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Abstract

We review the recently discovered symmetries of the 8 and 6 vertex models
which exist at roots of unity and present their relation with representation
theory of affine Lie algebras, Drinfeld polynomials and Bethe vectors.
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I. INTRODUCTION

The 8 vertex model is a lattice model in statistical mechanics whose transfer matrix is
given in ref.1 by

$\mathrm{T}_{8}(v)|_{\mu,\nu}=\mathrm{T}\mathrm{r}W(\mu_{1}, \nu_{1})W(\mu_{2}, \nu_{2})\cdots W(\mu_{N}, \nu_{N})$ (1.1)

where $\mu_{j},$ $\nu_{j}=\pm 1$ and $W(\mu, \nu)$ is a $2\cross 2$ matrix whose nonvanishing elements are given as

$W(1,1)|_{1,1}=W(-1, -1)|_{-1,-1}=\rho(2\eta)(v-\eta)H(v+\eta)=a(v)$

$W(-1, -1)|_{1,1}$ $=W(1,1)|_{-1,-1}=\rho(2\eta)H(v-\eta)(v+\eta)=b(v)$

$W(-1,1)|_{1,-1}$ $=W(1, -1)|_{-1,1}=\rho H(2\eta)(v-\eta)(v+\eta)=c(v)$

$W(1, -1)$ $|_{1,-1}=W(-1,1)|_{-1,1}=\rho H(2\eta)H(v-\eta)H(v+\eta)=d(v)$ . (1.2)

The definition and some useful properties of $H(v)$ and $(v)$ are summarized in appendix A.
This model is characterized by the important property that for all fixed $\eta$ all elliptic nomes
$p$ and all chain lengths $N$ it satisfies the commutation relation1
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$[\mathrm{T}(v), \mathrm{T}(v’)]=0$ . (1.3)

The 8 vertex model also has the important property that there are many cases in which
the eigenvalues and eigenvectors of the transfer matrix may be computed, but, in contrast
with the commutation relation (1.3), qualifying statements must be made on the allowed
values of $\eta$ and $N$. Some of these qualifying statements are present in the original studies of
the eigenvalues1 , and $\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}^{3_{-}5}$ by Baxter and others have been recently observed by
the present $\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{r}\mathrm{s}^{6_{-}8}$

Conditions for eigenvalues
1) $N$ unrestricted with $\eta=mK/L$ with $L$ even or $L$ and $m$ odd $(\mathrm{r}\mathrm{e}\mathrm{f}^{1}.)$

2) $N$ even and $\eta$ unrestricted (ref.3,2)
3) $\eta=mK/L$ with $L$ odd, $m$ even and $N$ even with $N\leq L-1(\mathrm{r}\mathrm{e}\mathrm{f}^{6}.)$ .
Conditions for some eigenvectors
1) $N$ even and $\eta=mK/L(\mathrm{r}\mathrm{e}\mathrm{f}^{3_{-}5}.)$

2) $N$ odd and $\eta=mK/L$ with $L$ odd, $m$ even and $N=2n_{B}+n_{L}L$ with $n_{B}$ and $n_{L}$

integers (ref. $3_{-^{5})}$ .
This array of qualifying conditions is in contrast with the special case of the 6 vertex

model where the nome $p$ vanishes, the Boltzmann weight $d(v)$ vanishes and the remaining
nonvanishing weights are

$W(1,1)|_{1,1}=W(-1, -1)|_{-1,-1}=\rho’\sin(v+\eta)=a(v)$

$W(-1, -1)|_{1,1}$ $=W(1,1)|_{-1,-1}=\rho’\sin(v-\eta)=b(v)$

$W(-1,1)|_{1,-1}$ $=W(1, -1)|_{-1,1}=\beta\sin(2\eta)=c(v)$ (1.4)

where the Bethe form of the eigenvectors is known to hold9 for all eigenvectors and all
eigenvalues are computed for all $\eta$ and $N$. On the other hand it was recently $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{d}^{1_{-}13}$

that if the root of unity condition

$\gamma=2\eta=m\pi/L$ (1.5)

holds then the 6 vertex model has an $sl_{2}$ loop algebra symmetry group. In this article we
review this infinite dimensional symmetry algebra of the 6 vertex model at roots of unity
and discuss its relation to the qualifying restrictions given above for the solution of the 8
vertex model at (elliptic) roots of unity

$\eta=mK/L$ . (1.6)

II. LOOP ALGEBRA SYMMETRY OF THE 6 VERTEX MODEL

For generic (irrational) values of $\gamma/\pi$ the spectrum of eigenvalues of the 6 vertex transfer
matrix is nondegenerate. However, when the root of unity condition (1.5) holds degenerate
multiplets occur if $N>L$ . These multiplets may be described in terms of the operator

$S^{z}= \frac{1}{2}\sum_{k=1}^{N}\sigma_{k}^{z}$ (2.1)
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which commutes with the transfer matrix of the 6 vertex model. Call $S_{\max}^{z}$ the maximum
value of $S^{z}$ in the multiplet. Then in the sector

$S^{z}\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d}L)$ (2.2)

the number of degenerate states in the multiplet with the value of $S^{z}$ given by

