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This paper is a brief exposition of a method recently introduced by the author for
solving the inverse problem for Schr\"odinger operators by using the hyperbolic space
as a tool. In the first part, we explain the fundamental issues of inverse problems and
the basic idea of this hyperbolic space approach. In the second part, representation
formulas of the potential in terms of $\mathrm{a}\overline{\partial}$-equation are shown. In the third part, we
give an application to the numerical computation related to a practical problem in
the medical science.

Part 1. Hyperbolic space approach to the inverse problem

1. BASIC IDEAS

1.1. IBVP and ISP. There are two fundamental issues in inverse problems for Schr\"odinger
operators : the inverse boundary value problem (IBVP) and the inverse scattering problem
(ISP). In IBVP, we take a bounded domain St in $\mathrm{R}^{n}$ and consider the following Dirichlet
problem

(1) $(-\Delta+q)\mathrm{u}=0$ in $\Omega$ , $u=f$ on $\partial\Omega$ .
The Dirichlet-Neumann map, called the D-N map hereafter, is defined by

(2) $\Lambda_{q}f=\frac{\partial u}{\partial\nu}|_{\theta\Omega}$ ,

$\nu$ being the outer unit normal to the boundary. In IBVP, we aim at reconstructing $q$ from $\Lambda_{q}$ .
An important application of this IBVP is in the medical science, where one tries to reconstruct
the electric conductivity of a body from the surface measurement.

The ISP is concerned with the movement of quantum mechanical particles and waves. For
Schr\"odinger operators $H_{0}=-\Delta,$ $H=H_{0}+V$ on $\mathrm{R}^{n}$ , where $V$ is a rapidly decaying potential,
one observes the behavior at infinity of solutions to the Schr\"odinger equation $(H-\lambda)\varphi=0$ in
the following way :

(3) $\varphi(x,\lambda,\omega’)\sim e^{i\sqrt{E}\omega’\cdot x}-C(E)\frac{e^{i\sqrt{\lambda}r}}{r^{(n-1)/2}}A(E;\omega,\omega’)$,

as $r=|x|arrow\infty,$ $\omega=x/r,$ $\omega’\in S^{n-1}$ . In ISP, we try to reconstruct $V$ from the $s$cattering
amplitude $A(E;\theta,\omega)$ . We are concerned here only with the fixed energy problem, namely, the
reconstruction of $V$ from the scattering amplitude of arbitrarily given fixed positive energy.

These two problems are known to be equivalent, and are solved affimatively when $n\geq 3$ by
Sylvester-Uhlmann $[\mathrm{S}\mathrm{y}\mathrm{U}\mathrm{h}]$ , Nachman [Nal] and Khenkin-Novikov [Kh$e\mathrm{N}\mathrm{o}$].

Essentially only one method has been used so far for solving IBVP and ISP. In IBVP it is
called the method of complex geometrical optics, or $e\varphi onentially$ growing solution, and in ISP
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it is called Faddeev’s Green function. This latter has the following form

(4) $(2 \pi)^{-n}\int_{\mathrm{R}^{n}}\frac{e^{i(x-y)\cdot\xi}}{\xi^{2}+2z\gamma\cdot\xi-\lambda^{2}}d\xi$,

whose important feature is that it contains an artificial direction $\gamma\in S^{n-1}$ and that it is
analytic with respect to $z\in \mathrm{C}_{+}=\{z\in \mathrm{C};{\rm Im} z>0\}$.

Recently a new method for solving the inverse problem has been proposed in [Is2], which
uses the hyperbolic manifold as a tool. Lets us explai$n$ the basic deas.

1.2. The hyperbolic space approach. Let St be a bounded domain in $\mathrm{R}^{n},n\geq 2$ , with
smooth boundary. Suppose we are given the boundary valu$e$ problem (1) for the Schr\"odinger
equation. Without loss of generality, we can assume that
(5) fi $\subset \mathrm{R}_{+}^{n}=\{(x,x_{n});x_{n}>0\}$ .
1st step. As the first step, let us notice that :

IBVP in the Euclidean space and that in the hyperbolic space are equivalent.

This can be $e$asily observed in the 2-dimensional cas$e$ . In fact by multiplying the Schr\"odinger
equation

$-\Delta u+qu=0$

in $\mathrm{R}^{2}$ by $x_{2}^{2}$ , we have
$-x_{2}^{2}\Delta u+x_{2}^{2}qu=0$,

which is just the Schr\"odinger equation in $\mathrm{H}^{2}$ . Therefore the D-N maps $\tilde{\Lambda}_{q}$ in $\mathrm{R}^{2}$ and $\Lambda_{x_{2}^{2}q}$ in
$\mathrm{H}^{2}$ are related as follows

$\tilde{\Lambda}_{q}=x_{2}\Lambda_{x_{2}^{2}q}$ .
If $n\geq 3$ , putting $u=x_{n}^{(2-n)/2}v$ , we are led to the equation
(6) $(-x_{n}^{2}\partial_{n}^{2}+(n-2)x_{n}\partial_{n}-x_{n}^{2}\Delta_{x}+V)v=0$,
where $V=x_{n}^{2}q-n(n-2)/4$, and $\partial_{n}=\partial/\partial x_{n}$ . Note that

$\Delta_{g}=x_{n}^{2}\partial_{n}^{2}-(n-2)x_{n}\partial_{n}+x_{n}^{2}\Delta_{x}$

is the Laplace-Beltrami operator on the hyperbolic space $\mathrm{H}^{n}$ realized in the upper half space
$\mathrm{R}_{+}^{n}$ . Therefore the Dirichlet problem (1) in a domain St $\subset \mathrm{R}^{n}$ is equivalent to (6) in $\Omega\subset l\mathrm{I}$“.

2nd step. The next step is to use the gauge transformation $v=$: $e^{i\theta\cdot x}\mathrm{u}$ to introduce a parameter
$\theta$ in the above equation. Then we get the following equation

(7) $(-x_{n}^{2}\partial_{n}^{2}+(n-2)x_{n}\partial_{n}-x_{n}^{2}(\partial_{x}+i\theta)^{2}+V)u=0$

in St $\subset \mathrm{H}^{n},$
$\theta\in \mathrm{R}^{n-1}$ .

3rd step. In the 3rd step, we consider the action of simple discrete groups. We take a sufficiently
large lattice $\Gamma$ of rank $n-1$ in $\mathrm{R}^{n-1}$ so that St is contained in one coordinate patch of the
quotient space $\Gamma\backslash \mathrm{H}^{n}$ . Then the above equation (7) can be regarded as that $on$ a domain in
$\Gamma\backslash \mathrm{H}^{n}$ . Here one should note that the operator

(8) $H\mathrm{o}(\theta)=-x_{n}^{2}\partial_{n}^{2}+(n-2)x_{n}\partial_{n}-x_{n}^{2}(\partial_{x}+i\theta)^{2}$

is just the Floquet operator in the theory of periodic Schr\"odinger equation.

4th step. IBVP and ISP are also equivalent on the hyperbolic manifold $\Gamma\backslash \mathrm{H}^{\mathfrak{n}}$. Hence, we can
construct the scattering amplitude for the Floquet operator $\mathrm{h}\mathrm{o}\mathrm{m}$ the D-N map. By passing to
the Fourier series, the Green’s function of the Floquet operator is written by modified Bessel

50



INVERSE PROBLEMS FOR SCHR\"ODINGER OPERATORS ON HYPERBOLIC SPACES

functions, $K_{i\sigma}(\zeta x_{n}),$ $I_{i\sigma}(\zeta x_{n}),$ $\zeta=\sqrt{(\gamma^{*}+\theta)^{2}}$, where $\gamma^{*}$ varies over the dual lattice of $\Gamma$ . They
are analytic with resp$e\mathrm{c}\mathrm{t}$ to $\theta$ for a suitable choice of the imaginary part of $\theta$ . (Let us remark
that here we are taking the branch of $\sqrt$ in such a way that ${\rm Re}\sqrt{}^{-}$. $\geq 0$ with cut along the
negative real axis.) Therefore the scattering amplitude for the perturbed Floquet operator is
also analytic with respect to $\theta$ .

5th step. We use the complex Born approximation. Putting $\theta=z\alpha$ for a suitable a $\in \mathrm{R}^{n-1}$

and letti$n\mathrm{g}z$ tend to infinity along the imaginary axis, one can recover

(9) $\int e^{-1k\cdot x}e^{-1tz}V(x,x")dxdx"$’

for $n\geq 3$ , and

(10) $\int e^{-:k\cdot x_{1}}e^{-|k|x\mathrm{z}}V(x_{1}, x_{2})dx_{1}dx_{2}$,

for $n=2$ from the scatteri$n\mathrm{g}$ amplitude. If $n\geq 3$ , one can then recover $q$ .

The above arguments in particular imply the following theorem.

Theorem 1.1. Let $n\geq 3$ , and $\Omega$ a contractible relatively compact open set in $\mathrm{H}^{n}$ with smooth
boundary. Suppose $\mathit{0}$ is not a Dirichlet eigenvalue $of-\Delta_{g}+V$ . Then $V$ is uniquely reconstructed
fiom the D-N map.

