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On dense ideals in commutative Banach algebras

tHEERE AFEER HLMg
Jyunji Inoue (Hokkaido University)

This note is based on joint works with Sin-Ei Tekahasi (Yamagata University). |

Abstract Segal algebras are dense ideals of group algebras of locally compact groups,
which constitute Banach algebras with respect to some norms and have some homogeneous
structures. Since H. Reiter introdued this notion in 1965, many interesting and important
results on Segal algebras have been accumulated. It is interesting that some properties of

_ group algebras are hereditary in Segal algebras, but other’s are not. Segal algebras may
be regarded as generalizations of group algebras.

On the other hand, a generalization of the notion of Segal algebras to a notion on more
general Banach algebras are attempted by J. T. Burnham and otheres.

In this note we fix a class of commutative semisimple Banach algebras, denoted by A,
and define Segal algebras in A, which are generalizaitions of the classical Segal algebras.
Then we define a new class of Segal algebras in A, and study some properties of them.

§1. Introduction In this note G stands for a non-discrete locally compact
abelian group (LCA group) with character group G. We denote by A a commu-
tative semisimple Banach algebra which satisfies the following properties;

(o) A has bounded approximate identities,
(8) (A, | || 1) forms a Wiener algebra,

where (4, | || 4) denotes the Banach function algebra on ®4(the maximal ideal
space of A) of Gelfand transforms of A with norm || |4 carried over from A. For
the definition of a Wiener algebra, we refer to [5, chapter 2.

As examples of these A, we quote these algebras; group algebras L!'(G) of LCA
groups G, the Lipschtz algebra Lip§(R)(cf. [3]), C*-algebras Co(X) of non-compact
locally compact Hausdorft spaces X, and some of thier ideals and quotient algebras.

In §2, definitions and results concernig normed ideals and Segal algebras are in-
troduced briefly. In §3, notions of normed ideals and Segal algebras in L'(G) are
generarized to notions of normed ideals and Segal algebras in A, and the results
stated in §2 are generarized to the results on the normed ideals and Segal algebras
in A. In §4, we introduce a class of Segal algebras in A and study thier properties.

§2. Classical Segal algebras
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In this section, we state the definitions and results concerning the theory of Segal
algebras in L'(G), which are nessesary to state our results later.

Remark 1. Segal algebras are defined in a group algebra on a locally compact
group.([5]) But in this note, we restrict ourselves to the commutative case. By
"classical Segal algebras”, we refer to Segal algebras in L!(G) on a non-discrete
LCA group G.

Definition 1. (cf. [5]) A subalgebra S of L!(G) is said to be a Segal algebra if
it satisfies the following conditions.
(So) S is dense in L!(G).
(S1) S is a Banach space under some norm || - ||s, and

Iflls 2 flle (F€8)

(Sg) & is translation invariant ;
feES=>f,eS (yel)
and for each f € S the mapping y — f, of G into S is continuous.

Here we review typical examples of Segal algebras from [6].

Example 1. Let S := {f € C(R) : M(f) < oo}, where M(f) := 3", .c 7 8UDo<e<1 |
f(x +n) |. Then S is an ideal of L'(R) and M(:) is a complete algebra norm
on S, but not translation invariant. So, if we renorm M(:) by || - ||s, where
Iflls := sup{M(f,) : ¥y € R}, then || ||s is a translation invariant norm on S
which is equivalent to M(-), and (S, || ||s) becomes a Segal algebra in L'(R).

Example 2. S,(G). For each p(1 < p < 00), put

8p(G) := {f € L'(G) : ||flly < 0o}, IIflls, == I Fllx + 1 fllps
then (Sp(G), || lls») is a Segal algebra in L'(G).

Example 3. A,,(G),A,(G). Let u be an unbounded positive Radon measure
on G. For each p(1 < p < ), put

Aup(@) = {f € IMG): f € PWY, Wfllug = IF Il + I Flleogo,

then (A,p(G),|l llup) is & Segal algebra in L}(G). Especially, in case u is a Haar
measure mg of G, we use, for this Segal algebra, an expression (4,(G), |l ||4,),
instead of the expression (Am, p(G), || llmg.0)-
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J. Ciglar [2] Intoroduced a notion of normed ideals in L'(G), which is a general-
ization of the notion of Segal algebras, and gave a necessary and sufficient condition
for a normed ideal to be a Segal algebra. Also, M. Riemersma [7] gave another
nesessary and sufficient conditions for a normed ideal to be a Segal algebra.