$S^{z}=S_{\max}^{z}-lL$ with $0\leq l\leq 2S_{\max}^{z}/L$ (2.3)

is

and thus the total number of states in the degenerate multiplet is $2^{2S_{\mathrm{m}}^{l}/L}"$ . When

$S^{z}\equiv n\neq 0(\mathrm{m}\mathrm{o}\mathrm{d}L)$ (2.5)

there are three types of multiplets with degeneracies

where $[x]$ is the greatest integer contained in $x$ .
These degenerate multiplets signal the existence of a symmetry of the system which is

not present in the finite system for $\gamma/\pi$ irrational. This symmetry algebra was discovered
in ref.1o where it was shown that the operators

$S^{\pm(L)}=\Sigma_{1\leq j_{1}<\cdots<j_{L}\leq N}q^{L\sigma^{z}/2}\otimes\cdots\otimes q^{L\sigma^{z}/2}\sigma_{j_{1}}^{\pm}\otimes q^{(L-2)\sigma^{z}/2}\otimes\cdots\otimes q^{(L-2)\sigma^{z}/2}$

$\otimes\sigma_{j_{2}}^{\pm}\otimes q^{(L-4)\sigma^{z}/2}\otimes\cdots\otimes\sigma_{j_{L}}^{\pm}\otimes q^{-L\sigma^{z}/2}\otimes\cdots\otimes q^{-L\sigma^{z}/2}$ (2.7)

$T\pm(\iota)=\Sigma_{1\leq j1<\cdots<j_{L}\leq N}q^{-L/2}\otimes\sigma^{z}\ldots\otimes q^{-L\sigma^{z}/2}\sigma_{j_{1}}^{\pm}\otimes q^{-(L-2)\sigma^{z}/2}\otimes\cdots\otimes q^{-(L-2)\sigma^{\iota}/2}$

$\otimes\sigma_{j_{2}}^{\pm}\otimes q^{-(L-4)\sigma^{z}/2}\otimes\cdots\otimes\sigma_{j_{L}}^{\pm}\otimes q^{L\sigma^{z}/2}\otimes\cdots\otimes q^{L\sigma^{z}/2}$ (2.8)

$\mathrm{W}\mathrm{i}\mathrm{t}\mathrm{h}q=-e^{i\gamma}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}\mathrm{T}_{6}(v)\int^{\mathrm{S},}\ldots\mu-\mathrm{A}\mathit{4}.P-\mathrm{c}_{r}-\backslash \mathrm{n},...h^{(2.2).\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{o}_{\underline{1}}\mathrm{n}_{1}}\sim 4*..’^{\backslash .\cdot\_{\mathit{4}_{-\mathfrak{k}\tau}’\cdot\cdot\cdot \mathit{4}\triangleright\backslash -,f\infty}^{1\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}.\mathrm{r}\mathrm{e}_{\vee-}}}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}.\mathrm{o}\mathrm{r}.,..\cdot..\mathrm{o}\mathrm{p}’\sim’ K^{[]}\mathit{1}^{-*}\mathrm{J}\aleph^{\mathrm{w}}1\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{t}\mathrm{h}\mathrm{e}6$

vertex transfer

$[S^{\pm(L)}, \mathrm{T}_{6}(v)e^{-iP}]=[T^{\pm(L)}, \mathrm{T}_{6}(v)e^{-iP}]=0$ (2.9)

where $e^{-1P}$ is the lattice translation operator. We note that $S^{\pm(L)}=T^{\pm(L)*}$ . The operators
$S^{\pm(L)},$ $T^{\pm(L)}$ , and $S^{z}$ satisfy the defining relations of the Chevalley generators of the loop
algebra of $sl_{2}$

$[S^{+(L)}, T^{+(L)}]=[S^{-(L)},T^{-(L)}]=0$ (2.10)
$[S^{\pm(L)}, S^{z}]=\pm LS^{\pm(L)}$ , $[T^{\pm(L)}, S^{z}]=\pm LT^{\pm(L)}$ (2.11)

$[S^{+(L)}, S^{-(L)}]=[T^{+(L)}, T^{-(L)}]=-(-q)^{L} \frac{2}{L}S^{z}$ (2.12)
$S^{+(L)3}T^{-(L)}-3S^{+(L)2}T^{-(L)}S^{+(L)}+3S^{+(L)}T^{-(L)}S^{+(L)2}-T^{-(L)}S^{+(L)3}=0$ (2.13)
$S^{-(L)3}T^{+(L)}-3S^{-(L)2}T^{+(L)}S^{-(L\rangle}+3S^{-(L)}T^{+(L)}S^{-(L)2}-T^{+(L)}S^{-(L)3}=0$ (2.14)
$T^{+(L)3}S^{-(L)}-3S^{+(L)2}S^{-(L)}T^{+(L)}+3T^{+(L)}S^{-(L)}T^{+(L)2}-S^{-(L)}T^{+(L)3}=0$ (2.15)
$T^{-(L)3}S^{+(L)}-3T^{-(L)2}S^{+(L)}T^{-(L)}+3T^{-(L)}S^{+(L)}T^{-(L)2}-S^{+(L)}T^{-(L)3}=0$ (2.16)
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In the sector (2.5) we further define the operators