We are also interested in the inverse spectral problem on general hyperolic manifolds. Recall
that any hyperbolic manifold is realized as $\Gamma\backslash \mathrm{H}^{n}$ for a discrete subgroup $\Gamma$ of isometries on $\mathrm{H}$“.
By passing to the universal covering, to pick a bounded open contractible set $\Omega$ in $\Gamma\backslash \mathrm{H}^{n}$ means
to take a bounded open set $\Omega$ in $\mathrm{R}_{+}^{n}$ . Therefore Theorem 1.1 also holds with $\mathrm{H}^{n}$ replaced by
any $n$-dimensional hyperbolic manifold.

Our next concern is the inverse scattering problem. Let us try to solve it by showing the
equivalence of the knowledge of the scattering amplitude and that of the D-N map. However
it depends on the structure of infinity. Consider the simplest case that $\Gamma$ is the lattice of rank
$n-1$ in $\mathrm{R}^{n-1}$ . Then there are two infinities of $\Gamma\backslash \mathrm{H}^{n}$ , at $x_{n}=0$ and at $x_{n}=\infty$ . The former
is called the regular infinity and the latter the cusp.

Now let $\mathcal{M}$ be an $n$-dimensional connected Riemannian manifold having the following struc-
ture : $\mathcal{M}=\mathcal{M}0\cup \mathcal{M}_{\infty}$ , where $\overline{\mathcal{M}_{0}}$ is compact, and $\mathcal{M}_{\infty}$ is diffeomorphic to $\mathrm{E}\cross(\mathrm{O}, 1)$ ,
$\mathrm{E}=\mathrm{R}^{n-1}/\Gamma,$ $\Gamma$ being a lattice of rank $n-1$ in $\mathrm{R}^{n-1}$ . We assume that the Riemannian met-
ric $g$ of $\lambda 4$ , when restricted to $\mathcal{M}_{\infty}$ is equal to that on $\Gamma\backslash \mathrm{H}^{n}$ . We consider the Schr\"odinger
operator

(11) $H=-\Delta_{g}+A$,
where $A$ is a formally self-adjoint 2nd order differential operator. We assume that for $j=1,2$
the coefficients of j-th covariant derivatives are in $C^{j}$ , and that the multiplication operator
term is bounded. Moreover we assume the following.

The supports of the coefficients of $A$ are contained in a bounded contractible set $\Omega$ in M.

By observing the asymptotic behavior at regular infinity of solutions to the Sirdinger
equation $(H-\lambda)\psi=0$ representing the scattering phenomena (more precisely by observing
the asymptotic behavior of the resolvent at regular infinity), one can introduce the scattering
amplitude. One can then show that

Theorem 1.2. Let $n\geq 2$ . Then ffom the scauering amplitude at the regular infinity we can
constru$ct$ the D-N map on $\Omega$ and vice versa.
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Of course this theorem holds when $\mathcal{M}=\mathrm{H}$“. Using this theorem and the results already
established for the inverse problem for the metric (see e.g. $[\mathrm{L}\mathrm{a}\mathrm{T}\mathrm{a}\mathrm{U}\mathrm{h}]$ and the references therein),
one can argue the reconstruction of the metric or the first or the zeroth order perturbations
$\mathrm{o}\mathrm{f}-\Delta_{g}$ from the scatt $e\mathrm{r}\mathrm{i}n\mathrm{g}$ amplitude. The cusp requires a dfferent formulation. We shall
elucidate the results for the cusp cas$e$ in the next section.

1.3. Floquet operators. Let us compare the above approach with the method based on the
Green function of Faddeev. Let $R_{0}(z)$ be the resolvent $\mathrm{o}\mathrm{f}-\Delta$ in $\mathrm{R}^{n}$ . Then for $t\in \mathrm{R}$ and
$\gamma\in S^{n-1}$ , the gauge transformed resolvent $e^{-1t\gamma\cdot x}R_{0}(E+i\epsilon)e^{it\gamma\cdot x}$ is written as

(12) $e^{-1t\gamma\cdot x}R_{0}(E+i \epsilon)e^{1t\gamma\cdot x}f=(2\pi)^{-n}\int\int_{\mathrm{R}^{n}}\frac{e^{1(x-y)\cdot\xi}}{(\xi+t\gamma)^{2}-E-i\epsilon}f(y)d\xi dy$.

If we let formally $\epsilonarrow 0$ in (12), we get the expression (4) with $z=t$ and $\lambda^{2}=E-t^{2}$ . However
the Green function (4) can not be obtai$n\mathrm{e}\mathrm{d}$ in this manner. In fact, if it were true, letting
$G_{\gamma,0}(\lambda,t)$ be the operator having (4) as the integral kernel, the gauge transformed operator
$\overline{R_{\gamma,0}}(\lambda,t)=e^{1t\gamma\cdot x}G_{\gamma,0}(\lambda, t)e^{-1t\gamma\cdot x}$ would be the outgoing resolvent. But as is shown in (4.2)
of [Isl], it is outgoing in a half space of momentum and incoming in the opposite half space.
Namely we have

$\tilde{R}_{\eta,0}(\lambda,t)=R_{0}(E-i0)M_{\gamma}^{(+)}(t)+R_{0}(E+i0)M_{\gamma}^{(-)}(t)$,

where $E=\lambda^{2}+t^{2}$ and
$M_{\gamma}^{(\pm)}(t)=(F_{xarrow\xi})^{-1}F(\pm\gamma\cdot(\xi-t\gamma)\geq 0)F_{xarrow\xi}$ ,

$F_{xarrow\xi}$ being the Fourier transformation and $F(\cdots)$ the characteristic funtion of the set $\{\cdots\}$ .
In Fadd$e\mathrm{e}\mathrm{v}’ \mathrm{s}$ approach of inverse scatteri$n\mathrm{g}$ , one constructs the scattering amplitude different
from the physical one by using this direction dependent Gr$e\mathrm{e}\mathrm{n}$ operator, which turns out to
satisfy an integral equation having the usual scattering amplitude as input ([Fa], [Isl]).

Next let us consider the same problem in the flat torus $S^{1}\cross \mathrm{R}^{1}$ . We expand the resolvent
of the Floquet operator into the Fourier series. Then the part projected to $e^{:x}$“ is written as

$(2 \pi)^{-1}\int\int\frac{e^{\dot{*}(y-y’)\xi}}{|\xi|^{2}-(E+i\epsilon-(n+\theta)^{2})}\hat{f}_{n}(y’)d\xi dy’$

(13)

$= \frac{i}{2\sqrt{E+i\epsilon-(n+\theta)^{2}}}\int_{-\infty}^{\infty}e^{:\sqrt{E+i\epsilon-(+\theta)^{2}}|y-y’|}"\hat{f}_{n}(y’)dy$ .

Here $\hat{f}"(y)$ is the Fourier coeffici$en\mathrm{t}$ of $f(x, y)$ with resp$e\mathrm{c}\mathrm{t}$ to $x$ and the branch of $\sqrt$ is taken
in such a way that ${\rm Im}\sqrt\geq 0$ with cut along the positive real axis. One then observes the
same phenomenon as in the case of $\mathrm{R}^{n}$ . In fact let $\epsilonarrow 0$ in the above expression and define
the operator $G_{0}^{(n)}(E, \theta)$ by the right-hand side of (13) for complex $\theta$ . When $\theta$ approaches to
$0$ along the positive imaginary axis, $G_{0}^{(n)}(E, 0)$ is outgoing for $n>0$ and incoming for $n<0$ .
Therefore this has a property similar to that of the Faddeev Green operator on $\mathrm{R}^{n}$ .

This is no longer the case when we pass to the hyperbolic quotient space $\Gamma\backslash \mathrm{H}^{n}$ , where $\Gamma$ is
the lattice of rank $n-1$ in $\mathrm{R}^{n-1}$ . In fact, letting $y=\log x_{n}$ and passing to the Fourier series
in $x$ , we are led to consider the equation

(14) $(-\partial_{y}^{2}+e^{2y}(\gamma^{*}+\theta)^{2}-\sigma^{2})u=f$ .
The outgoing resolvent can be written by modified Bessel functions, and it has always a nice
analyticity property with resprt to $\theta$ .
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The main barrier for the multi-dimensional inverse scattering is the $e$xistence of exceptional
points. They are the points $z$ for which $\overline{R_{\gamma,0}}(\lambda, z)V$ has-l as $an$ eigenvalue, namely the points
where the perturb$e\mathrm{d}$ Green operator

$(1+\overline{R_{\gamma,0}}(\lambda, z)V)^{-1}\overline{R_{\gamma,0}}(\lambda, z)$

does not exist (see e.g. 3.3 of [Isl]). Eskin-Ralston $([\mathrm{E}\mathrm{s}\mathrm{R}\mathrm{a}])$ overcame this difficulty by intro-
ducing a new Gr$e\mathrm{e}\mathrm{n}’ \mathrm{s}$ function slightly different from that of Faddeev and employing a family
of scattering amplitudes as the spectral data. Our approach is similar to Eskin-Ralston’v one
in that we adopt the family of scattering amplitudes of Floquet operators as the spectral data.
In short, in our hyperbolic space approach, the role of the artificial direction 7 of the Faddeev
Green operator is played by the Floquet parameter $\theta$ varying over the fundamental domain of
the dual lattice of $\Gamma$ .