Definition 2. (cf. [2]) Let AV be a linear subspace of L'(G). N is called a normed
ideal in L'(G) if N satisfies the following condtions;

(a) NV is a dense ideal in A,

(b) NV is a Banach space for some norm || || such that

Il < Nflly (f €N,
Ifglw < Nflallgllv (f € L'(G),9 € N).

Next we state remarkable properties of Segal algebras or normed ideals.

Theorem A. If NV is a normed ideal in L'(G), we have;

(i) If U is a neighbourhood of 7, € G, there is an f € N such that supp f C U
and f(y) =1 for every v in a neighbourhood of .

(ii) If K,U C G such that K is compact and U is open with K C U, then there
is an e € N such that é(y) =1 (y € K) and supp é C U.

(iii) LL(Q) is contained in NV, where L!(G) := {f € L*(G) : supp f is compact}.

Theorem B. ([2], [5]) For a normed ideal A, the following (a), (b), and (c) are
equivalent each other. :

(a) N is a Segal algebra.

(b) N has approximate units, that is;

VieNVe>0,3eeN; s.t. ||f—fxe|| <e.
(€) N = Np, where A, is the norm closure of LL(G) in V.

Theorem C. (H. Reiter) Let S be a Segal algebr in L'(G).

(i) The ideal theory of S is the same as that of L'(G). More precisely, if Z is a
closed ideal of L!'(G) then TN S is a closed ideal of S, and conversely each closed
ideal of & is of this form for a unique closed ideal Z of L*(G). ‘

(i) The maximal ideal spaces of S and L'(G) are homeomorphic. We can nat-
urally identify ®s with G, that is, the Gelfand transform of S is equal the Fourier
transform restricted to S.

Theorem D. (i) Let S be a Segal algebra, and let {ex}rea be a bounded ap-
proximate identity of L'(G) composed of elements in LL(G). Then {ex}ren is a



bounded approximate identity of S which is bounded with respect to the multipli-
cation oeprator norm;

[Tt llep := sup{llfglls : g € S, llglls <1} (f € )

(ii) If a Segal algebra S has a bounded approximate identity, then we have § =
LY(G).

Theorem E. If (Sy,|| ||s,) and (Ss, || ||s,) are Segal algebras, then 8 := & N S;
becomes a Segal algebra with respect to the norm || |ls = || ||s, + || lls:-

It is known that Segal algebras are normed ideals ([2]), and with the virtue of
Theorem B, we can define Segal algebras in A, which are generalizations of classical
Segal algebras

In the next section, we will give precise definitons of normed ideals and Segal
algebras in A, and then we will show that Theorem A, B, C, D and E above are
also valid for all nomed ideals or all Segal algebras in A.

§3. Definitions and fundamental propreties of normed idesls and Segal
algebras in A

Recall that A stands for a semisimple commutative Banach algebras with the
properties; '

() A has bonded approximate identities; here we fix one, say,
{ea}ren With suppyepllealla = M < oo.
(8) (A, |l1) forms a Wiener algebra.

® 4 denotes the maximal ideal space of A. For z € A, 1 is the Gelfand transform
of z. A, is the set of all z € A such that supp %(the support of ) is compact.

Since A, is dense in A by (8), we can assume without loss of generality that
{ex}xea is contained in A..

In [1) Burnham defined abstract Segal algebras (ASA) in general Banach algebras,
which is a generalization of the Cigler’s normed ideals [2].

In this section, we will define ’Segal algebra in A’, which is a generalization of
classical Segal algebras.

Definition 3. (cf. [2]) An ideal A in A is called a normed ideal in A if N satisfies
the following condtions;

95



(a) NV is dense in A,
(b) N is a Banach space for some norm || || such that

lalla < llally (aeN)
lazlw < lallallzily (a € Az € N).

Definition 4. (cf.[7]) A normed ideal (N, ]| |lx) in A is called a Segal algebra in
A if N has approximate units, that is, A satisfies;

Vz € N, Ve > 0, 3e € N such that ||z — ze|y <€

Under the above definitions of normed ideals and Segal algebras in A, all the
therems(Theorem A, B, C, D and E of the previous section)are also valid. Although
the proofs of them are the same as that in the case of classical ones, we will give
thier proofs for the sake of completeness.

Theorem A’. If N is a normed ideal in A, we have;

(i) If U is a neighbourhood of o € D4, there is an x € N such that £(p) =1 for
all @ in a neitbourhood of wo, and that supp £ C U.