$S^{\pm}=\Sigma_{j=1}^{N}q^{\sigma^{x}/2}\otimes\cdots q^{\sigma^{f}/2}\otimes\sigma_{j}^{\pm}\otimes q^{-\sigma^{z}/2}\otimes\cdots\otimes q^{-\sigma^{z}/2}$ (2.17)
$T^{\pm}= \sum_{j=1}^{N}q^{-\sigma^{x}/2}\otimes\cdots q^{-\sigma^{z}/2}\otimes\sigma_{j}^{\pm}\otimes q^{\sigma^{z}/2}\otimes\cdots\otimes q^{\sigma^{z}/2}$ (2.18)

(2.19)

and we found in ref. $1$ that for even $N$ the following eight operators commute with $\mathrm{T}_{6}(v)e^{-iP}$

$(T^{+})^{n}(S^{-})^{n}S^{-(L)}$ , $S^{-(L)}(S^{-})^{L-n}(T^{+})^{L-n}$ ,
$S^{+(L)}(S^{+})^{n}(T^{-})^{n}$ , $(T^{-})^{L-n}(S^{+})^{L-n}S^{+(L)}$ ,
$T^{+(L)}(T^{+})^{n}(S^{-})^{n}$ , $(S^{-})^{L-n}(T^{+})^{L-n}T^{+(L)}$ ,
$(S^{+})^{n}(T^{-})^{n}T^{-(L)}$ , $T^{-(L)}(T^{-})^{L-n}(S^{+})^{L-n}$ . (2.20)

The operators

$(T^{+})^{n}(S^{-})^{n},$ $(S^{+})^{n}(T^{-})^{n},$ $(T^{-})^{L-n}(S^{+})^{L-n},$ $(S^{-})^{L-n}(T^{+})^{L-n}$ (2.21)

which appear in (2.20) each have a large null space but they are not in themselves projection
operators. For $L=2$ and numerically on the computer for $L=3$ we have constructed the
projection operators onto the eigenspace of the nonzero eigenvalues of the operators (2.21)
and using (2.20) have constructed the corresponding projections of $S^{\pm(L)}$ and $T^{\pm(L)}$ and have
verified that for the projected operators in the sector (2.5) that (2.10),(2.11) and (2.13)-(2.16)
hold without modification but that in (2.12) the constant $2/L$ is replaced by an expression
which depends on both $L$ and $n$ . We thus conclude that for even $N$ the $sl_{2}$ loop algebra is
a symmetry algebra of all sectors of the 6 vertex model.

III. EVALUATION REPRESENTATIONS, DRINFELD POLYNOMIALS AND
BETHE VECTORS

The degenerate multiplets of the 6 vertex model are an example of a “highest weight”
phenomenon where all eigenvectors of the multiplet may be obtained by letting the genera-
tors of the symmetry algebra operate on the “highest weight vector” $|\Omega>o\mathrm{f}$ the multiplet.
In the sector $S^{z}\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d}L)$ the highest weight vector $|\Omega>$ is $\mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{d}^{1415}$, in terms of the
Chevalley generators $S^{\pm(L)}$ and $T^{\pm(L)}$ of the previous section as

$S^{+(L)}|\Omega>=T^{+(L)}|\Omega>=0$ (3.1)
$\frac{T^{+(L)r}}{\mathrm{r}!}\frac{S^{-(L)_{\Gamma}}}{\mathrm{r}!}|\Omega>=\mu_{f}\mathrm{I}^{\Omega}>,$ $\frac{S^{+(L)r}}{r!}\frac{T^{-(L)r}}{\gamma!}|\Omega>=\mu,|\Omega>$, (3.2)

$S^{z}|\Omega>=S_{\max}^{z}|\Omega>$ . (3.3)

To further study these finite dimensional representation we need to recall a fundamental
property of all affine Lie algebras that, besides the Chevalley basis, they are also character-
ized by a “mode” basis. In this basis the elements of the $sl_{2}$ loop algebra are $e(n),$ $f(n)$ and
$h(n)$ , where $n$ is an integer, which satisfy the commutation relations

$[e(m), f(n)]=h(m+n)$
$[e(m), h(n)]=-2e(m+n)$
$[f(m), h(n)]=2f(m+n)$ . (3.4)
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The relation to the Chevalley basis of the previous section is

$e(\mathrm{O})=T^{-(L)}$ , $e(-1)=S^{-(L)}f(\mathrm{O})=T^{+(L)}$ , $f(1)=S^{+(L)}$ . (3.5)

In terms of this mode basis the evaluation representations are specified by vectors $|a_{j},$ $m_{j}>$

where for all integer $n$ (positive, negative or zero)

$e(n)|a_{j},$ $m_{j}>=a_{j}^{n}e_{m_{j}}|a_{j},$ $m_{j}>$

$f(n)|a_{j},$ $m_{j}>=a_{j}^{n}f_{m_{j}}|a_{j},$ $m_{j}>$

$h(n)|a_{j},$ $m_{j}>=a_{j}^{n}h_{m_{j}}|a_{j},$ $m_{j}>$ (3.6)

where $a_{j}$ are called evaluation parameters and $e_{m_{\mathrm{j}}},$
$f_{m_{\mathrm{j}}}$ and $h_{m_{\mathrm{j}}}$ are a spin $m_{j}/2$ represen-

tation of $sl_{2}$ . An important $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}^{1415}$, is that the evaluation parameters $a_{j}$ are the roots
with multiplicities $m_{j}$ of what is called the (classical) Drinfeld polynomial $P_{\Omega}(z)$