There are so many articles $on$ the forward and inverse spectral problems on Riemannian
manifolds that we quot$e$ here only those related to the continuous spectrum of hyperbolic man-
ifolds. Lax-Phillips studied the scattering problem for the wave equation on hyperbolic mani-
folds, and Agmon [Ag] applied modern techniques of scattering theory to study the Laplacian
related to number theory. In particular he derived the analytic continuation of the Eisenstein
series from that of the resolvent. More general analytic continuation result was obtained by
Mazzeo-Melrose $[\mathrm{M}\mathrm{a}\mathrm{M}e]$ . Th$e$ problem of embedded eigenvalues was studied in a general set-
ting by Mazzeo. The distibution of resonances and the asymptotics of scattering phase were
computed by Guillop\’e and Zworski $[\mathrm{G}\mathrm{u}\mathrm{Z}\mathrm{w}\mathrm{o}]$ . Melrose-Zworski, Perry and Hislop have shown
that the scattering matrices are written down by pseudo-diffrential operators. Joshi and S\’a
Barreto $[\mathrm{J}\mathrm{o}\mathrm{S}\mathrm{a}\mathrm{B}\mathrm{a}]$ investigated the symbol of this pseudo-differential operator and derived the
asymptotics at infinity of perturbations from the scattering matrix at a fixed energy. Our
approach is different from this work in that we are trying to recover the total perturbation
from the knowledge of the scattering matrix.

2. INVERSE SCATTERING AT THE CUSP

2.1. Arithmetic surface. The inverse spectral problem on the hyperbolic manifold depends
largely on the structure of infinity. For example, the Laplace-Beltrami operator $-\Delta_{g}$ of the
arithmetic surface $SL(2, \mathrm{Z})\backslash \mathrm{H}^{2}$ has the continuous spectrum [1/4, $\infty$ ) with imbeded eigenval-
ues. Th$e$ generalized eigenfunction associated with the spectrum $\lambda>1/4$ , the Maass wave
form, has the following asymptotic expansion

(15) $\psi_{\lambda}(z)\sim x_{2}^{\theta}+\frac{B(1-s)}{B(s)}x_{2}^{1-\epsilon}$ , as $x_{2}arrow\infty$

where $z=x_{1}+ix_{2},$ $s=1/2+i\sqrt{\lambda}$ and $B(s)=\pi^{-\delta}\Gamma(s)\zeta(2s)$ (see e.g. [Te] p. 253). This
means that when one fixes the energy, the $\mathrm{S}$-matrix is a constant and that one can not expect
to reconstruct the perturbation from the $\mathrm{S}$-matrix of one fixed energy. This is because the
continuous spectrum $\mathrm{o}\mathrm{f}-\Delta_{\mathit{9}}$ is one-dimensional. In fact, the infinity of the arithmetic surface
is at $x_{2}=\infty$ , and $-\Delta_{g}$ can be regarded as a compact perturbation $\mathrm{o}\mathrm{f}-x_{2}^{2}(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2})$ on
$(-1/2,1/2)\cross(2, \infty)$ with suitable boundary condition. $\mathrm{I}\mathrm{f}-\partial_{x_{1}}^{2}$ is expanded into a Fourier
series, the continuous spectrum arises only from the mode $n=0$ .
2.2. Inverse scattering at the cusp. Let $\mathcal{M}$ be an $n$-dimensional connected Riemannian
manifold. Suppose $\mathcal{M}$ consists of two parts : $\mathcal{M}=\mathcal{M}_{0}\cup \mathcal{M}_{\infty},$ where $\overline{\mathcal{M}_{0}}$ is compact, and
$\mathcal{M}_{\infty}$ is diffeomorphic to $\mathrm{E}\cross(1, \infty),$ $\mathrm{E}=\Gamma\backslash \mathrm{R}^{n-1},$ $\Gamma$ being a lattice of rank $n-1$ in $\mathrm{R}"-1$ . We
assume that the Riemannian metric $g$ of $\mathcal{M}$ , when restricted to $\mathcal{M}_{\infty}$ , takes the following form
:

(16) $g|_{\mathcal{M}}\infty=(dy)^{2}+e^{-2y}(dx)^{2}$ ,
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where $y\in(1, \infty)$ and $(dx)^{2}$ is the flat metric on E. We consider the Schr\"odinger operator
(17) $H=-\Delta_{\mathit{9}}+A$ ,
where $A$ is a formally self-adjoint 2nd order differential operator. We assume that for $j=1,2$
the coefficients of j-th covariant derivatives are in $C^{j}$ , and that the multiplication operator
term is bounded. Moreover we assume that the supports of the coefficients of $A$ are contai$n\mathrm{e}\mathrm{d}$

in a bounded contractible set $\Omega$ in M. One can then construct a solution of the Schr\"odinger
equation $(H-\lambda)\psi=0$ which grows up exponentially at the cusp. By looking at the behavior
of this solution at the cusp, one can define an analogue of the scattering amplitude $\mathrm{A}_{\mathrm{c}}(\lambda)$ .

Take a bounded contractible domain $\Omega\subset \mathcal{M}$ such that $A=0$ outside $\Omega$ , and define the D-N
map $\Lambda(A)$ for $H_{D}=-\Delta_{g}+A$ in $\Omega$ with Dirichlet boundary condition. Then we can show
Theorem 2.1. Suppose $\lambda\not\in\sigma_{\mathrm{p}}(H)\mathrm{U}\sigma_{\mathrm{p}}(-\Delta_{g})\cup\sigma_{\mathrm{p}}(H_{D})$ . Then the scattering amplitude at the
cusp $\mathrm{A}_{\mathrm{c}}(\lambda)$ and the D-N map $\Lambda(A)$ determine each other.

2.3. Reconstruction of the metric. Now let us look at briefly the inverse problem for the
local perturbation of the metric. The basic examples in mind are $\mathrm{H}^{n}$ as the upper half space
model, $\Gamma\backslash \mathrm{H}^{n}$ where $\Gamma$ is the lattice of rank $n-1$ in $\mathrm{R}^{n-1}$ , and $SL(2, \mathrm{Z})\backslash \mathrm{H}^{2}$ .

First we consider the conformal deformation of the hyperbolic metric: Let $\mathcal{M}$ be one of the
above hyperbolic manifolds. Suppos$e$ that the metric is deformed into $ds^{2}= \rho(x)\sum_{i=1}^{n}(d_{X:})^{2}$ ,
where $\rho(x)=x_{n}^{-2}$ outside a compact set $K\subset \mathcal{M}$ . We assume that there is a bounded
contractible open set $\Omega\subset \mathcal{M}$ such that $K\subset\Omega$ . For $\lambda\in \mathrm{R}$, consider the boundary value
problem

(18) $\{$

$(-\Delta_{g}-\lambda)u=0$ in $\Omega$ ,
$u=f$ on $\partial\Omega$ .

This is rewritten as
(19) $-\nabla(\rho^{(n-2)/2}\nabla u)-\lambda\rho^{n/2}u=0$ in $\Omega$ .
Letting $\mathrm{u}=\rho^{(2-n)/4}v$ , we have

(20) $- \Delta v+(\frac{\Delta\rho^{\alpha}}{\rho^{\alpha}}-\lambda\rho)v=0$ in $\Omega$ ,

where $\Delta=\sum_{1=1}".(\partial/\partial x_{1})^{2}$ and $\alpha=(n-2)/4$ . Let us recall that $\Omega$ is now identified with an
open set in $\mathrm{R}_{+}^{n}$ .

If $n\geq 3$ , one can uniquely reconstruct $q=(\Delta\rho^{\alpha})/\rho^{\alpha}-\lambda\rho \mathrm{h}\mathrm{o}\mathrm{m}$ the knowledge of the D-N
map on $\Omega$ . To recover $\rho \mathrm{h}\mathrm{o}\mathrm{m}q$ , letting $\varphi=\rho^{(n-2)/4}$ , one must solve the non-linear equation

(21) $\{$

$(-\Delta+q)\varphi=-\lambda\varphi^{(n+2)/(n-2)}$ in $\Omega$ ,
$\varphi=x_{n}^{-(n-2\rangle/2}$ $|\alpha|\leq 1$ on $\partial\Omega$ .

This equation has a unique positive solution. In fact, we have the following theorem.
Theorem 2.2. Let $n\geq 2,p>1$ . Let $\Omega$ be a bounded open set in $\mathrm{R}^{n}$ unth smooth boundary.
Let $\lambda>0$ and $q(x)\in L^{\infty}(\Omega)$ be real-valued. Take $\varphi(x)>0$ from $C^{2,\alpha}(\partial\Omega)$ for some $0<\alpha<1$ .
Then there $e$ vists a unique positive solution of the boundary value problem

$\{$

$-\Delta u+qu=-\lambda u^{\mathrm{p}}$ in $\Omega$ ,
$u=\varphi$ on $\partial\Omega$ .

For $\mathrm{H}^{n}$ or $\Gamma\backslash \mathrm{H}^{n}$ , the D-N map and the scattering amplitude determine each other. (For
$\Gamma\backslash \mathrm{H}^{n}$ , in addition to the scattering amplitude at the regular infinity, we must take into account
of the contribution from the one-dimensional continuous spectrum arising from the cusp).
Therefore on these manifolds, the local conformal deformation of the metric is reconstructed
$\mathrm{h}\mathrm{o}\mathrm{m}$ the scattering amplitudes. By Theor$e\mathrm{m}2.1,0$ne can derive the same conclusion for the
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manifold whose infinity is the cusp. Thurston [Thu] gave such an example of 3-dimensional
hyperbolic manifold.