(i) If K,U C @4 such that K is compact and U is open with K C U, then there
is an e € N such that é(p) =1 (p € K) andsupp é C U.

(iii) 4. C V.

Proof. (i) Since NV is dense in A, there exists z € N such that £(p,) # 0.
Choose y € A such that §(po) # 0 with supp § C U, and choose z € A such
that 2(¢) = 1/(2(v)P(p)) for all ¢ in a neighbourhood of wo. Then if we put
e = zyz € N, it is easy to see that e satisfies the desired properties. ,

(ii) For each ¢ € K, there exists( by (i)) an a, € N and a neighbourhood V,,
of ¢ such that supp @, C U and @, = 1 on V,,. We can choose a finite number
of elements ¢y, ...,on € K such that ULV, D K. Then if we define e € N by
1—e = (1-a4) (1 - a,,), then it is easy to see that e satisfies the desired
properties.‘

(iii) Let £ € A, be arbitrary, and put K := supp & Then, by (ii), there is an
e € N such that é =1 on K, and hence . z = ze € N. Thus A, is contained in V.
Q.E.D.

Theorem B’. (cf.[2]) Let {ex}ren be a bounded approximate identity of A con-
tained in A. such that supye, llealla = M < co. If N is a normed ideal in A, the
following (a), (b), and (c) are equivalent each other.

(a) NV is a Segal algebra in A.
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(b) {ex}rea is an approzimate identity of N

(€) N = No, where Ny is the norm closure of A; in N.

Proof. (b) implies (a) is trivial by Definition 4. To prove (a) implies (c), let z € N
and € > 0 be arbitraly. Choose e € N and Xy € A such that ||z — ze|y < /2 and
lleex, — €lla < €/(2||z||y). Then eex,z € A,, and

2 —eexozliv < llz—ezlly + llex — eexozlly
< €/2+||zllvlle — eexlla

/2 + lolv (¢/ @lalln)) = .

IA

Thus N = Np.
To complete the proof, suppose (c) and let £ € A and 0 < ¢(< 1) be arbitrary.

Then there is an z. € A such that |z — z |y < 2(M—€+1_) Choose e € N and
€
Ao € A such that z.e = z, and |lexe—e|la < =———= (A 2= A¢). Then we have
; o= seend e el < sy 42N

lextee — zeellw < llexe — ellallzella

€ €
———— e <=-(A=>A
2(“1‘6”/\/'{" 1) ”wS“N =9 ( = 0)’

lleaze — zela

IA

and hence we have

lexz —zlly = llea(® — ze) + (eate — ze) + (2 — z)|Iw
< lleallallz — % v + llexze — zellw + llze — zlin
< (M+ 1)2(M+ ) te/2=¢€ (A2 )

Thus we get that {ex}sca is an approximate identity of A, and (b) follows. Q.E.D.

Theorm C’. Let S be a Segal algebra in A.

(1) The ideal theory of S is the same as that of A. More precisely, if Z is a closed
ideal of A then TN S is a closed ideal of S, and conversely each closed ideal of S is
of this form for a unique closed ideal T of A.

(i) The maximal ideal spaces of S and A are homeomorphic. We can naturally
identify ®s with ®4, that is, the Gelfand transform of S is equal to the Gelfand
transform of A restricted to S.

Proof. (i) We denote by Ideal(A)(resp.Ideal(S)) the set of all the closed ideals
of A(resp.S). For each T € Tdeal(A), we have 7(Z) := TN S € Tdeal(S) by the
continuity of the identity map of S into A. We will show that the map 7 is a bijection
of Tdeal(A) and Tdeal(S).

(a) Let J € ITdeal(S) be arbitrary. Denote by 7 the closure of J in A. One
can show easily that J € Ideal(A), and we omit its proof. For each z € T NS
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and € > 0, there exists e € S such that ||z — ze||s < €/2. Choose y € J such that
lz = ylla <e/(2llells). Then we have

llz — zells + ||lze — yells < €/2+ ||z~ yllallells

le—yells < :
< g2+ ——
/2% 3els)

lells = €.

Since ye € J and J is closed, we have £ € J. Thus 7 NS = J for each
J € Tdeal(S), which implies that = is onto.

(b) Let Z € Ideal(A) be arbitrary. For each z € T and € > 0, there exists e € A
such that ||z — ze|l4 < £/2. Since A, is dense in A, we can choose ¢’ € A, such that
lle—€'lla < e/(2]|z]l4). Then we have

lz—z¢lla < llz—zella + [lze — ze'l| 4
< e/2+||zllalle—€lla<e.