$P_{\Omega}(z)= \sum_{f\geq 0}\mu_{r}(-z)^{r}$
(3.7)

where $\mu_{r}$ are the eigenvalues defined in (3.2).
To apply this notion of highest weight vector to the present case we need to find the

relation between $|\Omega>\mathrm{a}\mathrm{n}\mathrm{d}$ the Bethe form of the eigenvectors. In the region $S^{z}\geq 0$ these
Bethe vectors are specified by the coordinate $x_{k}$ of $n= \frac{N}{2}-S^{z}$ “down” spins which satisfy
$1\leq x_{1}<x_{2}<\cdots<x_{n}\leq N$ and the form of the wave function is

$|x_{1},$ $x_{2},$ $\cdots x_{n}>=\sum_{P}A_{P}e^{*(k_{P1}}x_{1}+k_{P2}x_{2}+\cdots+k_{Pn^{x_{n})}}$
(3.8)

where the sum is over all $n!$ permutations $P$ of 1, $\cdots n$ , The $A_{P}$ are specified functions of the
$k_{Pj}$ and the $k_{j}$ are given in terms of $v_{j}$ by $e^{1k}=(e^{2\gamma}-e^{:v})/(e^{i(v+\gamma)}-1)$ where the $v_{j}$ satisfy

$\frac{\sin(v_{j}+\gamma/2)}{\sin(v_{j}-\gamma/2)}=\prod_{l=1,\neq j}^{N/2-S^{z}}\frac{\sin(v_{j}v_{l}+\gamma)}{\sin(v_{j}v_{l}-\gamma)}=$. (3.9)

These equations uniquely specify the eigenvectors as long as the root of unity condition (1.5)
does not hold. In terms of the “algebraic Bethe Ansatz” presented in ref.16,17 the states (3.8)
are given as $\prod_{j}B(v_{j})|0>\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}$ the $v_{j}$ are determined from $(3.9),|0>\mathrm{i}\mathrm{s}$ the state with no
down spins and the operator $B(v)$ is the upper right hand element of the $2\cross 2$ monodromy
matrix $\mathrm{M}(v)$ given as

$(_{C(v)}^{A(v)}D(v)B\{v$
)

$)=\mathrm{M}(v)=W(\mu_{1}, \nu_{1})W(\mu_{2}, \nu_{2})\cdots W(\mu_{N}, \nu_{N})$ (3.10)

When the root of unity condition (1.5) does hold there is ambiguity in the solution of
(3.9) because $L$ of the $v_{j}$ may be of the form

$v_{j;k}=v_{j}^{\mathrm{c}}+km\pi/L$ , $k=0,1,$ $\cdots,$ $L-1$ . (3.11)

These sets of roots are called “complete strings” and give factors of 0/0 which cancel out of
(3.9). It is indirectly shown in ref.i3 that the highest weight vectors $|\Omega>\mathrm{a}\mathrm{r}\mathrm{e}$ all Bethe vectors
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where the “Bethe roots” $v_{j}$ do not contain any complete $L$ strings. The remaining members
of the multiplet, while they are still of the Bethe form (3.8), will contain complete $L$ strings.
For $\gamma$ at roots of unity the algebraic Bethe Ansatz does not give a proper construction
of eigenstates belonging to degenerate multiplets as the operator $\Pi_{k=0}^{L-1}B(v-2ik\gamma)$ which
formally creates a $L$-string vanishesi8. We have shown $\mathrm{i}\mathrm{n}^{13}$ that the creation operator of the
$L$-string part of a state vector is

$B^{(L)}(v)=$

$\sum_{k=0}^{L-1}(\prod_{l=0}^{k-1}B(v-2il\gamma))(B_{\gamma}(v-2ik\gamma)+\frac{X(v-2ik\gamma)}{\mathrm{Y}(v)}B_{v}(v-2ik\gamma))\cross(\prod_{1=k+1}^{L-1}B(v-2il\gamma))$ (3.12)

where $B_{\gamma}(v)$ and $B_{v}(v)$ specify derivatives of $B(v)$ with respect to $\gamma$ and $v$ respectively and
where

$X(v)=2i \sum_{l=0}^{L-1}\frac{l\sinh^{N}\frac{1}{2}(v-(2l+1)i\gamma)}{\Pi_{k=1}^{n}\sinh\frac{1}{2}(v-v_{k}-2il\gamma)\sinh\frac{1}{2}(v-v_{k}-2i(l+1)\gamma)}$ (3.13)

and

$\mathrm{Y}(v)=\sum_{l=0}^{L-1}\frac{\sinh^{N}\frac{1}{2}(v-(2l+1)i\gamma)}{\prod_{k=1}^{n}\sinh\frac{1}{2}(v-v_{k}-2il\gamma)\sinh\frac{1}{2}(v-v_{k}-2i(l+1)\gamma)}$ (3.14)

and $v_{k}$ with $k=1,$ $\cdots,$ $n$ are the ordinary Bethe roots. We show $i\mathrm{n}^{13}$ that $\mathrm{Y}(v)$ satisfies the
periodicity condition

$\mathrm{Y}(v+m\pi/L)=Y(v)$ (3.15)

and thus is a Laurent polynomial in $z=e^{2:Lv}$ . Furthermore we define the degrees $d_{\pm}$ by

