周期係数 2 階積円型方程式のグリーン関数の遠方での漸近形

村田 寛 (Minoru Murata)
東京工業大・理　Department of Mathematics, Tokyo Institute of Technology

土田 哲生 (Tetsuo Tsuchida)
名城大・理工　Department of Mathematics, Meijo University

1. Introduction

R^d での 2 階積円型作用素

\[L = -\sum_{j,k=1}^{d} \frac{\partial}{\partial x_k} (a_{jk}(x) \frac{\partial}{\partial x_j}) + c(x) = -\nabla \cdot a(x) \nabla + c(x), \]

を考える。ただし \(d \geq 2 \), \(\nabla = (\partial/\partial x_1, \cdots, \partial/\partial x_d) \) と
\(a(x) = (a_{jk}(x))_{j,k=1}^{d} \)。係数は \(R^d \)
上の実数値関数で \(Z^d \)-周期的、すなわち \(a_{jk}(x + m) = a_{jk}(x) \) と \(c(x + m) = c(x) \) が任意の
\(x \in R^d \) と \(m \in Z^d \) で成り立つとする。\(a(x) \) は対称な行列値の関数で

\[\mu |\xi|^2 \leq \sum_{j,k=1}^{d} a_{jk}(x) \xi_j \xi_k \leq \mu^{-1} |\xi|^2, \quad x, \xi \in R^d, \text{ for some } \mu > 0 \]

を満たすとする。\(c \in L^p_{\text{loc}}(R^d), \quad p > d/2 \), を仮定する。このとき \(L \) は定義域が

\[D(L) = \{ u \in H^1(R^d); Lu \in L^2(R^d) \} \]

の、\(L^2(R^d) \) での自己共役作用素である。

Bloch の理論をふりかえる。\(\xi \in R^d \) に対し

\[L(\xi) = e^{-i\xi \cdot x} L e^{i\xi \cdot x} = -(\nabla + i\xi) \cdot a(x) (\nabla + i\xi) + c(x), \]

\[D(L(\xi)) = \{ u \in H^1(T^d); L(\xi)u \in L^2(T^d) \} \]

とする。このとき \{\(L(\xi) \)\} は analytic family of type (B) ([Ka]) である。また \(L(\xi) \) はコンパクトなレゾルベントをもつ \(L^2(T^d) \) 上の自己共役作用素である。\(L(\xi) \) の固有値を重複をこめて

\[\lambda_{1}(\xi) \leq \lambda_{2}(\xi) \leq \cdots \]

とする。\(\lambda_{n}(\xi) \) は連続関数で \(2\pi Z^d \)-周期をもつ。また \(\lambda_{n}(\xi) = \lambda_{n}(-\xi) \) が成立つ。\(L \) のスペクトルは

\[\sigma(L) = \cup_{n=1}^{\infty} \{ \lambda_{n}(\xi); \xi \in (-\pi, \pi]^d \} \]

となる。さらに次が成立する。

(i) \(\min_{\xi \in R^d} \lambda_{1}(\xi) = \lambda_{1}(0) < \lambda_{1}(\xi) \) で \(\xi \in [-\pi, \pi]^d \setminus \{0\}. \quad [KS] \)

(ii) \(\lambda_{1}(\xi) \) は \(\{ \xi \in R^d; \lambda_{1}(\xi) < \min_{\xi \in R^d} \lambda_{2}(\xi) \} \) で実解析的で、nondegenerate な固有値である。

(iii) Hess \(\lambda_{1}(0) \) は positive definite である。[Pi]
W_{λ} を $\xi = 0$ を含む $\{\xi \in R^{d}; \lambda_{1}(\xi) < \lambda\}$ の接続成分とし,

$$\lambda_{\text{conv}} := \sup \{\lambda' \leq \min_{\xi \in R^{d}} \lambda_{2}(\xi); \text{for any } \lambda_{1}(0) < \lambda < \lambda', \lambda_{1}(\xi) < \lambda\},$$

(i) Hess $\lambda_{1}(\xi)$ は正定値であり,$\cup_{m \in \mathbb{Z}^{d}} (W_{\lambda} + 2\pi m) = \{\xi \in R^{d}; \lambda_{1}(\xi) < \lambda\}$。

とおく。そのとき $\lambda_{1}(0) < \lambda_{\text{conv}}$ であり, $\lambda_{1}(0) < \lambda < \lambda_{\text{conv}}$ ならば $\overline{W_{\lambda}}$ はコンパクトな