Since z¢’ € TN A, and A, is contained in S by (iii) of Theorem A’, we have
I =InNS8. This proves that 7 is one to one.
(ii) For the proof of (ii), we refer to [1, Theorem 2.1]. Q.E.D.

Theorem D’. (i) Let S be a Segal algebra in A, and let {ex}rea be a bounded -

approzimate identity of A composed of elements in A.. Then {ex}ren 18 a bounded
approximate tdentity of S which is bounded with respect to the multiplication oeprator
norm;

[ Tzllop := sup{llzylls : ¥ € S, lwlls <1} (z €S).

(ii) If a Segal algebra S in A has a bounded approximate identity, then we have
S=A

Proof. (i) {ex}rea is an approximate identity of S by Theorem B’. It is multipli-
cation operator bounded since for each Ay € A, '

ITey llop = sup  lexzlls < sup  flexgllalizlls < suplleals < oo.
z€S, ||z s<t z€8 ||z||s<1 A€A

(i) Suppose that S has a bounded approximate identity {u,}.eq such that
SUD,eq lluwlls = My < 0.

Let z be arbitrary in A.. Choose wy € € such that ||u,z — z||ls < ||z||a. Then
lzlls < lzlla + Nuwllsllzlla < (1 + M)|lz||la. Since A, is dense in S we get that
lzlls < 1+ Mp)|lz]la (z € S). Therefore || ||s and || |4 are equvalent norm on,
which implies that A = S. Q.E.D.
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Theorem E." If (81,]] |ls, ) and (S,, || |ls,) are Segal algebras in A, then S :=
81 NS, becomes a Segal algebra in A with respect to the norm || lls = || lls, + 1 llsz-

Proof. It is easy to see that (S,]| ||s) is & normed ideal in A, and we omit its
proof. If {ex}xca is a bounded approximate identity of A contained in A, then by
Theorem B’, {ex}xea is an approximate identity of (S;,|| |ls) i =1,2. Letz € S
and € > 0 be arbitrary, and choose A;(i=1,2) such that ||z —exz|ls, <e€/2 (A2 N)
for i = 1,2. Therefore if we take A3 € A such that A\; 2> A; (i = 1,2), then

Iz — zealls = ||z — zexlls, + |o — zealls, < €/2+€/2=€ (A= As).

Thus {ex}xea is an approximate identity of (S, || ||s), and hence the assertion of the

theorem follows from Theorem B’. Q.E.D.

§4. Segal algebras induced by local multipliers of A

Definition 5. Let 7 be a complex continuous function on $4. We call 7 a local
multiplier of A if we have 27 € A (z € A.). The set of local multipliers of A is
denoted by Miac(A).

Definition 6. If 7 € M,.(A), we put A, := {z € A: #7 € A}. Obviously,
A, is a linear subspace of A which contains A.. For each z € A,, there is a unique
a; € A such that @; = 7, and set

Ill- = llzlla + lloclla (z € A).

It turns out that || || is a complete algebra norm on A, as the following proposition
shows.

Proposition 1. For each 7 € Mi,(A), (A, | ||-) is a Segal algebra in A. More-
over, if sup{| 7() |: ¢ € @2} = o0, we have A # A..

Proof. It is easy to see that A, is a linear subspace of A. For each a € A and
T € A,, (az) = &(27) € A, and hence A, is an ideal of A. That A, is dense in A
follows from the fact that A, C A,.

Next we will show that || || is a complete norm on A,. Note that the map: z — a,
is a linear transformation from A, to A, and hence it is easy to see that || ||, is a
norm on A,. Thus we have only to show that | || is a comple norm. To see this, let
{z.} be a Cauchy sequence in A,. Then lim,, n—o0 |Zm — Zalla = liMpy noo 12,, —
z,]l4a = O and hence there exist a,z € A such that lim,_. ||z — Z,/|l4 = 0 and
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JiMy o0 || — @2, ]| 4 = O because || ||4 is a complete norm on A. Since

A

2(p)T(p) = lim Zo(p)7(p) = lim dz,(p) = a(p)

n—oo n—oo

for all p € @4, it follows that £7 =4 € fi, and hence z € A, and a = a,. Therefore
lim ||z ~ 2/l = lim (|lzn = 2lla + l2c, = oxlla) = 0.
n—oo n—+cod

Consequently, || ||- is complete.

Next let {ex}rea be an approximate identity of A. As stated above, {es}rea can
be chosen in A, and hence in A.. We show that {ex}xca 18 an approximate identity
of A,.