$\mathrm{Y}(v)=\mathit{0}_{\pm^{e^{\pm 2iLd}}}\pm^{v}$ as $varrow\pm i\infty$ . (3.16)

The Drinfeld polynomial $P_{\Omega}(z)$ is then given $\mathrm{a}\mathrm{s}^{13}$

$P_{\Omega}(z)=e^{d_{-}2iLv}\mathrm{Y}(v)$ (3.17)

which is a polynomial in $z$ of degree $d=d_{+}+d_{-}$ .
If the zeros of $\mathrm{Y}(v)$ all have multiplicity one then the number of eigenvalues in the

multiplet specified by the evaluation parameters of the highest weight vector $|\Omega>$ is $2^{d}$ .
There exists no analytic proof that the roots of $\mathrm{Y}(v)$ are all simple but this has been verified
in all numerical evaluations which have been made.

IV. THE 8 VERTEX MODEL AT ROOTS OF UNITY

The eigenvalues of the 8 vertex model develop degenerate multiplets when $\eta$ satisfies
(1.6) in a manner almost identical with the degeneracies of the 6 vertex model at (1.5). The
only difference is that some of the 6 vertex multiplets split into two multiplets for the 8
vertex model when the elliptic nome $p\neq 0$ . Thus the numerical evidence for the existence
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of a symmetry algebra for the 8 vertex model at the roots of unity points (1.6) is just as
compelling as for the 6 vertex model.

However, despite the great similarity in the numerical evidence the treatment of the
degeneracies of the 8 vertex model is very different from what was done for the 6 vertex
model. In particular we do not have expressions for operators like $S^{\pm(L)}$ and $T^{\pm(L)}$ which
commute with $\mathrm{T}_{8}e^{-iP}$ and we do not know what is the symmetry algebra which produces the
degeneracy. Accordingly we cannot give a group theoretic explanation in terms of highest
weight states and evaluation parameters,

Instead of using group theory we study the multiplets of the 8 vertex model at roots of
unity (1.6) by use of the matrix first introduced by Baxter’ in 1972 in his original solution
of the 8 vertex model. This matrix (which we call $\mathrm{Q}_{72}(v)$ ) satisfies the functional equation

$\mathrm{T}_{8}(v)\mathrm{Q}(v)=[\rho(0)h(v-\eta)]^{N}\mathrm{Q}(v+2\eta)+[\rho(0)h(v+\eta)]^{N}\mathrm{Q}(v-2\eta)$ (4.1)

where $h(v)=(v)H(v)$ and the commutation relations

$[\mathrm{T}_{8}(v), \mathrm{Q}(v’)]=[\mathrm{Q}(v), \mathrm{Q}(v’)]=0$ . (4.2)

In Baxter’s paper1 the following explicit form is given for $\mathrm{Q}_{72}(v)$

$\mathrm{Q}_{72}(v)=\mathrm{Q}_{R}(v)\mathrm{Q}_{R}^{-1}(v_{0})$ (4.3)

where $v_{0}$ is an arbitrary normalization point at which $\mathrm{Q}_{R}(v)$ is nonsingular. The matrix
$\mathrm{Q}_{R}(v)$ is defined as

$\mathrm{Q}_{R}(v)|_{\alpha|\beta}=\mathrm{R}\mathrm{S}(\alpha_{1}, \beta_{1})\mathrm{S}(\alpha_{2}, \beta_{2})\cdots \mathrm{S}(\alpha_{N}, \beta_{N})$ (4.4)

where $\alpha_{j}$ and $\beta_{j}=\pm 1$ and $S(\alpha, \beta)$ is an $L\cross L$ matrix given as (C16) of ref.1

$\mathrm{S}(\alpha, \beta)=$ (4.5)

with $z_{m}=q(\alpha, \beta,m|v)$ and

$q(+, \beta, m|v)=H(v+K+2m\eta)\tau_{\beta,m}$ ,
$q(-, \beta, m|v)=(v+K+2m\eta)\tau_{\beta,m}$ (4.6)

The $\tau_{\beta,m}$ are generically arbitrary but we note that if they are all set equal to unity then
$\mathrm{Q}_{R}(v)$ is so singular that its rank becomes 1. On the other hand as long as the $\tau_{\beta,m}$ are
chosen so that there is a $v_{0}$ such that $\mathrm{Q}_{R}(v_{0})$ is not singular then $\mathrm{Q}_{72}(v)$ is independent of
$\tau_{\beta,m}$ .