変性集合である。$X_{\lambda} := \partial W_{\lambda}$ とおく。X_{λ} は $N(\xi) = -\nabla \lambda_{1}(\xi)/|\nabla \lambda_{1}(\xi)|$, $\xi \in X_{\lambda}$ で向

き付けられた超曲面をし, $K_{\lambda}(\xi) = \xi$ でのガウス曲率とする。$s \in S^{d-1}$ に対し, $\xi_{s} \in X_{\lambda}$ が $s = \nabla \lambda(\xi_{s})/|\nabla \lambda(\xi_{s})|$ なるようにただ一つ存在する。$u_{\xi}(x) \in H^{1}(T^{d})$ を

$\lambda_{1}(\xi)$ に対する固定関数, すなわち, $(L(\xi) - \lambda_{1}(\xi))u_{\xi}(x) = 0$ とする。$u \in L^{2}(T^{d})$ に対し

$$||u||^{2} = \int_{T^{d}} |u(x)|^{2} dx$$

を積分値とする。$G_{\lambda \pm i0}^{(k)}(x, y) = \lim_{\epsilon \downarrow 0} \frac{d}{d\lambda}^{k}(L - (\lambda \pm i\epsilon))^{-1}$ の積分値とする。

この極限の存在は [Th, GN] においても知られている。つきの定理が目的である。

Main Theorem. $\lambda_{1}(0) < \lambda < \lambda_{\text{conv}}$ とする。$|x - y| \to \infty$ において

$$G_{\lambda \pm i0}^{(k)}(x, y) = \frac{1}{|\nabla \lambda_{1}(\xi_{s})|} \frac{u_{\xi}(x)u_{\xi}(y)}{||u_{\xi}||^{2}} (1 + O(|x - y|^{-1})),$$

がなりつ, ここで $s = (x - y)/|x - y|$。

Remark 1. $\lambda < \lambda_{1}(0)$ あるいは, $\lambda = \lambda_{1}(0), d \geq 3$, のときは, グリーン関数の漸近形は
すでに知られている ([MT]).

Remark 2. $G_{\lambda - i0}^{(k)}(x, y) = G_{\lambda + i0}(y, x)$ より, $G_{\lambda - i0}^{(k)}(x, y)$ の漸近形も求められる。

Remark 3. 漸近展開

$$G_{\lambda + i0}^{(k)}(x, y) = \frac{e^{i\pi(3-d)/4} e^{i(x-y) \cdot \xi_{s}}}{2\pi |x - y|^{d-1}/2} \frac{1}{|\nabla \lambda_{1}(\xi_{s})|} \frac{u_{\xi}(x)u_{\xi}(y)}{||u_{\xi}||^{2}}$$

・の $\xi = \xi_{s}$ での導関数で書ける。

も停留位相法の高次の項の計算により, 理論的には求められる。関数 $g_{j}(x, y)$ は $\lambda_{1}(\xi)$ と

$$\frac{u_{\xi}(x)u_{\xi}(y)}{||u_{\xi}||^{2}}$$

の $\xi = \xi_{s}$ での導関数で書ける。

2. *Sketch of the proof*

$L^{2}(R^{d})$ から $L^{2}((-\pi, \pi]^{d}, \frac{d\xi}{(2\pi)^{d}}; L^{2}(T^{d}))$ への作用素 \mathcal{U} を

$$\mathcal{U}f(\xi, x) := \sum_{m \in \mathbb{Z}^{d}} f(x - m)e^{-i(x-m) \cdot \xi}$$
で定義する。\(\mathcal{U} \) はユニタリ作用素であり

\[
\mathcal{U}^{-1}g(x) = \int_{(-\pi,\pi]^{d}} e^{ix \cdot \xi} g(x, \xi) \frac{d\xi}{(2\pi)^{d}}, \quad g(x, \xi) \in L^{2}((-\pi,\pi]^{d}; L^{2}(\mathbb{T}^{d}))
\]
となる。\(\epsilon > 0 \) に対し

\[
(L - (\lambda + i\epsilon))^{-1}f(x) = \mathcal{U}^{-1}((L(\xi) - (\lambda + i\epsilon))^{-1}Uf(x)
\]
と書ける。さらに \(\xi \) が \(X_{\lambda} \) の近傍にあるとき

\[
(L(\xi) - (\lambda + i\epsilon))^{-1} = \frac{P(\xi)}{\lambda_{1}(\xi) - \lambda - i\epsilon} + Q_{\lambda + i\epsilon}(\xi)
\]
と書く。\(P(\xi) \) は固有空間 \(\{ u \in L^{2}(\mathbb{T}^{d}); (L(\xi)-\lambda_{1}(\xi))u = 0 \} \) への直交射影であるので、\(P(\xi) \) の積分核 \(p(\xi; x, y) \) は

