, under Condition A, the following (i)-(%i) holds with
Pir(-|Xo = 4,9)-0.5.:(i) §* — q as n — 00, (1) T,({) — v-(i,9) as n — oo, (iii)
77 (Ar(ilg)|Hn, Xn = 1) — 1 as n — oo, where A%(i|q) is the set of all actions which
mazimize the right-hand side of (6).



Proof. See Appendix.g

Let "Q* := {g™*|u € P(S) and q € Q*}, where ¢"* is defined in (8). Then, observing
the discussion in Section 2 and "Q* C Q*, from Lemma 3.2 we find that the results in
[10] can be applicable to the class of perturbed transition matrices "Q". So, we have the
following.

Theorem 3.1. Under Condition A, 7" is adaptively optimal for "Q".

Here we can state the following theorem for the communicating case.

Theorem 3.2. Under Condition A, a sequence {7™}oe, with 7, — 0 as n — 00 is an
asymptotic sequence of adaptive policies with nearly optimal properties for Q.
Proof. See Appendix.y

4 A numerical experiment

Tn this section, we give a simulation result for learning algorithm in Section 3.

Consider the three state MDPs with § = {1,2,3} and A = {1,2}, whose transition
matrices are parameterized with 0 < p1,¢1,p2,92 < 1 and reward function 7(i,a) (i €
S,a € A) are given in Table 4.1.

&
s
g 222
g
& 218
T2 ] i=11J7=214=3 [ t.a) 8
L 1 1-p1 0 3 a 214
2 1—p2 P2 0 2.5 &
1 [§] q1 1-q 2 g
2 2 921
21 1—-q q2 ] 1.5 4 :
1 5 5 T 7 8 o e 13 12 23 56 1 ¢
ST ™ 1 0 o5 x10
- steps of learning algorithm
Table 4.1: parameterized transition matrices Figure 4.1: The trajectories of P (7 = 0.01).
and reward function of simulated MDPs, where The dotted line means the true optimal value
i,j€ Sand g€ A of average reward.

We denote by 1, the average present value until n-th time, which is defined by 9, =
Ly (X &) (2 1).

We set #7(-|i) = (%,%) for each ¢+ € S and g with p; = g,qll"—— s = 2= "1%'
We use a strictly increasing function ¢ such that ¢(z) = (;7,x)* where IV denotes the
number of states in S. Note that it is easily checked that (i) in Condition A is satisfied
by ¢ defined above when by = 1 and by 11 = ¢(by) (n 2 0).

Now, we make numerical experiments with the true transition matrices whose pa-
rameters are given by p; = p2 = %,ql = @y = % The corresponding trajectories of
¥, obtained by computer simulations of the learning algorithms (12)-(13) in Section
3 are given in Table 4.2 and Figure 4.1. It is shown that the optimal stationary pol-
icy of MDPs with true transition matrices such that py = ps = Iy =g = % are
mr(1]1) = 73(2]2) = 77 (2|3) = 1 (¢ = 0) and the true optimal average reward 2 = 2.2105.
Also, adaptive decision rules and relative frequency of N(3,jla) at each n-step are listed
in Table 4.3 and 4.4. The results of the above simulation show that the learning algorithm
is practically effective for the communicating class of transition matrices.
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values 108 5 x 103 104 5 x 104 105 118