For many years it seems to have been assumed that for all $L$ and all $N$ there did exist a
$v_{0}$ for which $\mathrm{Q}_{R}(v)$ was nonsingular but in ref.6 we made a computer study of $\mathrm{Q}_{72}(v)$ which
demonstrated that such a general statement of nonsingularity does not hold. Instead we
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found that while $\mathrm{Q}_{R}(v)$ is nonsingular if $L$ is even or when $L$ and $m$ are odd that if $L$ is
odd and $m$ is even then $\mathrm{Q}_{R}(v)$ is singular for all $v$ when $N$ is odd or when $N$ is even and
$L\geq N-1$ . When $N$ is even the eigenvalues of $\mathrm{T}_{8}(v)$ may still be studied by means of the
$TQ$ equation (4.1) even though $\mathrm{Q}_{R}(v)$ is singular for $L\geq N-1$ by use of the symmetry

$\mathrm{T}_{8}(v+K;K-\eta)=\mathrm{S}\mathrm{T}_{8}(v;\eta)$ (4.7)

where

$\mathrm{S}=\prod_{j=1}^{N}\sigma_{j}^{z}$ (4.8)

and we note that

$[\mathrm{S}, \mathrm{T}_{8}(v)]=0$ , $[\mathrm{S}, \mathrm{Q}_{72}(v)]=0.$ . (4.9)

However for odd $N$ with $L$ odd and $m$ even no such symmetry exists.
Even though $\mathrm{T}_{8}(v)$ has many degenerate eigenvalues when $\eta$ satisfies the root of unity

condition (1.6) the matrix $\mathrm{Q}_{72}(v)$ has the remarkable property (discovered numerically but
never proven analytically) that it has no degenerate eigenvalues. Therefore if we can find a
criterion to determine the class of eigenvalues of $\mathrm{Q}_{72}(v)$ which have the same eigenvectors
of the degenerate eigenvalues of $\mathrm{T}_{8}(v)$ we may determine the degeneracy of an eigenvalue
of $\mathrm{T}_{8}(v)$ by counting the corresponding eigenvalues of $\mathrm{Q}_{72}(v)$ . To determine this relation
between eigenvalues of $\mathrm{T}_{8}(v)$ and $\mathrm{Q}_{72}(v)$ we note, as demonstrated in ref.6, that $\mathrm{Q}_{72}(v)$

obeys the following quasiperiodicity conditions

$\mathrm{Q}_{72}(v+2K)=\mathrm{S}\mathrm{Q}_{72}(v)$ (4.10)
$\mathrm{Q}_{72}(v+2iK’)=p^{-N}\exp(-iN\pi v/K)\mathrm{Q}_{72}(v)$ . (4.11)

It follows from (4.9) that $\mathrm{S}$ and $\mathrm{Q}_{72}(v)$ may be simultaneously diagonalized and thus in the
basis where $\mathrm{S}$ is diagonal with eigenvalues $(-1)^{\nu’}$ with $\nu’=0,1$ we obtain from (4.10),(4.11)
the quasiperiodicity conditions for the eigenvalues

$Q_{72}(v+2K)=(-1)^{\nu’}Q_{72}(v)$ (4.12)
$Q_{72}(v+2iK’)=p^{-N}\exp(-iN\pi v/K)Q_{72}(v)$ . (4.13)

and thus the eigenvalues $Q_{72}(v)$ of the matrix $\mathrm{Q}_{72}(v)$ may be expressed in a factored form
as

$Q_{72}(v)= \mathcal{K}(p;v_{k})\exp(-i\nu\pi v/2K)\prod_{j=1}^{N}H(v-v_{j})$ (4.14)

where we have the sum rules

$\nu=\sum_{j=1}^{N}{\rm Im} v_{j}/K’=\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}$ integer $-\nu’=N$ (4.15)

$N+ \sum_{j=1}^{N}{\rm Re} v_{j}/K=\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}$ integer. (4.16)
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From the commutation relations (4.2) we see that all matrices in the $TQ$ equation (4.1)
may be simultaneously diagonalized and making this diagonalization we obtain an equation
for eigenvalues $T_{8}(v)$ and $Q(v)$

$T_{8}(v)Q(v)=[\rho(0)h(v-\eta)]^{N}Q(v+2\eta)+[\rho(0)h(v+\eta)Q(v-2\eta)$ (4.17)

Then using the factored form (4.14) of the eigenvalues $Q_{72}(v)$ in (4.17) and setting $v=v_{j}$

we obtain the equation for the zeros $v_{j}$ of $Q_{72}(v)$

$( \frac{h(v_{l}-mK/L)}{h(v_{l}+mK/L)})^{N}=e\prod_{j=1,\neq\iota}^{N}2\pi i\nu m/L=\frac{H(v_{\iota}v_{j}-2mK/L)}{H(v_{l}v_{j}+2mK/L)}$. (4.18)

If in the complete set of $N$ roots $v_{j}$ there are sets of $L$ roots

$v_{j;k}=v_{j}^{c}+2kmK/L$ (4.19)

we see from the eigenvalue expression (4.17) that all terms with $v_{j}^{c}$ cancel and thus eigen-
values of $Q_{72}(v)$ which differ only in the location of the string centers $v_{j}^{\mathrm{c}}$ have the same
degenerate eigenvalues $T_{8}(v)$ . Thus we can count the degeneracy of an eigenvalue of $\mathrm{T}_{8}(v)$

by determining all those eigenvalues $Q_{72}(v)$ which differ only by their $L$ strings. These $L$

string solutions are the analogue for the 8 vertex model of the $L$ string solutions (3.11) of
the 6 vertex model and like the $L$ strings of the 6 vertex model the string centers cannot be
determined from the equation (4.22). We note that the strings (4.19) which contain $L$ roots
are not the same as the strings of ref.5,19 which contain $2L$ roots and are invariant under
translation by $iK’$ .