\[
p(\xi; x, y) = \frac{u_{\xi}(x)\overline{u_{\xi}(y)}}{||u_{\xi}||^{2}}, \quad x, y \in \mathbb{T}^{d}
\]
と書ける。したがって、\(\psi \) を \(X_{\lambda} \) の近傍での cutoff 関数として

\[
G_{\lambda + i\epsilon}(x, y) = \int_{(-\pi,\pi]^{d}} e^{i(x-y) \cdot \xi} \frac{\psi(\xi)p(\xi; x, y)}{\lambda_{1}(\xi) - \lambda - i\epsilon} \frac{d\xi}{(2\pi)^{d}}
\]
と書ける。ただし \(R(\xi; z, x, y) \) と \(Q_{z}(\xi; x, y) \) は \((L(\xi) - z)^{-1} \) と \(Q_{z}(\xi) \) の積分核である。この第二項は、任意の \(N \) で \(O(|x-y|^{-N}) \) となる。第一項について述べる。簡単のため \(d = 2 \) とする。\(s = (x - y)/|x - y| \) は \(e_{1} = (1,0) \) の近傍とする。\(\psi(\xi) = \psi_{A}(\xi) + \psi_{A'}(\xi) + \psi_{B}(\xi) \) と分ける。ここで \(\psi_{A} \) は \(\xi_{e_{1}} \) 近傍での cutoff 関数、\(\psi_{A'} \) は \(-\xi_{e_{1}} \) 近傍での cutoff 関数とする。積分変数を \((\xi_{1}, \xi_{2}) \rightarrow (\xi_{1}, \eta_{2}) \) と変換すると、ただし \(\eta_{2} = (\lambda(\xi) - \lambda) \) すると \(\xi_{1} \) 変数に関する部分積分により

\[
\int_{(-\pi,\pi]^{d}} e^{i(x-y) \cdot \xi} \frac{\psi(\xi)p(\xi; x, y)}{\lambda_{1}(\xi) - \lambda - i\epsilon} \frac{d\xi}{(2\pi)^{d}}
\]
\[
= \int e^{i|x-y|[s_{1}\xi_{1} + s_{2}\xi_{2}(\xi_{1}, \eta_{2})]} p_{B}(\xi_{1}, \eta_{2}; x, y) \frac{d\xi_{1}d\eta_{2}}{\eta_{2} - i\epsilon}
\]
\[
= (-i|x-y|)^{-N} \int e^{i|x-y|[s_{1}\xi_{1} + s_{2}\xi_{2}(\xi_{1}, \eta_{2})]} T^{N} p_{B}(\xi_{1}, \eta_{2}; x, y) \frac{d\xi_{1}d\eta_{2}}{\eta_{2} - i\epsilon}
\]
\[
= O(|x-y|^{-N}) \text{ for } (x - y)/|x - y| \sim e_{1};
\]
となる。ここで、T はある微分作用素で、また上の計算で $\partial_{\xi_{1}}[s_{1}\xi_{1} + s_{2}\xi_{2}(\xi_{1}, \eta_{2})] \neq 0$ を用いた。

$$\eta_{1} = \lambda_{1}(\xi) - \lambda$$

とする変数変換 $(\xi_{1}, \xi_{2}) \rightarrow (\eta_{1}, \xi_{2})$ によって、$\varepsilon \downarrow 0$ のとき

$$\int_{(-\pi, \pi]^{d}} e^{i(x-y)\cdot \xi} \frac{\psi_{A}(\xi)p(\xi;x,y)}{\lambda_{1}(\xi) - \lambda - i\varepsilon} \frac{d\xi}{(2\pi)^{d}} = \int_{(-\infty, \infty)\times R^{d}} e^{i[(x-y)_{1}\xi_{1}(\eta_{1},\xi_{2})+(x-y)_{2}\xi_{2}]} p_{A}(0,\xi_{2}; x, y) \left[\frac{1}{\eta_{1} - i\varepsilon} + \pi \delta(\eta_{1}) \right] d\eta_{1} d\xi_{2}$$

この積分の評価に次の補題をもちいる。

Lemma. $b(x) \in C_{0}^{\infty}(R)$ とし、$\varphi(x)$ を実数値 $C^{\infty}(R)$-関数とする。$supp\ b$ 上で $\varphi'(x) > 0$ とする。このとき任意の自然数 N 対し、$\nu \rightarrow \pm \infty$ において,

$$\int_{-\infty}^{\infty} e^{i\nu x} b(x) \frac{1}{x} dx = -i\sqrt{\pi/2} (\text{sgn} \ \nu \ast \hat{b})(-\nu) = \pm i\pi b(0) + O(|\nu|^{-N})$$

as $\nu \rightarrow \pm \infty$. ただし $\hat{b}(\nu)$ は b のフーリエ変換。一般的の φ の場合は、これをテイラー展開で近似すればよい。□