0.5 2.1104 | 2.1437 | 2.1569 | 2.1801 | 2.1876 | 2.2302
~ 0.2 91214 | 2.1468 | 2.1585 | 2.1805 | 2.1878 | 2.%(02 |
Yn 0.1 31234 | 71470 | 2.1586 | 2.1805 | 2.1878 | 2.2(02 |
0.01 21184 | 2.1462 | 2.1681 | 2.1804 | 2.1878 | 2.2002
0.5 0.3156 | 0.3184 | 0.3189 | 0.3264 | 0.3292 | 0.3329
. 0.2 0.3230 | 0.3198 | 0.3196 | 0.3266 | 0.3203 | 0.5329
L 0.1 0.3221 | 0.3105 | 0.3195 | 0.3266 | 0.3293 | 0.3320
0.01 0.3201 | 0.5195 | 0.3195 | 0.3266 | 0.3293 | 0.3329
0.5 0.3714 | 0.3801 | 0.3914 | 0.3824 [ 0.3833 | 0.3927
- 0.2 03438 | 0.3738 | 0.3878 | 0.3811 | 0.3824 | 0.3926
& 0.1 0.3438 | 0.3738 | 0.3878 | 0.3811 | 0.3%24 | 0.3926
0.01 0.3452 | 0.3756 | 0.3889 | 0.3815 | 0.3827 | 0.3926
05 0.3372 | 0.3333 | 0.3234 | 0.3158 | 0.3343 | 0.3347
- 0.2 0.3333 | 0.3305 | 0.3220 | 0.3152 | 0.3336 | 0.3345
P2 0.1 0.32 0.3247 | 0.3182 | 0.3137 | 0.3326 | 0.3344
0.01T 0.3165 | 0.3223 | 0.3190 | 0.3142710.3324 | 0.3342
0.5 0.3753 | 0.3931 | 0.3952 | 0.3969 | 0.3972 | 0.3992
- 0.2 0.3695 | 0.3912 | 0.3943 | 0.3967 | 0.3971 | 0.3992
92 0.1 0.3605 | 0.3912 | 0.3943 | 0.3967 | 0.3971 | 0.3992 |
0.01 0.3741 | 0.3923 | 0.3948 | 0.3968 | 0.8972 | 0.3992

Table 4.2: The simulation values of @n for each discount parameter T and step number n, and maximum
likelihood estimates $1, 41, P2, go of p1,41, P2, ¢s, where parameters are assumed such that p; = py =
%, g1 =¢qx= % and then the true optimal value of average reward is % = 2.2105.

decision rules | ™ 108 5 x 109 10% 5 x 10* 105 108
0.5 0.39003 | 0.9416 | 0.9536 | 0.0729 | 0.9785 | 0.99

(L) 0.2 D.8980 | 0.0413 | 0.9535 | 0.0728 | 0.9785 | 0.99
n 0.1 D.8983 | 0.9413 | 0.9535 | 0.9728 | 0.9785 | 0.99
0.01 0.8937 | 0.9409 | 0.9533 | 0.9728 | 0.9784 | 0.99

05 0.8996 | 09415 | 0.9536 | D.0729 | 0.9785 | 0.99

#(202) 0.2 0.0002 | 0.9415 | 0.0536 | 0.9729 | 0.9785 | 0.99
n 0.1 0.9002 | 0.9415 | 0.9536 | 0.9729 | 0.9785 | 0.99
0.01 0.5002 | 0.9415 | 0.9536 | 0.9720 | 0.9785 | 0.99

0.5 0.9002 | 0.9415 | 0.0536.] 0.0729 | 0.5785 | 0.99

1(2/3) 0.2 0.0002 | 0.9415 1 0.9536 | 0.0720 | 0.0785 | 0.99
n U1 0.9002 | 0.9415 | 0.9536 | 0.9729 | 0.9785 | 0.99
0.01 0.0002 | 0.9415 | 0.9536 | 0.0728 | 0.9785 | 0.99

Table 4.3: Adaptive decision rules for each n-step

Appendix

Proof of Lemma 2.1

We denote by H, := (Xy,Ag,...,X;) the history of states and actions until the ¢-th
step(t 2 1) with Hy = (Xp). For each j € S, we define the stopping time ¢’ by
o = oI(H;) = first ¢ 2 0 such that X; = j. That ¢ € Q* guarantees that there exists a
randomized stationary policy v = ({7} : 1 € S) such that the Markov chain induced by
q(7) is irreducible. Here, using the stationary policy f, given in Lemma 1.2 the policy ¥ =
(75,7, . ..) will be defined by 7] (| Hy) = (| X;) if t < 0¥(H,), f(X,)ift 2 6I(H), (t2
0). Then we have the following:

(19) vrli qln?) = By(SZ5M(1 = 7)r(Xs, A | Xo = i, )

+ By((1 = 7)1 Xo =1, 9)u-(jlg) (i € S).
From irreducibility of the Markov chain induced by ¢(7), it holds (cf. [7]) that
(15) E (0% Xy =4,q) < oo forall i€ S.