Unlike the 6 vertex equations (3.9) which have $N/2-S^{z}$ Bethe roots $v_{j}$ the 8 vertex
equations (4.18) have $N$ roots for all eigenstates of $\mathrm{T}_{8}(v)$ . Moreover there are distinct features
in the solutions $v_{j}$ of (4.18) which depend on $N$ which do not occur for (3.9). To see these
features it is (at present) necessary to do a numerical study of the zeroes of the eigenvalues
of $\mathrm{Q}_{72}(v)$ . We have done this for $N$ even in ref.6 and for $N$ odd in ref.8 and have found the
following results for the roots of unity condition (1.6).

Even $N$ with $m$ odd and $L$ even or odd
There are $n_{B}$ pairs of roots

$v_{j}^{N},$ $v_{j}^{B}+iK’$ (4.20)

which we call Bethe roots and $n_{L}$ complete $L$ strings of the form (4.19) where

$2n_{B}+Ln_{L}=N$ (4.21)

When this form is used in the $TQ$ equation (4.22) we find that the $n_{B}$ Bethe roots satisfy

$( \frac{h(v_{l}^{B}-mK/L)}{h(v_{l}^{B}+mK/L)})^{N}=e^{2\pi i(\nu-n_{B})m/L}\prod_{j=1,\neq\iota}^{n_{B}}=\frac{h(v_{l}^{B}v_{j}-2mK/L)}{h(v_{l}^{B}v_{j}+2mK/L)}$. (4.22)

The $L$ string roots are not determined from this equation and we proved for $L=2$ in ref.7
and conjectured for $L\geq 3$ in ref.6 that they are determined in terms of the $n_{B}$ Bethe roots
by the functional equation
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$\mathrm{A}’e^{-N\pi iv/2K}\mathrm{Q}_{72}(v-iK’)=\sum_{l=0}^{L-1}\frac{h^{N}(v-(2l+1)\eta)\mathrm{Q}_{72}(v)}{\mathrm{Q}_{72}(v-2l\eta)\mathrm{Q}_{72}(v-2(l+1)\eta)}$ (4.23)

where $\mathrm{A}’$ is a matrix which commutes with $\mathrm{Q}_{72}(v)$ , is independent of $v$ and depends on
the normalization in the construction of $\mathrm{Q}_{72}(v)$ . The left hand side of (4.23) is an entire
function and thus the apparent poles on the right hand side at the zeroes of $\mathrm{Q}_{72}(v)$ must
cancel. This cancellation leads to the equation for the Bethe roots $v_{j}^{B}$ of (4.22). The
remaining zeroes of the right hand side give the string solutions $v_{j;k}^{L}$ and have the property
that if $v_{j;k}^{L}=v_{j}^{c}+2kmK/L$ is a solution then $v_{j;k}^{L}+iK’$ is also a solution. Therefore the
number of eigenvalues of $\mathrm{Q}_{72}(v)$ which correspond to a degenerate eigenvalue of $\mathrm{T}_{8}(v)$ is
$2^{n_{L}}$ . Thus for even $N$ we have explained the degeneracies of the 8 vertex model transfer
matrix without an appeal to group theory.

Odd $N$ with $m$ odd and $L$ even or odd
There are no paired roots and no $L$ strings. All the $N$ roots $v_{j}$ are determined from

(4.18). For every set of roots $v_{j}$ which solves (4.18) there is a second solution $v_{j}+iK’$ which
also solves (4.18) and thus all eigenvalues of $\mathrm{T}_{8}(v)$ are doubly degenerate. This is to be
expected from the fact that the transfer matrix is invariant under spin reversal and that
all states have half integer total spin. Because there are never any $L$ strings there are no
further degeneracies in the eigenvalue spectrum of $\mathrm{T}_{8}(v)$ .

There remains the case $L$ odd and $m$ even where $\mathrm{Q}_{72}$ does not exist. For $N$ even this
is related to the case $m$ odd by use of the symmetry (4.7). For $N$ odd, there is no such
symmetry. However, it was demonstrated in ref. $3_{-}5$ that if there exist integer $n_{B}$ and $n_{L}$

such that (4.21) holds that the eigenvalues of the transfer matrix $\mathrm{T}_{8}(v)$ may be computed.
Because $N$ and $L$ are odd this requires that $n_{L}$ be odd (and in particular non zero) for the
method to apply.

There is no proof that for $N$ odd, $L$ odd and $m$ even that there is any matrix $\mathrm{Q}(v)$

which satisfies the $TQ$ equation (4.1) and the commutation relations (4.2). Nevertheless we
conjecture that such a matrix $\mathrm{Q}(v)$ does exist which satisfies the quasiperiodicity conditions
(4.12) and (4.13). We have studied this numerically in ref.8 and found that for $N$ odd, with
$L$ odd and $m$ even there are two types of eigenvalues $Q(v)$ which occur:

Type I.
There are $n_{B}$ pairs of Bethe roots (4.20) and $n_{L}$ complete $L$ strings of the form (4.19)

where (4.21) holds with $n_{L}\neq 0$ . The Bethe roots are determined from (4.22) and the method
of ref. $3_{-}5$ applies. As with the case of even $N$ we find that for each complete $L$ string $v_{j;k}^{L}$ there
is a companion string $v_{j_{j}k}^{L}+iK’$ . Therefore the degeneracy of the transfer matrix eigenvalue
is $2^{n_{L}}$ .