この Lemma より、任意の自然数 N 対し $(x-y)/|x-y| \sim e_{1}$ のとき

$$I_{A}(x,y) = 2i\pi \int_{R} e^{i[(x-y)_{1}\xi_{1}(0,\xi_{2})+(x-y)_{2}\xi_{2}]} p_{A}(0,\xi_{2}; x, y) d\xi_{2} + O(|x-y|^{-N})$$

この ξ_{2}-積分に停留位相法を適用して、$G_{\lambda+i\theta}(x, y)$ の主要部を得る。同様にして,

$$I_{A'} = O(|x-y|^{-N})$$

がわかる。

3. The limiting absorption principle

上の証明の副産物として極限吸収原理が直接的に導かれる。

$B_{s} \subset R_{1}$ を

$$B_{s} := \{ v \in L^{2}_{\text{loc}}(R^{d}); \|v\|_{B_{s}} := \sum_{j=1}^{\infty} R_{j}^{s} \left(\int_{R_{j-1}<|x|<R_{j}} |v(x)|^{2} dx \right)^{1/2} < \infty \}$$

ただし $R_{0} = 0$, $R_{j} = 2^{j-1}$, $j > 0$, で与えられる空間とする。共役空間 B_{s}^{*} は,

$$B_{s}^{*} = \{ v \in L^{2}_{\text{loc}}(R^{d}); \|v\|_{B_{s}^{*}} := \sup_{j \geq 1} R_{j}^{-s} \left(\int_{R_{j-1}<|x|<R_{j}} |v(x)|^{2} dx \right)^{1/2} < \infty \}$$

である。
Theorem. $\lambda_1(0) < \lambda < \lambda_{\text{conv}}$ とする. $(d/d\lambda)^k(L-(\lambda \pm i0))^{-1}$ は $B_{\frac{1}{2}+k}$ から $B_{\frac{1}{2}+k}$ への有界作用素である.

Proof. $|x-y| < 1$ では,

$$|G_{\lambda+i0}(x, y)| \leq \begin{cases} C|\log|x-y||, & d = 2, \\ C|x-y|^{-(d-2)}, & d \geq 3, \end{cases}$$

なので $G_{\lambda+i0}(x, y)\chi_1(|x-y|)$ を積分核とする作用素は $L^2(\mathbb{R}^d)$ での有界作用素である. $\chi_1(r)$ は $r=0$ 近傍で 1 の cutoff関数である.

$|x-y|$ が大きく $(x-y)/|x-y| \sim e_1$ のとき, 任意の自然数 N に対して

$$G_{\lambda+i0}(x, y) = I_A(x, y) + O(|x-y|^{-N})$$

$$= 2i\pi \int_{\mathbb{R}^{d-1}} e^{i((x-y)_{1}\xi_{1}(0, \xi_{2})+(x-y)_{2}\xi_{2})}p_A(0, \xi_2; x, y)d\xi_2 + O(|x-y|^{-N}),$$

であった. さらににある $C(\mathbb{T}^d)$-値の滑らかな φ, ψ を用いて, $p_A(0, \xi_2; x, y) = \varphi(\xi_2, x)\psi(\xi_2, y)$ とかける. χ を e_1 方向の錐に台をもつ cutoff関数とする. 任意の $f, g \in C_0^{\infty}(\mathbb{R}^d)$ に対し

$$\int_{\mathbb{R}^d} g(x)dx \int_{\mathbb{R}^d} \chi(x-y)I_A(x, y)f(y)dy$$

$$= \int\int_{\mathbb{R}^d \times \mathbb{R}^d} \int_{\mathbb{R}^{d-1}} \chi(x-y)e^{i((x-y)_{1}\xi_{1}(0, \xi_{2})+(x-y)_{2}\xi_{2})}\varphi(\xi_2, x)g(x)\psi(\xi_2, y)f(y)dx dy d\xi_2$$

を評価する. プランシェレルの公式と合成に関する公式により, 上の積分は絶対値において,

$$\leq C \int \|g(x_1, \cdot)\|_{L^2(\mathbb{R}^{d-1})}dx_1 \int \|f(y_1, \cdot)\|_{L^2(\mathbb{R}^{d-1})}dy_1 \leq C\|f\|_{B_{\frac{1}{2}}} \|g\|_{B_{\frac{1}{2}}} ,$$