Concerning with the second term of the right-hand side in (14}, since lim, E}E =
—n {n 2 1), we have that



NuGiojla)/m | N1 10 | sx10° | 10% | 5x10f | 10° 108
0.5 | 0.1125 | 0.1290 | 0.1336 | 0.1446 | 0.1483 | 0.1540
Na(L1]1)/n 02 [ 0.1140 | 0.1294 ] 0.1338 | 0.1447 | 0.1483 | 0.1541
' 0.1 | 0.1140 | 0.1294 | 0.1338 | 0.1447 | U183 [ 0.15aT
5.01 10.1048 | 0.1274 | 0.1328 | 0.1445 | 0.1482 | 0.1540
0.5 | 0.0448 | 0.2761 | 0.2853 | 0.2985 | 0.3020 | 0.3087
N(1,2|1)/n 02 | 02308 | 0.2751 | 0.2848 | 0.2083 | 0.3020 | 0.3087
i, 0.1 | 02418 | 0.2755 | 0.2850 | 0.2984 | 0.3020 | 0.3087 |
0.0T [ 02228 | 0.2713 | 0.2828 | 0.2979 | 0.3018 | 0.3087
0.5 | 0.0560 | 0.0284 | 0.0226 | 0.0125 | 0.0005 | 0.0046
Na(1,1[2)/n 0.2 100670 | 0.0312 | 0.0240 | 0.0128 | 0.0007 | 0.0046
' 0.1 {00670 | 0.0312 | 0.0240 | U,0128 | 0.0007 | 0.0046
U.0T [ 0.0045 | 0.0370 | 0,0269 | 0.0134 | 0.0100 | 0.0046
0.5 | 0.0200 | 0.0142 | 0.0105 | 0.0058 | 0.0048 | 0.0023
Na(1,212)/n 0.2 1 0.0340 | 0.0154 | 0.0114 | 0.0059 | 0.0048 | 0.0023
: 5.1 | 0.0320 | 0.0050 | 0.0112 | 00050 | 0.0048 | 0.0023
0.00 1 0.0440 | 0.0076 | 0.0126 | 0.006L | 0.0050 | 0.0028
5.5 1 0.0260 | 0.0168 | 0.0137 | 0.0079 | 0.0061 | 0.0031
Na(2,21)/n 03 [ 0.0220 | 0.0160 | 0.0133 | 0.0078 | 0.0061 | 0.0031
' 01 | 0.0230 | 0.0160 | 0.0133 | 0.0078 | 0.0061 | 0.0081
0.01 00220 | 0.0180 | 0.0133 | 0.0078 | 0.0061 | 0.0031
5.5 1 0.0240 | 0.0274 | 0.0213 | 0.0198 | 0.0009 | 0.0047
No(2,3]1)/ 02 1 0.0430 | 0.0268 | 0.0210 | O.0127 | 0.0009 | 0.0047
’ 01 | 0.0420 | 0.0268 | 0.0210 | 0.0127 | 0.0005 | 0.0047
0,00 [ 0.0410 | 0.0266 | 0.0200 | 0.0127 | 0.0008 | 0.0047
0.5 | 0.2727 | 0.2901 | 0.9961 | 0.5042 | 0.3068 | 0.3110
Na(2,112)/n 02 T 02727 | 02903 | 0.0062 | 0.3042 | 0.3068 | 0.3110
ni 0.1 02727 | 0.0003 | 0.2962 | 0.3042 | 0.3068 | 0.3110
0.01 | 0.2657 | 0.28%7 | 0.2954 | 0.3041 | 0.3067 | 0.3110
65 | 0.1638 | 0.1880 | 0.1935 | 0.9002 | 0.2022 | 0.2066
N (2,2(2)/ 02 | 0.1598 [ 0.1866 | 0.1928 | 0.2001 | 0.2021 | 0.2066
i 0.1 | 01508 | 0.1806 | 0.1928 | 0.2001 | 0.2021 | 0.2066
0.01 | 0.1588 | 0.1864 | 0.1027 | 0.2001 | 0.2021 | 0.2066
0.5 | 0.0060 | ©0.0026 | 0.0010 | 0.0007 | 0.0005 | 0.0001
Na(3,3(1)/n 5.2 0.0050 | 0.0024 | 0.0018 | 0.0007 | 0.0005 | 0.0001
; 0.7 [ 0.0060 | 0.0024 | 0.0018 | 0.0007 | 0.0005 | 0.0001
5.07 | 0.0060 | 0.0024 | 0.0018 | _0.0007 | 0.0005 | 0.0001
05 | 0.0440 | 0.0274 | 0.0213 | 0.0128 | 0.0099 | 0.0047
Na(3,212)/n 021 0.0420 | 0.0268 | 0.0210 | 0.0127 | 0.0009 | 0.0047
i 0.1 00830 | 00568 | 0.0010 | 0.0127 | 0.0000 | 0.0047
0.01 | 0.0410 | 0.0266 | 0.0209 | 0.0127 | 0.0098 | 0.0047