When $n=2$ , the inverse boundary value problem for (20) has not been solved yet except
for the cases of generic or small perturbations. One remedy is to consider the negative energy
$\lambda<0$ . In this cas$e$ one can construct a positive function $c(x)$ such that

(22) $\{$

$\frac{\Delta\sqrt{c}}{\sqrt{c}}=-\lambda\rho$ in $\Omega$ ,

$c=1$ on $\partial\Omega$ .
Using this $c(x)$ , one can convert the boundary value problem (19) to the conductivity problem

(23) $\nabla(c\nabla \mathrm{u})=0$ on $\Omega$ .
The inverse boundary value probl$e\mathrm{m}$ for (23) was solved by Nachman [Na2].

Now let us remark that on$e$ can construct the scattering amplitude at the cusp for the
negative energy in the same way as above and Theorem 2.1 also holds for this case. Therefore
one can determine the local conformal perturbation of the metric from the scattering amplitude
at the cusp for negative energy.

Let us finally consider the general deformation of the metric. Let us assume that we know
a-priori the perturbation is done only on a compact set $K$ , and also suppose that $K$ is contained
in a bounded contractible op$en$ set $\Omega$ . Fix $\lambda>0$ and consider the Schr\"odinger operator

(24) $H=-\Delta_{\mathit{9}}+\lambda\chi_{\Omega}$ ,
where $\chi_{\Omega}$ is the characteristic function of $\Omega$ , and $\Delta_{g}$ is the Laplace-Beltrami operator for the
perturbed metric. As above, the knowledge of the scattering amplitude at a regular infinity or
cusp determi$n\mathrm{e}\mathrm{s}$ the D-N map for $H-\lambda$ on $\Omega$ , which turns out to be the D-N map $\mathrm{o}\mathrm{f}-\Delta_{g}$ . If
$n\geq 3$ , one can reconstruct the perturbed metric by using the results of Lee-Uhlmann $[\mathrm{L}\mathrm{e}\mathrm{U}\mathrm{h}]$ or
Lassas, Taylor and Uhlmann $[\mathrm{L}\mathrm{a}\mathrm{T}\mathrm{a}\mathrm{U}\mathrm{h}]$ . If $n=2$, by using the result of Nachman [Na2] one can
reconstruct $\sqrt{\det(g_{1j})}g^{1g’}$ . For two metrics $g$ and $\overline{g},$ $\sqrt{\det(g_{ij})}g^{1j}=\sqrt{\det(\overline{g}_{ij})}\overline{g}^{1\mathrm{j}}$ is equivaJent
to that $g$ and $\overline{g}$ are conformal. Therefore the scattering amplitudes associated with two metrics
$g$ and $\overline{g}$ coincide if and only if $g$ an$\mathrm{d}\overline{g}$ are conformal. Let us remark that in 2-dimensions there
is a difference between the conductivity problem and the Laplace.Beltrami operator, since the
latter is conformally invariant. Therefore the best we can expect is to reconstruct the conformal
class of the metric. One can also deal with the case of many cusps.

Part 2. The $\overline{\partial}$-theory

3. THE $\overline{\partial}$-EQUATION IN THE INVERSE SCATTERING PROBLEM

For the Schr\"odinger operator in $\mathrm{R}^{n}$ , the scattering amplitude $\tilde{A}(E;\theta,\omega)$ is observed from
the asymptotic behavior of the solution to the Schrdinger equation

(25) $(-\Delta+V(x))\varphi=E\varphi$

in the following manner :
$:\sqrt{E}r$

(26) $\varphi(x;E,\omega)\sim e^{:\sqrt{E}\omega\cdot x}+\tilde{C}_{E^{\frac{e}{r^{(n-1)/2}}}}\tilde{A}(E;\theta,\omega)$

as $r=|x|arrow\infty,\theta=x/r$ . This $\varphi$ is obtained by solving the Lippman-Schwinger equation:

(27) $\varphi(x)=e^{i\sqrt{E}v\cdot x}‘-\int_{\mathrm{R}^{n}}G_{0}(x-y,E)V(y)\varphi(y)dy$,
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wher$eG_{0}(x, E)$ is the Green function $\mathrm{f}\mathrm{o}\mathrm{r}-\Delta-E$ defined by

(28) $G_{0}(x,E)=(2 \pi)^{-n}\int_{\mathrm{R}^{n}}\frac{e^{ix\cdot\xi}}{\xi^{2}-E-i0}d\xi$ .

Here and in the sequel for $\zeta=(\zeta_{1}, \cdots, \zeta_{n})\in \mathrm{C}^{n}$ , we denote $\zeta^{2}=\sum_{i=1}^{n}\zeta_{\dot{\iota}}^{2}$ .
The inverse problem for the Schr\"odinger operator aims at constructing $V(x)$ from the scatter-

ing amplitude. When $n=1$ , the well-known theory of Gel’fand-Levitan-Marchenko provides us
with the necessary and sufficient condition for a function $A(E)$ to be the scattering amplitude
of a Schr\"odinger operator and an algorithm for the reconstruction of $V(x)$ .

The multi-dimensional inverse problem has not been solved yet completely as in the 1-
dimensional case. The main difficulty arises $\mathrm{h}\mathrm{o}\mathrm{m}$ the overdeterminacy ; the scattering am-
plitude $\tilde{A}(E;\theta,\omega)$ is a function of $2n-1$ parameters while the potential $V(x)$ depends on $n$

variables. Therefore for a function $f(E, \theta,\omega)$ on $(0, \infty)\cross S^{n-1}\cross S^{n-1}$ to be the scattering am-
plitude associated with a Schr\"odinger operator, $f$ must $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Phi$ a sort of compatibililty conditon,
which is still unknown. However, there is a series of deep results related to invers$e$ problems
in multi-dimensions, the main idea of which consists in using exponentially growing solutions
for the Schr\"odinger equation (25). In the inverse scattering problem, it is commonly called the

$\overline{\partial}$-theory ([Nal], [Na2], $[\mathrm{K}\mathrm{h}\mathrm{e}\mathrm{N}\mathrm{o}]$ ), although the pioneering work of Faddeev [Fa] does not bear
this term.

In the $\overline{\partial}$-approach of inverse scattering, instead of $\tilde{A}(E;\theta,\omega)$ , one uses Faddeev’s scattering
amplitude :

(29) $A( \xi, \zeta)=\int_{\mathrm{R}^{n}}e^{-ix\prime(\xi+\zeta)}V(x)\psi(x, \zeta)dx$ , $\xi\in \mathrm{R}^{n}$ , $\zeta\in \mathrm{C}^{n}$

where $\zeta^{2}=E$ , and $\psi(x, \zeta)$ is a solution to the equation

(30) $\psi(x,\zeta)=e^{1x\cdot\zeta}-\int_{\mathrm{R}^{n}}G(x-y, \zeta)V(y)\psi(y, \zeta)dy$ ,

$G(x,\zeta)$ being Faddeev’s Green function defined by

(31) $G(x, \zeta)=(2\pi)^{-n}\int_{\mathrm{R}^{n}}\frac{e^{ix\cdot(\xi+\zeta)}}{\xi^{2}+2\zeta\cdot\xi}d\xi$.

This function $A(\xi, \zeta)$ has the following features:
(i) It is natural to regard $A(\xi, \zeta)$ as a function on the fiber bundle $\mathcal{M}=\bigcup_{\xi}\{\xi\}\cross V_{\xi}$ , where

$\xi$ varies over the base space $\mathrm{R}^{n}$ and the fiber $V_{\xi}$ is defined by

(32) $\mathcal{V}_{\xi}=\{\zeta\in \mathrm{C}^{n};\zeta^{2}=E,\xi^{2}+2\zeta\cdot\xi=0\}$ .
As a 1-form on $\mathcal{M}$ , it satisfies $\mathrm{a}\overline{\partial}$-equation

(33) $\overline{\partial_{\zeta}}A(\xi, \zeta)=-(2\pi)^{1-n}\int_{\mathrm{R}^{n}}A(\xi-\eta, \zeta+\eta)A(\eta, \zeta)\eta\delta(\eta^{2}+2\zeta\cdot\eta)d\eta$ .
(ii) When $n\geq 3$ , the Fourier transform of the potential $V$ is recoverd from $A(\xi, \zeta)$ in the

fofowing way :

(34) $\hat{V}(\xi)=(2\pi)^{-/2}$“ $\lim$ $A(\xi,\zeta)$ .
$|\zeta|arrow\infty,\zeta\in v_{\epsilon}$

Consequently, by virtue of a generalization of Bochner-Martinelli’s formula on $\mathcal{V}_{\xi}$ , we have
an integral representation of $V(x)$ in terms of $A(\xi, \zeta)$ .