Let z € A- and € > 0 be arbitrary. Since

(exx — 2)1 = (exx)r — &7 = éxET — &7 = €\l — bz = (er0z — 0)",

it follows that |lexz — z||- = ||eaZ — z||4 + |lexdz — @z || 4. Then we obtain the desired
result by taking the limit with respect to A € A.

We further see that ||laz|l, < |lallallz]|- for all a € A and z € A,. In fact, let
a € Aand r € A,. Since (az)*r = 427 = Gd; = (aa,)", it follows that

lazlls = llaz||la + llaaz(la < llallallzlla + llaliallac]la = llallallzll-,

and hence we obtain the desired result. Q.E.D.

Definition 7. For 7 € M.(A), we call (4,,]| |l) the Segal algebra in A induced
by 7.

Proposition 2. Ifz € A such that supp £ is o-compact but not compact, the we
have z & N{A, : T € Mio(A)}.

Proof. Let z be an element in A such that supp % is o-compact but not compact,
and denote the open set {¢ € @4 : #(p) # 0} of &4 by Q. We argue in the
topological space X := Q(= supp %), and for E C X, E° means the interier of E
in X. Since X is o-compact, there exists a sequence {K,} of compact seubsets of
X which satisfies; (1) K; C K3y, for j = 1,2,..., (ii) X = UR,K;. In fact, since

X is o- compact, it is easy to see that we have an expression X = U2, U;, where

{U; : j = 1,2,..} is an increasing sequence of relatively compact open subsets of
X. Put Ky = U;. Next choose a positive integer n such that U, properly contains
K, and put K; = U,. When K, K,...,K,, have defined, choose n such that U,
properly contains K. Put K1 := U,. In the way, we can get a sequence {K,}32,
which satisfies (i) and (ii).
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Since z ¢ A.,  is not contained in any Kj,j = 1,2,...., and there exists an
infinite strictly increasing sequence of positive integers ny, ns, .... such that

Jp; € Kn,,, \ Ky such that £(p;) #0for j = 1,2, ...

For each positive integer j we can choose z; € A, such that Z;(yp;) = 1/£(p;) and
supp &; C ((K;,,, N Q) \ Ky,). If we define a complex function 7 on &4 by

Q) = Zi(¢) i 9 € (Kn,,, \ Kn,) for some 7,
Tl0 ifpe(@a\X)UKy,.

Note that supp 7 N K;j o= u{=1supp T C 2,7 = 1,2,... and hence supp 7 C Q.
We claim here that 7 is continuous in ®4. To prove the claim, we may only show
that 7 is continuous at each point in supp 7. Let ¢ € supp T be arbitrary. Then
there exists j such that ¢ € K; | Since 7= Y1 % on K3, and K3, NQisa
open set of ®4 which contains ¢, it follows that 7 is continuou at ¢. Thus the claim
is proved.

If y € A., we can choose j such that supp §N X C K3,.,- Then it is easy to see
that 7 = Y°4_, §%x € A, and hence 7 € Mye(A). Moreover z & A, since 0 — 00
and 2(p;)7(v;) =1 j =1,2,... This complete the proof. Q.E.D.

Corollary 3. Suppose that ®4 is o-compact, or discrete. Then we have N{A, :
TE M;w(A))} = A..

Proof. For each z € A, supp f is o-compact, and hence the assetion follows from
Proposition 2. Q.E.D.

Corollary 4. Let G be a non-discrete locally compact abelian group. Then we
have N{LY(G), : T € Mioe(L}(G))} = LHG)...

Proof. For each f € L'(G), supp f is o-compact, and hence the assetion follows
from Proposition 2. Q.E.D.

Let S be a Segal algebra in A. A multiplier of S to A is a bounded linear operator
of S into A such that (T'z)y = z(Ty) for each z,y € S . The set of all multiplies of
S to A is denoted by M(S, A).

Proposition 5. If S is a Segal algebra in A and if T is a linear operator of S
into A, the following (a) and (b) are equivalent each other.

(a) T € M(S,A).

(b) There exists an unique continuous function 7 on &, such that Tz = & (x €
S).
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Proof. By Theorem C’, we can naturally identify ®s with @ 4.
(a)=> (b). For each ¢ € ®4, choose 2 and y € S such that £(p) # 0, and
9(¢) # 0. Then we have (Tz)"(©)§(¢) = 2(¢)(Ty)"(p). Hence we have

(T2)(9)/2(0) = (Ty)"(©) /(). ccvrcnn (1.