を得る. \Box

4. The one dimensional case

$d = 1$ の場合は, バンド構造をなすスペクトルの端点を除いて, グリーン関数は λ_n に対応する固有値をもって, 書き下される.

$$L = -\frac{d}{dx}a(x)\frac{d}{dx} + c(x)$$

において, $a(x) \geq \mu > 0$ は連続関数 $c(x)$ は区分的に連続とする. $\mu_1 < \nu_1 \leq \mu_2 < \nu_2 \leq \mu_3 < \nu_3 \cdots$ があり,

$$\sigma(L) = \cup_{n=1}^{\infty} [\mu_n, \nu_n] \text{ and } [\mu_n, \nu_n] = \{\lambda_n(\xi); 0 \leq \xi \leq \pi\}$$

である. n が奇数のとき, $\lambda_n(\xi)$ は $[0, \pi]$ で増加関数, n が偶数のとき, $\lambda_n(\xi)$ は $[0, \pi]$ で減少関数である.
定理. \(\lambda = \sigma(L) \) の固有値とする, すなわちある \(n \) で\(\lambda = \lambda_n(\xi) \in (\mu_n, \nu_n) \) のとき.

(i) ある \(\xi \in (0, \pi) \) と奇数 \(n \) で \(\lambda = \lambda_n(\xi) \in (\mu_n, \nu_n) \) のとき.

\[
G_{\lambda+i0}(x, y) = \begin{cases}
 \frac{i e^{i(x-y)\xi} u_\xi(x) u_\xi(y)}{\lambda_n^+(\xi)} \|u_\xi\|^2 & y \leq x \\
 \frac{i e^{i(y-x)\xi} u_\xi(y) u_\xi(x)}{\lambda_n^-(\xi)} \|u_\xi\|^2 & x \leq y
\end{cases}
\]

ここで \(u_\xi \) は \(\lambda_n(\xi) \) に対する固有関数である。

(ii) ある \(\xi \in (0, \pi) \) と偶数 \(n \) で \(\lambda = \lambda_n(\xi) \in (\mu_n, \nu_n) \) のとき.

\[
G_{\lambda+i0}(x, y) = \begin{cases}
 \frac{i e^{i(y-x)\xi} u_\pi(y) u_\xi(x)}{\lambda_n(\xi)} \|u_\pi\|^2 & y \leq x \\
 \frac{i e^{i(x-y)\xi} u_\xi(y) u_\pi(x)}{\lambda_n(\xi)} \|u_\xi\|^2 & x \leq y
\end{cases}
\]

ここで \(u_\xi \) は \(\lambda_n(\xi) \) に対する固有関数である。

(iii) \(\lambda = \lambda_n(\pi) = \nu_n = \mu_{n+1} \) のとき.

\[
G_{\lambda+i0}(x, y) = \begin{cases}
 \frac{i e^{i(y-x)\pi} u_\pi(y) u_\pi(x)}{\lambda_n(\pi)} \|u_\pi\|^2 & y \leq x \\
 \frac{i e^{i(x-y)\pi} u_\pi(x) u_\pi(y)}{\lambda_n(\pi)} \|u_\pi\|^2 & x \leq y
\end{cases}
\]

ここで \(u_\pi = \lim_{\xi \to \pi} u_\xi \) ただし \(u_\xi \) は \(\xi = \pi \) の近傍の解析関数で, \(\xi \leq \pi \) で \((L(\xi) - \lambda_n(\xi)) u_\xi = 0 \), \(\pi < \xi \) で \((L(\xi) - \lambda_{n+1}(\xi)) u_\xi = 0 \) を満たすものである。

(iv) \(\lambda = \lambda_n(0) = \nu_n = \mu_{n+1} \) のとき.

\[
G_{\lambda+i0}(x, y) = \begin{cases}
 \frac{i u_0(y) u_0(x)}{\lambda_n(0)} \|u_0\|^2 & y \leq x \\
 \frac{i u_0(x) u_0(y)}{\lambda_n(0)} \|u_0\|^2 & x \leq y
\end{cases}
\]

ここで \(u_0 = \lim_{\xi \to \pi} u_\xi \) ただし \(u_\xi \) は \(\xi = 0 \) の近傍の解析関数で, \(0 \leq \xi \) で \((L(\xi) - \lambda_n(\xi)) u_\xi = 0 \), \(\xi < 0 \) で \((L(\xi) - \lambda_{n+1}(\xi)) u_\xi = 0 \) を満たすものである。

REFERENCES