(iii) The $\overline{\partial}$-equation characterizes the Faddeev scattering amplitude. Namely, the equation
(33) is a necessary and sufficient condition for a function $A(\xi, \zeta)$ on the fiber bundle $\mathcal{M}$ to be
the scattering amplitude associated with a Schr\"odinger operator on $\mathrm{R}^{n}$ .
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These ideas have been found and confirmed in various levels. For the details see $[\mathrm{N}\mathrm{a}\mathrm{A}\mathrm{b}]$ ,
$[\mathrm{B}\mathrm{e}\mathrm{C}\mathrm{o}]$ , [Nal], and especially the introduction of $[\mathrm{K}\mathrm{h}\mathrm{e}\mathrm{N}\mathrm{o}]$ . We show a generalization of these
results to the case of $\mathrm{H}^{3}$

4. GREEN OPERATORS

Let us construct a Green operator of
(35) $H_{0}(\theta)=y^{2}(-\partial_{y}^{2}+(-i\partial_{x}+\theta)^{2})+(n-2)y\partial_{y}$ .
For $\theta,$ $\theta’\in \mathrm{C}^{n-1}$ , we put

$\theta\cdot\theta’=\sum_{:=1}^{n-1}\theta_{\dot{*}}\theta:’$ , $\theta^{2}=\theta\cdot\theta$ ,

and define for $\xi\in \mathrm{R}"-1$

(36) $\zeta(\xi,\theta)=\sqrt{(\xi+\theta)^{2}}$ ,
where we take the branch of $\sqrt$ such that ${\rm Re}\sqrt\geq 0$, i.e. $\sqrt{z}=\sqrt{r}e^{1\varphi/2}\mathrm{f}\mathrm{o}\mathrm{r}-\pi<\varphi<\pi$. Let
$I_{\nu}$ and $K_{\nu}$ be the modified Bessel functions of order $\nu$ . We put

(37) $G_{0}(y, y’;\zeta)=\{$
$(yy’)K_{\nu}(\zeta y)I_{\nu}(\zeta y’)$, $y>y’>0$ ,
$(yy’)I_{\nu}(\zeta y)K_{\nu}(\zeta y’)$ , $y’>y>0$ ,

and define the 1-dimensional Gree$n$ operator by

(38) $G_{0}( \zeta)f(y)=\int_{0}^{\infty}G_{0}(y,y’;\zeta)f(y’)\frac{dy’}{(y)},"$ .
The $n$-dimensional Gr$e\mathrm{e}\mathrm{n}$ operator is then defin$e\mathrm{d}$ by

(39) $\mathrm{G}_{0}(\theta)f(x,y)=(2\pi)^{-(n-1)/2}\int_{\mathrm{R}^{n-1}}e^{ix\cdot\xi}(G_{0}(\zeta(\xi,\theta))\hat{f}(\xi, \cdot))(y)d\xi$,

(40) $\hat{f}(\xi,y)=(2\pi)^{-(-1)/2}"\int_{\mathrm{R}^{\mathfrak{n}-1}}e^{-1x\cdot\xi}f(x,y)dx$ .

Let us remark that when $\theta\in \mathrm{R}^{n-1}$ and $\nu=i\sigma$ with $\sigma>0$ (or $\sigma<0$), $\mathrm{G}_{0}(\theta)$ is the incomi$n\mathrm{g}$

(or outgoing) Green operator of $H_{0}(\theta)-E$ :
(41) $\mathrm{G}_{0}(\theta)=(H_{0}(\theta)-(E\mp i0))^{-1}$ ,
where the right-hand side exists on a certain Banach space.

4.1. $\partial$-equation. For $\theta=\theta_{R}+i\theta_{I}\in \mathrm{C}^{n-1},$ let $\overline{\partial_{\theta}}$ be defined as follows :

(42) $\overline{\partial_{\theta}}=(\frac{\partial}{\partial\overline{\theta}_{1}’}\cdots,$ $\frac{\partial}{\partial\overline{\theta}_{n-1}})$ , $\frac{\partial}{\partial\overline{\theta}_{j}}=\frac{1}{2}(\frac{\partial}{\partial\theta_{Rj}}+i\frac{\partial}{\partial\theta_{Ij}})$ .

We are going to compute $\overline{\partial_{\theta}}\mathrm{G}_{0}(\theta)$ . Note that if $f(z)$ is analytic, $f(\zeta(\xi, \theta))$ has singularities on
the set $\{\theta\in \mathrm{C}^{n-1} ; (\xi+\theta)^{2}\leq 0\}$ . The crucial lemma is the following.

Lemma 4.1. Let $f(z)$ be an analytic function on $\{z\in \mathrm{C};{\rm Re} z>0\}$ satishing

$\sup_{|z|<r}|f(z)|<\infty$ , $\forall r>0$ .

For $\theta=\theta_{R}+i\theta_{I}\in \mathrm{C}"-1$ such that $\theta_{I}\neq 0$ we put
(43) $r_{\theta}(\xi)=\sqrt{|\theta_{I}|^{2}-|\xi+\theta_{R}|^{2}}$,

(44) $M_{\theta}=\{\xi\in \mathrm{R}^{n-1}$ ; $\theta_{I}\cdot(\xi+\theta_{R})=0,$ $|\xi+\theta_{R}|<|\theta_{I}|\}$ ,
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and define a compactly supported distribution $T_{\theta}(\xi)$ by

(45) $\langle T_{\theta}(\xi),\varphi(\xi)\rangle=\int_{M_{\theta}}\varphi(\xi)\frac{i(\xi+\overline{\theta})}{2|\theta_{I}|}dM_{\theta}(\xi)$, $\forall\varphi\in C^{\infty}(\mathrm{R}^{n-1})$ ,

$dM_{\theta}(\xi)$ being the measure on $M_{\theta}$ induced ffom the Lebesgue measure $d\xi$ on $\mathrm{R}^{n-1}$ . Then
regarding $f(\zeta(\xi, \theta))$ as a distribution with respect to $\xi\in \mathrm{R}^{n-1}$ depending on a parameter
$\theta\in \mathrm{C}^{n-1}$ , we have for $\theta_{I}\neq 0$

(46) $\overline{\partial_{\theta}}f(\zeta(\xi,\theta))=[f(ir_{\theta}(\xi))-f(-ir_{\theta}(\xi))]T_{\theta}(\xi)$.

With the aid of this lemma and the well-known relation

(47) $I_{\nu}(ir)=e^{\nu\pi 1}I_{\nu}(-ir)=e^{\nu\pi}J_{\nu}:/2(r)$ ,

(48) $K_{\nu}(ir)=e^{-m\mathrm{r}:}K_{\nu}(-ir)-\pi iI_{\nu}(-ir)$ ,
$J_{\nu}$ being the Bessel function of order $\nu$ , one can show that the Green operator $\mathrm{G}_{0}(\theta)$ satisfies
the following equation.

Theorem 4.2. For $f\in C_{0}^{\infty}(\mathrm{H}^{n})$ , we have

$\overline{\partial}_{\theta}\mathrm{G}_{0}(\theta)f$ $=$ $- \frac{\pi i}{(2\pi)^{(n-1)/2}}\int\int_{M_{\theta}\mathrm{x}(0,\infty)}e^{1x\cdot k}(yy’)^{(-1)/2}$
“

. $J_{\nu}(r_{\theta}(k)y)J_{\nu}(r_{\theta}(k)y’) \hat{f}(k,y’)\frac{i(k+\overline{\theta\supset}}{2|\theta_{I}|}\frac{dM_{\theta}(k)dy’}{(y)^{n}},$ .

4.2. Perturbed Green operator. From now on we restrict the space dimension to 3. For
$s>0$ , we introduc$e\mathrm{d}$ the function space $\mathcal{W}_{s}^{(\pm)}$ by

(49) $\mathcal{W}_{s}^{(-)}\ni u\Leftrightarrow\int_{\mathrm{R}_{+}^{3}}\frac{y}{(1+|\log y|)^{2\epsilon}}|u(x,y)|^{2}\frac{dxdy}{y^{3}}<\infty$ ,

(50) $\mathcal{W}_{s}^{(+)}\ni f\Leftrightarrow\int_{\mathrm{R}_{+}^{8}}\frac{(1+|\log y|)^{2s}}{y}(1+|x|)^{2*}|f(x, y)|^{2}\frac{dxdy}{y^{3}}<\infty$ .

Suppos$e$ that $V$ satisfies

(51) $|V(x,y)|\leq C(1+|x|)^{-2\epsilon}(1+|\log y|)^{-2*}(1+y)^{-2}y$

for some $s>1$ . Then we have the following theorem.

Theorem 4.3. Let $\mathrm{G}_{V}(\theta)$ be defined by
$\mathrm{G}_{V}(\theta)=(1+\mathrm{G}_{0}(\theta)V)^{-1}\mathrm{G}_{0}(\theta)$

for sufficiently large $|\theta_{I}|$ . Then there exists a constant $C_{s}>0$ such that

$|| \mathrm{G}_{V}(\theta)||_{\mathrm{B}(\mathcal{W}_{*j}^{(+)}\mathcal{W}^{(-)})}.\leq C_{s}(\frac{\log\tau}{\tau})^{1/2}$, $|\theta_{I}|>C_{s}$ .