Define a complex function 7 on ®4 by

() 1= (T2)*(9)/2(p)-......-(2).
The definition is well defined by (1), and by (2) we get

(T2)Np) = 2(0)T(p) (T E€S,p € B4)......... (3).

Note that (3) is true even if Z(¢) = 0. For, in this case, choosing y € S with
#(p) # 0, we have (T'z)"(p)§(¢) = £(¢)(Ty)"(¢) = 0, and hence (T'z)"(¢) = 0.
By (2), it follows that 7 is continuous on ®,4. The uniqueness of 7 easily verified
by the routine procedure.
(b)= (a). For each z € S, there exists a unique a, € A such that

(a:)"() = 2(p)T(9) (p € Ba).

We define Tz = a, (z € S). Then that T satisfies the property (T'z)y = z(Ty) for
2,y € S is obvious, and the boundedness of T is easily shown by using the closed
graph theorem. Q.E.D.

Definition 8. Supposé S is a Segal algebra in A. If T € M(S, A) there is , by
Proposition 5, a unique 7 € C(®4) such that (Tz)" = £7. We denote this 7 by T,
and call the Gelfand trasnsform of T. We set M(S, 4) := {T': T € M(S, A)}.

Remark 2. (1) If 7 is a local multiplier of A, we have, by Propositin 5, 7 €
M(A4,, A).

(2) If S is a Segal algebra in A, and if T € M(S, A), it is eagy to see that T is a
local multiplier of A which satisfies S C A;.

(3) If T € Muoo(L}(G)) such that 7 = ji for some p € M(G), we have I}G), =
LY(G) and || ||- is equivalent to || |1

Proposition 6. If1 < p < 0o and if 7 € Mi(L(G)) such that S:(G) € LMG),,
then we have T = i for some u € M(G).

Proof. It follows that 7 € M(S,(G), L}(G)) by the condition on 7. Since it is
known that M(S,(G), LX(G)) = {i : u € M(G)} ([4, p. 79 Theorem 3.5.1]), we
have 7 = [i for some 7 = [ for some u € M(G)). Q.E.D.
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Lemma 7. If G is non-compct, and if p (1 < p < 00), then we have

M(4(G), IH(G)) = (i :€ M(G)}. A

Proof. Let T € M(A,(G), L}(G)) be arbitrary. Observe that T is a bounded
function on G. In fact, if we choose e € A,(G) such taht £(0) = 1, then {e,(z) :=
e(z)(x,v);y € G} is a set of bounded functions in A,(G), and hence there is a
positive number M such that | &(7)T(y) |[< M (y € @). This with the relation
&(v) =1 (7.€ G) implies ||T|o < M.

From the relations; ||Tf{l; < [Tl f|l4, and

1T = ([ [fentmar) ™ <l i
we have

1T flaye) < ITUNFNap + 1T Neoll Flly < (ITH + 1T lloo)If Nty (F € Ap(G))-

Therefore T € M(Ap(G)). Since it is known that M(A,(G)) = {i: u € M(G)}
(cf. [4, p.204 Theorem 6.3.1]), we get the desired result. Q.E.D.

Proposition 8. Suppose G is non-comact and 1 < p < 0. If T € Mioe(L(G))
and Ay(G) € LY(G),, then we have T = ji for some p € M(G).

Proof. The assumptions on 7 implies that 7 € M(A,(G), L(G)). As the same
way as the proof of Proposition 6, with the aid of Lemma 7, we get that 7 = fi for

some y € M(G). Q.E.D.-

Remark 3. Proposition 6 (resp. Propsition 8) shows that there are no proper
Segal algebras in the type L'(G),, 7 € M(L'(G)) which contain Sp(G)(resp. Ay(G)).
Bu next proposition shows that this is not the case for the Segal algebras of type
A,1(G) of an infinite compact abelian group G.

Proposition 9. Let G be an infinite compact abelian group. Suppose that T €
Mio(LH(@R)) satisfies 0 < T and 8up.ca 7(7Y) = 00, and define an unbounded Radon
measure v on G by v := Tmg, where my is o Haar measure of G. Then we have

A,1(G) C LNG), # LMG).
Proof. For f € L'(G), we have
fedu@) o fé | Fr) | dr(mma() < oo
= fr e I}G)  I}(G) c LG
= f € LNG).,
and the result follows. Q.E.D.



Remark 4. For an infinite compact abelian group G, any complex function on el
belongs to Mi..(LY{(G)).
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