Table 4.4: Relative frequency of N{i,jla)/n

lim inf, o 2 {E,((1 — 1) | Xo = i,q) — 1}
(16) > % liminf, 0 &P (07 = n | Xo =1,9)
==Y nP(c’=n ] Xo=1,q) = —Ey{0? l Xo=1,9).
On the other hand, from (14) it holds that v.(¢,q) — v(7,q) 2 v (4, ql7?) — v-(4,q) 2

— ||| Ey(07] Xo = in)"*‘{E“f((l_T)gj!XO = 4,q)—1}vr(
Thus, by (14), (16) and Lemma 1.2(iii)
—limsup,_o({l7l] + |7v-(7, ) Ey(0?1Xo = 4,9) =
—o0. Similarly, we get that liminf, o(v-(j,q) — v-(%,9)) .
4,g) > —oo, and hence lim sup,_o(v- (i, @) = (4, 9)) < (Irll+ (i, D)) By (' Xo = 5,0)
o0. If we put M := max; jes(|r]l + 1¥(4, @) B+(07| Xo = i, ), (7) follows, which completes

the proofy

Proof of Theorem 2.1

we have that liminf, . (v-(4,¢) — vr(7,9))
—(I7ll + [9(G, DN Ey (0| Xo = 1,9)
Z —(lirll + [¥(E, D)) Ey{o*| Xo

2
>

<

For any fixed g € S, let u,(j) = v-{j, q) — v-(io, g) for each j € S. Then, from (9) we get

A7) wrli) = maxaealr(ia) + Tyes 2 @ur (i)} — 7 Tyes wive(ii0) (1€ 8).