Lemma 4.4. The following equalities hold:
$\overline{\partial_{\theta}}\mathrm{G}_{V}(\theta)$ $=$ $(1+\mathrm{G}_{0}(\theta)V)^{-1}\mathrm{c}\partial_{\theta}\mathrm{G}_{0}(\theta))(1-V\mathrm{G}_{V}(\theta))$

$=$ $(1-\mathrm{G}_{V}(\theta)V)(\overline{\partial_{\theta}}\mathrm{G}_{0}(\theta))(1-V\mathrm{G}_{V}(\theta))$.
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5. $\overline{\partial}$-THEORY FOR SCATTERING AMPLITUDES

5.1. Scattering matrix in quantum mechanics. The wave function associated with the
Schr\"odinger operator in quantum mechanics on $\mathrm{R}^{3}$ is a bounded solution to the equation $(-\Delta+$

$V(x))\phi=E\phi$ . It is also the case for the hyperbolic space $\mathrm{H}^{3}$ . Suppose $\nu=i\sigma,$ $\sigma\in \mathrm{R}\backslash \{0\}$ .
Then the wave function for the equation

(52) $H\phi:=[-y^{2}(\partial_{y}^{2}+\Delta)+y\partial_{y}+V(x,y)]\phi=E\phi$

is defined as follows. Let for $\eta\in \mathrm{R}^{2}$

$\phi_{0}(x,y,\eta)$ $=$ $e^{ix\cdot\eta}yK_{\nu}(|\eta|y)$ ,
$\emptyset(x,y, \eta)$ $=$ $\phi_{0}(x,y,\eta)-v$ ,
$v(x,y,\eta)$ $=$ $\mathrm{G}_{V}(0)[V(x,y)\phi_{0}(x,y,\eta)]$ ,

$E$ $=$ $1-\nu^{2}$ .
Then $\phi$ solves (52), behaves like $e^{ix\cdot\eta}(c_{1}y^{(1+i\sigma}+c_{2}y^{1-1\sigma})$ as $yarrow \mathrm{O}$ , and gives an eigenfunction
expansion associated with $H$ . By observing the behavior of the Fourier transform of $v$ with
respect to $x$ , we get

(53) $\hat{v}(\xi, y, \eta)\sim(2\pi)^{-1}(\frac{|\xi|}{2})^{1\sigma}\frac{y^{i\sigma+1}}{\Gamma(i\sigma+1)}\tilde{A}(\xi, \eta)$ , $yarrow 0$ .

This $\tilde{A}(\xi,\eta)$ is (after a suitable unitary transformation) the scattering amplitude in the quan-
tum mechanical scattering problem.

5.2. Exponentially growing solutions. In the $\overline{\partial}$-approach, contrary to the above quantum
mechanical problem, we seek exponentially growing solutions to the equation (52). We put for
$\eta\in \mathrm{R}^{2}$ and $\theta\in \mathrm{C}^{2}$ ,
(54) $\psi_{0}(x,y;\eta, \theta)=e^{1x\cdot\theta}\Psi_{0}(x, y;\eta, \theta)$,

(55) $\Psi_{0}(x, y;\eta, \theta)=e^{1x\cdot\eta}yI_{\nu}(\zeta(\eta,\theta)y)$ .
It satisfies the Schr\"odinger equation
(56) $H_{0}\psi 0:=[-y^{2}(\partial_{y}^{2}+\Delta_{x})+y\partial_{y}]\psi_{0}=E\psi 0$,

and behaves like $e^{ix\cdot(\theta+\eta)}y^{1+\nu}$ as $yarrow \mathrm{O}$ . Hence if $\theta=0$ and $yarrow \mathrm{O},$ $\psi 0$ is bounded. However it
grows up exponentially as $yarrow\infty$ .

We seek a solution of the perturbed Schr\"odinger equation
(57) $(H_{0}+V(x,y))\psi=E\psi$ ,
which behaves like $\psi_{0}$ at infinity. It is defined as
(58) $\psi(x, y;\eta, \theta)=\psi_{0}(x,y;\eta, \theta)-e^{1x\cdot\theta}u$,

(59) $u=\mathrm{G}_{V}(\theta)[V(x,y)\Psi_{0}(x, y;\eta, \theta)]$ .
Since $\mathrm{G}_{V}(\theta)=\mathrm{G}_{0}(\theta)-\mathrm{G}_{0}(\theta)V\mathrm{G}_{V}(\theta)$ , by passing to the Fourier transformation with respect
to $x$ , we have (at least formally)

(60) \^u $(\xi, y;\theta)\sim(2\pi)^{-1}yK_{\nu}(\zeta(\xi, \theta)y)A(\xi, \eta;\theta)$, $yarrow\infty$ ,

$A(\xi, \eta;\theta)=$ $\int_{\mathrm{R}_{+}^{3}}e^{-ix\cdot\xi}yI_{\nu}(\zeta(\xi, \theta)y)V(x,y)\Psi_{0}(x, y;\eta,\theta)\ \sim d\nu$ ’(61)
$- \int_{\mathrm{R}_{+}^{3}}e^{-1x\cdot\xi}yI_{\nu}(\zeta(\xi, \theta)y)V(x,y)u(x,y;\eta,\theta)^{u}H^{d}\nu$ .

Our scattering amplitude will be defined to be this $A(\xi,\eta;\theta)$ .
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5.3. Scattering amplitudes and the $\overline{\partial}$-equation. The potential $V(x, y)$ is assumed to
satisfy the following condition.

There exist $\alpha>2$ and $\beta>3/2$ such that for any $N>0$

(62) $|V(x, y)|\leq C_{N}(1+|x|)^{-\alpha}y^{\beta}e^{-Ny}$

holds on $\mathrm{R}_{+}^{3}$ for a constant $C_{N}>0$ .

We put

(63) $\Psi_{I}^{(0)}(x, y;\xi, \theta)=\zeta(\xi,\theta)^{-\nu}e^{ix\cdot\xi}yI_{\nu}(\zeta(\xi, \theta)y)$,

(64) $\Psi_{I}(x, y;\xi,\theta)=\Psi_{I}^{(0)}(x,y;\xi;\theta)-(\mathrm{G}_{V}(\theta)(V\Psi_{I}^{(0)}(\xi, \theta)))(x,y)$ ,

(65) $\Psi_{J}^{(0)}(x, \mathrm{y};\xi,\theta)=r_{\theta}(\xi)^{-\nu}e^{1x\cdot\xi}yJ_{\nu}(r_{\theta}(\xi)y)$ ,

(66) $\Psi_{J}(x,y;\xi,\theta)=\Psi_{J}^{(0)}(x,y;\xi;\theta)-(\mathrm{G}_{V}(\theta)(V\Psi_{J}^{(0)}(\xi,\theta)))(x,y)$ ,

where $\Psi_{I}^{(0)}(\xi,\theta)=\Psi_{I}^{(0)}(x,y;\xi, \theta),$ $\Psi_{J}^{(0)}(\xi, \theta)=\Psi_{J}^{(0)}(x,y;\xi, \theta)$ .
Deflnition 5.1. We define the scattering amplitude by

(67) $A( \xi,\eta;\theta)=\int_{\mathrm{R}_{+}^{3}}\Psi_{I}^{(0)}(x,y;-\xi, -\theta)V(x, y)\Psi_{I}(x,y;\eta,\theta)\frac{dxdy}{y^{3}}$ .

The potential $V$ is reconstructed from this scattering $\mathrm{a}\overline{\mathrm{m}}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{u}\mathrm{d}\mathrm{e}$ in the following way.
Theorem 5.2. Let $\alpha=\theta_{I}/|\theta_{I}|$ . Suppose $\alpha\cdot(\xi+\theta_{R})>0,$ $\alpha\cdot(\eta+\theta_{R})>0$ . Then

$\lim_{|\theta_{I}|arrow\infty}|\theta_{I}|^{1+2\nu}A(\xi,\eta;\theta)=\frac{e^{1\nu\pi}}{\pi}.\int_{\mathrm{R}_{+}^{3}}e^{-ix\cdot(\xi-\eta)}\cosh(ay)V(x, y)\frac{dxd\mathrm{y}}{y^{2}}$,

where $a=\alpha\cdot(\xi-\eta)$ .

We next compute $\overline{\partial_{\theta}}A(\xi,\eta;\theta)$ .
Theorem 5.3. For $alf\xi,$ $\eta\in \mathrm{R}^{2}$ , we have

(68) $\overline{\partial_{\theta}}\Psi_{I}(x,y;\xi, \theta)=-\frac{1}{8\pi}\int_{M_{\theta}}\Psi_{I}(x, y;k, \theta)A(k,\xi;\theta)\frac{r_{\theta}(k)^{2\nu}(k+\overline{\theta})}{|\theta_{I}|}dM_{\theta}(k)$ .

(69) $\overline{\partial_{\theta}}A(\xi,\eta;\theta)=-\frac{1}{8\pi}\int_{M_{\theta}}A(\xi, k;\theta)A(k,\eta;\theta)\frac{r_{\theta}(k)^{2\nu}(k+\overline{\theta})}{|\theta_{I}|}dM_{\theta}(k)$ .

5.4. Integral representation of the potential. The above $\delta$-equation enables us to derive
integral representations of the potential $V(x,y)$ in terms of $A(\xi,\eta;\theta)$ .

Let $\alpha,$
$\alpha^{\perp}\in S^{1}$ be such that $\alpha\cdot\alpha^{\perp}=0$ . For a sufficiently large constant $T_{0}>0$ , let $\Omega$ be

the set of $\theta=\theta_{R}+i\theta_{I}\in \mathrm{C}^{2}$ satisfying the following condition :
(70) $|\theta_{R}|<1$ , $\alpha\cdot\theta_{I}>T_{0}$ , $|\alpha^{\perp}\cdot\theta_{I}|<1$ .