Type II.
There are no pairs of Bethe roots and no $L$ strings. To every set of roots $v_{j}$ there is

a companion set of roots $v_{j}+iK’$ and thus all eigenvalue of the transfer matrix $\mathrm{T}_{8}(v)$ are
doubly degenerate. Because there are no paired roots and no complete $L$ string the condition
(4.21) does not hold and the method of computing eigenvectors of ref. $3_{-}5$ does not apply to
these states. On the other hand we have verified that the function $Q(v)$ constructed from $v_{k}$

according to (4.14) satisfies the equation (4.23) with $A’=0$ from which (4.18) follows. This
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case for which the methods of ref. $3_{-}5$ fail is particularly interesting. A special case was first
studied in ref. $2$ and the 6 vertex limit has been studied extensively by several $\mathrm{a}\mathrm{u}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{r}s^{21_{-}24}$ .

V. OUTLOOK

The results and computations presented above provide a detailed explanation of the
degeneracies in the eigenvalue spectrum of the 6 and 8 vertex models at roots of unity.
However it is clear that there are many open questions which need to be resolved before the
problem of the degeneracies can be considered to be solved.

For the 6 vertex model with $S^{z}\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d}L)$ where the generators of the symmetry
algebra are explicitly known the highest weight property $(3.1)-(3.3)$ of the Bethe vectors
which contain no strings needs to be directly proveni5. For $S^{z}\neq 0(\mathrm{m}\mathrm{o}\mathrm{d}L)$ the projection
operators needed for the several different sectors need to be studied in such a form that the
symmetry algebra in the sectors may be analytically established. For all sectors a direct
proof of the expression for the Drinfeld polynomial (3.17) in terms of the Bethe roots needs
to be given and a proof that the roots of the Drinfeld polynomial are all simple needs to
be found. In addition it would be desirable to find a physical interpretation for the basis of
degenerate eigenvectors which is specified by the evaluation parameters.

For the 8 vertex model much more needs to be done because here the symmetry algebra
is not known even though such an algebra must exist. This algebra for the 8 vertex model
must contain information about the sectoring of the 6 vertex model for $S^{z}\neq 0(\mathrm{m}\mathrm{o}\mathrm{d}L)$ .
There should presumably be some analogue for this symmetry algebra of the highest weight
phenomenon and the righthand side of (4.23) should be some sort of elliptic generaliza-
tion of a Drinfeld polynomial with the zeroes providing a generalization of the evaluation
parameters.

Moreover, while for the 6 vertex model the eigenvectors and eigenvalues of the transfer
matrix $T_{6}(v)$ are known for all $\gamma$ and all $N$ to follow from the Bethe form of the eigenvectors
the same is not true for the 8 vertex model. For generic $\eta$ and even $N$ a matrix $\mathrm{Q}_{73}(v)$ is
$\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{n}^{3_{-}52}$, which satisfies the $TQ$ equation (4.1) and the commutation relations (4.2) but
this matrix does not specialize to $\mathrm{Q}_{72}(v)$ when $\eta$ is root of unity. This demonstrates that
the matrix $\mathrm{Q}(v)$ which satisfies (4.1) and (4.2) is not unique and it is of interest to find how
many arbitrary parameters can be contained in the solutions. This would generalize the
studies of the $\mathrm{Q}(v)$ matrices made for the 6 vertex $\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1^{25_{-}28}$ . Moreover for odd $N$ in the
case $L$ odd with $m$ even or for generic $\eta$ no $\mathrm{Q}(v)$ matrix is proven to exist even though we
have numerically seen that the $TQ$ equation can be satisfied. The case $N$ odd $L$ odd and
$m$ even needs to be investigated in the detail for which the 6 vertex limit has been studied
in $\mathrm{r}\mathrm{e}\mathrm{f}^{21_{-}24}.$ . The recent work of Bazhanov and Mangazeev29 for $\eta=2K/3$ is an important
development in this study.
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APPENDIX $\mathrm{A}$ : PROPERTIES OF THETA FUNCTIONS

The definition of Jacobi theta functions of nome $p$ is

$H(v)=2 \sum_{n=1}^{\infty}(-1)^{n-1}p^{(n-\frac{1}{2})^{2}}\sin[(2n-1)\pi v/2K]$ (A1)

$\Theta(v)=1+2\sum_{n=1}^{\infty}(-1)^{n}p^{n^{2}}\cos(nv\pi/K)$ (A2)

where $K$ and $K’$ are the standard elliptic integrals of the first kind and

$p=e^{-\pi K’/K}$ (A3)

These theta functions satisfy the quasiperiodicity relations

$H(v+2K)$ $=-H(v)$ (A4)
$H(v+2iK’)=-p^{-1}e^{-\pi iv/K}H(v)$ (A5)

$(v+2K)$ $=(v)$ (A6)
$(v+2iK’)=-p^{-1}e^{-\pi\dot{*}v/K}(v)$ (A7)

From (A1) and (A2) we see that $(v)$ and $H(v)$ are not independent but satisfy

$(v\pm iK’)=\pm ip-1/4e^{\mp_{2}^{\mathrm{p}1}}\tau^{v}- H(v)$

$H(v\pm iK’)=\pm ip^{-1/4}e^{\mp\frac{\pi i\mathrm{w}}{2K}}(v)$ (A8)
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