By Lemma 1.2, lim,_g 7v.(j, q) = ¥(4,¢)- Also, from Lemma 2.1, there exists a sequence
(1) with 7, — 0 and u,,(j) — u(j) as I — oo for some u € B(S) and all j € S. Thus,
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j,q) where [|r]| = maXieseealr(i, a)l-
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letting [ — oo in (17) with 7 = =, we get (10) with ¥(q) = >, gu;%(j, ). Applying

Lemma 1.1, we observe that 1(g) is independent of p € P(S), so that (i) and (ii) follows.y

Proof of Lemma 3.1

For notation simplicity, for any fixed ¢ € Q* we put P(-) = P(:|Xp = 4,¢). From the

definition of the communicating MDPs and (i) in Lemma 3.1, we have that there exists

d > 0 such that

(18) P(X,=1i,A;=a for some t with n ¢t Sn+ N|H,) 2§l y
foranyn 2 0andi € S,a € A

Let B, := {0™(i,a) =t for some n = 1}. Then, we observe that W (%, a) = limsup,_,, B =

(liminf, . Bf)°, so that it holds that

(19) P(W(i,a)) = 1 — P(liminf, ., BY).
For any positive integer with L > n, let [ = [(L—;,")], where for a real number z, [z]

is the largest integer equal to or less than z. Then, we have from (19) and (ii) in

Lemma 3.1 that P(NE, Bf) £ PN oo N1 Be) < {1 — PIUHY- lBt}} q1-

PIUE ™ BN B} S (1 efloyoy) -+ (L =860, ) S e Z B

0 as L — oo, which implies that limy—.., P(N, Bf) = P(N2, BE) = 0 for all n > 1.

Thus, from (19) P(W(4,a)) = 1, which implies P(W) = 1,4

Proof of Lemma3.2

For each i € S and a € A, we show by induction that #7(ali) 2 byym (n = 1) for some

m 2 1. By (i) of Condition A, there exists an integer rn for which #§(ali) > by, foralli € S

and a € A, such that it holds from (13) and the property of ¢ that #](ali) = #(7Z(ali)} >

B(bm) = b1 for @ # @1(3) and 77(a;(i)|i) > 75 (@1(3)}3) > b > bmyy. For n > 1, it holds

from the assumption of the induction that 77 (ali) 2 ¢ (77(ali)) Z ¢(buim) = buymaer-

Thus, from (i) of Condition A, Lemma 3.1 shows that Pz (W|Xy = i,q) = 1 for ¢ € Q¥,

which means that lim,_,o, Ny(ila) = 00 Pi-(|Xg =1, q)-a.s. By applying the law of large

numbers(cf. [2]), we get (i). Also, (ii) and (iii} follows clearly from (i).y

Proof of Theorem 3.2

Let g € Q*. Foreacht 2 0, let &, := (1—7),(Xe) —{r(Xe, Ap)+(1—=7)0( Xop1)} andé,(5) =
,,r(ét]Ht,Xt =7,q). Then by the stability theorem(cf. [13]), we get

(20) hmTHoo T_-H' Zt=0{5t - 51:(Xt } = O Pﬁ-r("XQ =1, q)-a, 8.

On the other hand, it holds that &:(5) = 9:(j) — 3 ,ca{{r(4, a) + (1 ~7) X5 2ix(a)B:(k) }

7if (alj)}~75:(4). So, by (ii) and (iii) of Lemma 3.2, imyo 6:(5) = ~7v-(4,q), Pi(-|Xo =
i q) -a.s. Thus, from (20) it holds that
minges —7v.{i,¢) < liminfy_ o T‘lﬁ Z?_ 5

< lim SUPT 400 T47 T+1 Et =0 5t maX;es _TIU'T(Z Q)

However, Y.L (8 = — S0 #( Xy, Ay) + (1 — )Zg o(B(Xe) — B(Xe41)), so that by
(11) of Lemma 3.2 limsupy. o, (iminfr_o) 725 | Ze—o ¢ = Hmsupr_,o (liminfr ) —
T +1 Ef_ 7(Xt, Ay). Thus, applying Fatou’s Lemma, from (21) we get
(22) minies T, (4, q) < ¢{i, g|77) £ maxes Tv-(i, ).
By Lemma 1.2 and Theorem 2.1 (i), im_ 7v.(i, g) = 1)(¢), which implies from (22) that
Y5, ql77) — (q) as 7 — 0. This completes the proof, '

(21)
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