Let us note that for $\theta\in\Omega$

$\theta_{I}$

(71)
$\overline{|\theta_{I}|}arrow\alpha$

as $|\theta_{I}|arrow\infty$ .
By virtue of the $\mathrm{B}\mathrm{o}\mathrm{c}\mathrm{h}n\mathrm{e}\mathrm{r}arrow \mathrm{M}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{l}\mathrm{l}$ formula and (69), we then have
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Theorem 5.4. $Let\xi,$ $\eta$ be such that $\theta_{I}\cdot(\xi+\theta_{R})>0,$ $\theta_{I}\cdot(\eta+\theta_{R})>0,$ $\forall\theta\in\Omega$ . Then letting
$\theta^{4-2\nu}=(\theta^{2})^{2-\nu},$ $K(\theta)=\theta_{1}d\theta_{2}-\theta_{2}d\theta_{1},$ $L(\theta)=d\theta_{1}\wedge d\theta_{2}$ , and $a=\alpha\cdot(\xi-\eta)$ , we have for
$\theta_{0}\in\Omega$ ,

$\int_{\mathrm{R}_{+}^{3}}e^{-ix\cdot(\xi-\eta)}\cosh(ay)V(x, y)\frac{dxdy}{y^{2}}$

$=$ $\frac{e^{-i\nu\pi}}{2}(\theta_{0})^{4-2\nu}A(\xi, \eta;\theta_{0})$

$- \frac{e^{-1\nu\pi}}{4}\int_{\partial\Omega}A(\xi, \eta;\theta)\frac{\theta^{4-2\nu}K(\overline{\theta}-\overline{\theta_{0}})}{|\theta-\theta_{0}|^{4}}\wedge L(\theta)$

$\frac{e^{-1\nu\pi}}{32\pi}\int_{\Omega}(\int_{M_{\theta}}A(\xi, k;\theta)A(k,\eta;\theta)\frac{r_{\theta}(k)^{2\nu}(k+\theta\gamma}{|\theta_{I}|}dM_{\theta}(k))N(\theta)$,

$N( \theta)=d\overline{\theta}\wedge\frac{\theta^{4-2\nu}K(\overline{\theta}-\overline{\theta_{0}})}{|\theta-\theta_{0}|^{4}}\wedge L(\theta)$ ,

where the integral is performed in the sense of improper integral.

5.5. Restriction to lower dimensional submanifolds. Let us recall that in the Euclidean
case, the Faddeev scattering amlitude $A(\xi, \zeta)$ is first defined on a $7- \mathrm{d}\mathrm{i}\mathrm{m}$ . manifold $\mathrm{R}^{3}\cross\{\zeta\in$

$\mathrm{C}^{3}$ ; $\zeta^{2}=E$ }, and then restricted to the $5- \mathrm{d}\mathrm{i}\mathrm{m}.$ manifold $\bigcup_{\xi}\{\xi\}\cross \mathcal{V}_{\xi}$ . In the hyperbolic space
case, $A(\xi, \eta;\theta)$ is a function $on$ a $8- \mathrm{d}\mathrm{i}\mathrm{m}$ . manifold $\mathrm{R}^{2}\cross \mathrm{R}^{2}\cross \mathrm{C}^{2}$ . However, noting the fo.rmula
(72) $e^{-ix\cdot k}\mathrm{G}_{0}(\theta)e^{1x\cdot k}=\mathrm{G}_{0}(\theta+k)$, $\forall k\in \mathrm{R}^{2}$ ,
and the resulting equation

(73) $A(\xi-k, \eta-k;\theta+k)=A(\xi, \eta;\theta)$ , $\forall k\in \mathrm{R}^{2}$ ,
one can see that $A(\xi,\eta;\theta)$ actually depends on 6 paramet$e\mathrm{r}\mathrm{s}$ . Let us restrict $A(\xi,\eta;\theta)$ to a
$5- \mathrm{d}\mathrm{i}\mathrm{m}$ . manifold.

In the Euclidean case, the fibre $\mathcal{V}_{\xi}$ defined by (32) has a natural complex structure. The
condition $\xi^{2}+2\zeta\cdot\xi=0$ stems from the singularities of the integrand of the Green function
(31). In the hyperbolic space case, the corresponding singularities appear from $\sqrt{(\xi+\theta)^{2}}$ ,
which gives rise to the condition ${\rm Im}(\xi+\theta)^{2}=2\theta_{I}\cdot(\xi+\theta_{R})=0$ . Sinc$e$ the set of all $\theta$ satisfying
this condition is of 3-dimension, we should look for a $2- \mathrm{d}\mathrm{i}\mathrm{m}$ . submanifold for $\theta$ . We try a
simple choice of $\mathrm{C}\hat{\xi}_{\perp}$ to be defined below. Note that this set is not included in the above set
of singularities.

For $\xi=(\xi_{1},\xi_{2})\in \mathrm{R}^{2}\backslash \{0\}$ , we put

(74) $\hat{\xi}_{\perp}=(-\frac{\xi_{2}}{|\xi|},$ $\frac{\xi_{1}}{|\xi|})$

and for $z\in \mathrm{C}$ , we define

(75) $\theta(\xi, z)=z\hat{\xi}_{\perp}$ .
For $\xi\in \mathrm{R}^{2}\backslash \{0\})z\in \mathrm{C}$ such that $\mathrm{R}ez\neq 0$ and $|{\rm Im} z|$ is sufficiently large, and $k\in M_{\theta(\xi,z)}$ ,

we put

(76) $B_{II}( \xi, z)=z^{2+2\nu}A(\frac{\xi}{2},$ $- \frac{\xi}{2};\theta(\xi, z))$ ,

(77) $B_{IJ}( \xi, k, z)=z^{2+2\nu}A(\frac{\xi}{2},$ $k;\theta(\xi, z))$ ,
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(78) $B_{JI}(k, \xi, z)=z^{2+2\nu}A(k,$ $- \frac{\xi}{2};\theta(\xi, z))$ .

Since $\mathrm{R}ez\neq 0,$ $\pm\xi/2\not\in M_{\theta(\xi,z)}$ . Note that $B_{II}(\xi, z)$ is a function on (an open set of) the
product space $\mathrm{R}^{2}\cross \mathrm{C}$ and $B_{IJ}(\xi, k, z),$ $B_{JI}(k, \xi, z)$ are functio$n\mathrm{s}$ on (an open set of) the line
bundle with base space $\mathrm{R}^{2}\cross \mathrm{C}$ and fibre $M_{\theta(\xi,z)}$ . Or it may be better to regard $\mathrm{R}^{2}$ as bas$e$

space and $\mathrm{C}\hat{\xi}_{\perp}\cross M_{\theta(\xi,z)}$ as fibre.

Lemma 5.5. The following equation holds:

$\overline{\partial_{l}}B_{II}(\xi, z)=\frac{i\epsilon(z)}{8\pi z^{2+2\nu}}\int_{M_{\theta}}B_{IJ}(\xi, k,z)B_{JI}(k,\xi, z)r_{\theta}(k)^{2\nu}dM_{\theta}(k)$ ,

where $\theta=\theta(\xi, z)$ and $\epsilon(z)=1$ if ${\rm Im} z>0,$ $\epsilon(z)=-1$ if ${\rm Im} z<0$ .

Take $T_{0}>0$ large enough and put
(79) $D=\{z=t+i\tau;1<t<2, T_{0}<\tau<\infty\}$ .
Theorem 5.6. For $w\not\in\overline{D}$, we have in the sense of improper integral

$e^{:\nu\pi} \int_{\mathrm{R}_{+}^{3}}e^{-ix\cdot\xi}V(x,y)\frac{dxdy}{y^{2}}=\pi i\int_{\partial D}\frac{B_{II}(\xi,z)}{z-w}dz-\frac{1}{8}\int_{D}F(\xi, z)\frac{dz\wedge\Gamma z}{z^{2+2\nu}(z-w)}$,

$F( \xi, z)=\int_{M_{\theta}}B_{IJ}(\xi, k,z)B_{JI}(k,\xi, z)r_{\theta}(k)^{2\nu}dM_{\theta}(k)$,

where $\theta=\theta(\xi, z)$ .
5.6. Radon transform. Let $\Pi$ be a 2-dimensional plane orthogonal to $\{y=0\}$ , and $d\Pi_{B}$ be
the measure induced on $\Pi$ from the Euclidean metric $(dx)^{2}+(dy)^{2}$ . By Theorem 5.6 one can
reconstruct

(80) $\int_{\mathrm{n}}V(x,y)\frac{d\Pi_{E}}{y^{2}}$

$\mathrm{h}\mathrm{o}\mathrm{m}B_{II}(\xi;z),$ $B_{IJ}(\xi, k;z),B_{JI}(k,\xi;z)$ . Let $S$ be any hemisphere in $\mathrm{R}_{+}^{3}$ with center at $\{y=0\}$

and take an isometry on $\mathrm{H}^{3}$ mapping $S$ to $\Pi$ . Then from the Faddeev scattering amplitude
of $H_{\phi}=\phi\circ H\circ\phi^{-1}$ , one can recover (80). Therefore on$e$ can recover $\int_{S}V(x, y)dS,$ $dS$ being
the measure on $S$ induced from the hyperbolic metric. If one knows the scattering amplitude
$A^{(\phi)}(\xi, \eta;\theta)$ of $H_{\phi}$ for all $\phi$ , one can then reconstruct $V(x, y)$ by virtue of the inverse Radon
transform on $\mathrm{H}^{3}$ . For this to be possible, one must be able to compute $A^{(\phi)}(\xi,\eta;\theta)$ for all $\phi$

from a given Faddeev scattering amplitude. This does not seem to be an obvious problem in
general. If $V$ is compactly support$e\mathrm{d}$ , however, this is possible via the Dirichlet-Neumann map.

Part 3. Applications to numerical computation
6. $\mathrm{D}+\mathrm{T}\mathrm{E}\mathrm{C}\mathrm{T}\mathrm{I}\mathrm{O}\mathrm{N}$ OF INCLUSIONS

6.1. Dirichlet-Neumann map. Let $\Omega$ be a bounded open set with smooth boundary in $\mathrm{R}^{\nu}$

with $\nu=2,3$ , and consider the following boundary value problem

(81) $\{$

$\nabla\cdot(\gamma(x)\nabla v)=0$ in $\Omega$ ,
$v=f$ on $\partial\Omega$ .

We assume that $\inf_{x\in\Omega\gamma(x)}>0$ . It is well-known that one can reconstruct $\gamma(x)$ from the
Dirichlet-Neumman map $\Lambda_{\gamma}l$ : $farrow\gamma\partial v/\partial n|_{\theta\Omega}$, where $v$ is the solution to (81) and $n$ is the
outer unit normal to $\partial\Omega$ . In practical applications (e.g. in medical sciences), $\gamma(x)$ represents
the electric conductivity of the body $\Omega$ . In this case, thes$e$ theorems guarantee the uniqueness
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and the reconstruction of $\gamma(x)$ by the experimental data from all part of the surface of the body.
However, it is often important to extract informations of $\gamma(x)$ from the local knowledge of the
D-N map $\Lambda_{\gamma}$ . In this section, we consider the problem of the detection of location of inclusions
inside the 2 or 3-dimensional body $\Omega$ . Let us assume that $\gamma(x)$ is a bounded perturbation of
$\gamma \mathrm{o}(x)\in C^{\infty}(\overline{\Omega})$ . Namely there exists an open subset $\Omega_{1}\subset\Omega$ such that $\overline{\Omega_{1}}\subset\Omega$ (we denote this
property $\Omega_{1}\subset\subset\Omega$) and

(82) $\gamma(x)=\{$
$\gamma_{1}(x)$ , $x\in\Omega_{1}$

$\gamma \mathrm{o}(x)$ , $x\in\Omega 0:=\Omega\backslash \Omega_{1}$ ,
with $\gamma_{1}(x)\in L^{\infty}(\Omega_{1})$ . Let

(83) $\Lambda_{0:}farrow\gamma 0(\frac{\partial u}{\partial n})|_{\partial\Omega}$, $\Lambda$ : $f arrow\gamma(\frac{\partial v}{\partial n})|_{\theta\Omega}$

be the associated DN maps, where $v$ is the solution to (81) and $u$ solves the equation (81) with
7 replaced by $\gamma_{0}$ . We assume that the background conductivity $\gamma \mathrm{o}(x)$ is known on whole $\Omega$

and try to recover the location of $\Omega_{1}$ from the local knowledge of A. No regularity is assumed
on $\gamma_{1}(x)$ , however we assume that for any $p\in\Omega_{1}$ , there exist constants $C,$ $\epsilon>0$ such that
(84) $C^{-1}<\gamma_{1}(x)-\gamma \mathrm{o}(x)<C$ if $|x-p|<\epsilon$ .
Although our principal purpose is to study discontinous perturbations, we allow $\gamma(x)$ to be a
smooth function. Our main results are the following two theorems.

Theorem 6.1. Take $x_{0}$ fiom the outside of the convex hull of $\Omega$ . We choose $\epsilon>0$ small
enough so that $x_{0}\not\in U_{\epsilon}:=the$ $\epsilon$ -neighborhood of the convex hull of $\Omega$ . Take an arbitrary
constant $R>0$ . Then there enists $u_{\tau}(x)\in C^{\infty}(U_{\epsilon})$ depending on a large parameter $\tau>0$ (and
also on $R$) having the following properties.
(1) $\nabla\cdot(\gamma_{0}(x)\nabla u_{\tau}(x))=0$ on $\Omega$ .
$(Z)$ Let $K_{\pm}$ be any compact sets such that

$K_{+}\subset\{x\in U_{\epsilon};|x-x_{0}|<R\}$ , $K_{-}\subset\{x\in U_{\epsilon};|x-x_{0}|>R\}$ .
Then there enists a constant $\delta>0s\mathrm{u}ch$ that for large $\tau>0$

$\int_{K}+|u_{r}(x)|^{2}dx\geq e^{\delta\tau}$ , $|u_{\tau}(x)|\leq e^{-\delta\tau}$ on $K_{-}$ .

(3) Let $f_{\tau}(x)=u_{\tau}(x)|_{\partial\Omega}$ . Then if $R<$ dis $(x_{0}, \Omega_{1})$ , there exists a $\delta>0$ such that for large
$\tau>0$

(85) $0\leq((\Lambda-\Lambda_{0})f_{\tau}, f_{\tau})<e^{-\delta\tau}$ .
(4) If $R>\mathrm{d}\mathrm{i}\mathrm{s}(x_{0}, \partial\Omega_{1})$ , there $e$ cists a $\delta>0$ such that for large $\tau>0$

(86) $((\Lambda-\Lambda_{0})f_{\tau},f_{\tau})>e^{\delta\tau}$ .

In order to deal with the case $R=\mathrm{d}\mathrm{i}\mathrm{s}(x0, \partial\Omega_{1})$ , we assume $\Omega_{1}$ to satisfy the following cone
condition.
(87) For any $p\in\partial\Omega_{1}$ ,there exists an open cone $C_{\mathrm{p}}\subset\Omega_{1}$ with vertex $p$ .
The following jump condition is also necessary.

For any $p\in\partial\Omega_{1}$ , th$e\mathrm{r}\mathrm{e}$ exists $\epsilon>0$ such that
(88) $\gamma(x)>\gamma_{0}(x)+\epsilon$ if $x\in\Omega_{1},$ $|x-p|<\epsilon$ .
Theorem 6.2. Suppose $R=\mathrm{d}\mathrm{i}\mathrm{s}(x_{0},\partial\Omega_{1})$ . Then

$\lim_{\tauarrow}\inf_{\infty}\tau^{3}((\Lambda-\Lambda_{0})f_{\tau}, f_{\tau})>0$.
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It will be useful to give an approximate form of the above $u_{\tau}(x)$ . Suppose that $\Omega\subset\subset \mathrm{R}_{+}^{3}=$

$\{x=(x_{1}, x_{2}, x_{3});x_{3}>0\}$ and $x_{0}=0$ . Then if $\gamma_{0}(x)=1,$ $u_{\tau}(x)$ is approximately equal to

(89) $\sqrt{\frac{\tau}{x_{3}}}y_{3}e^{-\tau y_{1}}H_{1/2}^{(1)}(\tau y_{3})$

$y_{1}$ $=$ $\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-R^{2}}{(x_{1}+R)^{2}+x_{2}^{2}+x_{3}^{2}’}$

$y_{3}$ $=$ $\frac{2x_{3}R}{(x_{1}+R)^{2}+x_{2}^{2}+x_{3}^{2}}$ .

In the 2-dimensional cas$e,$ $u_{\tau}(x)$ is approximately equal to

(90) $\sqrt{\tau y_{2}}e^{-\tau y_{1}}H_{1/2}^{(1)}(\tau y_{2})$ ,

$y_{1}$ $=$ $\frac{x_{1}^{2}+x_{2}^{2}-R^{2}}{(x_{1}+R)^{2}+x_{2}^{2}}$

$y_{2}$ $=$ $\frac{2x_{2}R}{(x_{1}+R)^{2}+x_{2}^{2}}$ .

Here $H_{1/2}^{(1)}(z)$ is the Hankel function of the first kind :

(91) $H_{1/2}^{(1)}(z)=-i\sqrt{\frac{2}{\pi z}}e^{iz}$ .

One can also use $z^{-1/2}\sin z$ or $z^{-1/2}\cos z$ instead of $H_{1/2}^{(1)}(z)$ .
For the proof of the above results, we first imbed the boundary value problem in the upper

half space. We then use a hyperbolic isometry to transform a hemisphere centered at the plane
$\{x_{3}=0\}$ to the vertical plane $\{x_{1}=0\}$ . The construction is thus reduced to the case where
the sphere is replaced by the plane.

For the 2-diemnsional problem, this sort of idea was used by $\mathrm{I}\mathrm{k}\mathrm{e}\mathrm{h}\mathrm{a}\mathrm{t}\mathrm{a}_{r}$Siltanen $[\mathrm{I}\mathrm{k}\mathrm{S}\mathrm{i}]$ via
the function theory of one complex variable and the fractional linear transformation. In the
-dimensional case, their roles are played by the hyperbolic space and isometries in terms of

quaternions.
The above boundary data has the interesting property that its support is essentially con-

tained in a part of the surface. This enables us to know the location of inclusions by a localized
data of the boundary. We hope it to be usefull in practical problems.
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