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Abstract

The eigenvalues of the transfer matrix in a six-vertex model (with periodic boundary condi-
tions) can be written in terms of $n$ constants $v_{1},$ $\ldots,$

$v_{n}$ , the zeros of the function $Q(v)$ . A
peculiar class of eigenvalues are those in which two of the constants $v_{1},$ $v_{2}$ are equal to $\lambda,$ $-\lambda$ ,
with $\Delta=-\cosh$ A and $\Delta$ related to the Boltzmann weights of the six-vertex model by the
usual combination $\Delta=(a^{2}+b^{2}-c^{2})/2ab$ . The eigenvectors associated to these eigenvalues
are Bethe states (although they seem not). We count the number of such states (eigenvectors)
for $n=2,3,4,5$ when $N$ , the columns in a row of a square lattice, is arbitrary. The number
obtained is independent of the value of $\Delta$ , but depends on $N$ . We give the explicit expres-
sion of the eigenvalues in terms of $a,$ $b,$ $c$ (when possible) or in terms of the roots of a certain
reciprocal polynomial, being very simple to reproduce numerically these special eigenvalues
for arbitrary $N$ in the blocks $n$ considered. For real $a,$ $b,c$ such eigenvalues are real.
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1 The problem

Some time ago the author of this note read in the paper Completeness of the Bethe Ansatz for the Six
and Eight- Vertex Models by R.J Baxter [1, Sect. 4] the following sentence concerning certain proper
states of the transfer matrix in the six-vertex model at zero-field:

The other problem that we encountered first occurs for $N=4$ and $n=2$ , then for even $N$ and
$2\leq n\leq N-2$ . It is referred to by Bethe himself and has been considered by others since2. For some
eigenvalues with momentum $\pm 1$ , 3 i.e. $k_{1}+\cdots+k_{n}=0$ or $\pi_{)}$ we found that

$Q(v)= \prod_{j=1}^{n}\sinh[(v-v_{j})/2]$

had a pair of zeros $v_{1},$ $v_{2}$ such that $v_{1}=\lambda,$ $v_{2}=-\lambda$ .
1E–mail: $\mathrm{m}\mathrm{j}\mathrm{r}\mathrm{p}\mathrm{l}u\mathrm{a}\emptyset \mathrm{f}\mathrm{l}\mathrm{s}.\mathrm{u}\mathrm{c}\mathrm{m}.\infty$

$2$ [$2$ , after eq. (23)], $[3],$ $[4],$ $[5]$

3Baxter means $\epsilon^{i(k_{1}+\cdots+k_{\hslash})}=\pm 1$
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The lines continued later as follows:

For $N=4$ there was just one such eigenvalue $\Lambda$ , in the $n=2$ central block. For $N=6$ there was one in
the $n=2$ block, two in the $n=3$ block, and one in the $n=4$ block. For $N=8$ there were 1, 2, 5, 2, 1
in the $n=2,3,4,5,\mathit{6}$ blocks, respectively. This suggests (tentatively) that the Catalan numbers may count
such eigenvalues.4 The momenta were $-1$ except for a single eigenvalue with momentum +1 in each block
with $3\leq n\leq N-3$ .

If the author had understood properly the eigenvectors associated to such eigenvalues and how to
obtain them from Bethe ansatz, probably would have not detained so long when reading these sentences.
But that was not the case: we were calculating at that time the free.energy per site of a vertex model
whose ground state was a state of this type, and the value of the free-energy that we were deriving was
once and again the incorrect one. We decided in consequence to put aside the free-energy problem for a
time and study instead these states in the six-vertex model. We ignore the correct name that we shall
use for them. In the literature they have received the name of singular Bethe states or singularities
of the Bethe solutions [3, 4, 6], and also non-Bethe eigenvectors [7]. We might even remember some
references in which they are alluded as improper states. Since they need a name and no other states are
considered in this paper we will refer to them as bound pairs merely.

This note communicates some results of the study and answers the interrogation suggested in Baxter’s
paper: Are Catalan numbers counting the bound pair states of a square six-vertex model with periodic
boundary $conditions^{Q}$

2 The $\mathrm{m}o$del

The model to be considered is a six-vertex model in a square lattice $[8, 9]$ . In this model to each site
of the lattice is associated one of the six arrangements of arrows shown in figure 1, where each of these
arrangements has an energy $\epsilon_{1},$ $\ldots,\epsilon_{6}$ and a Boltzmann weight given by

$\omega_{j}=\exp(-\epsilon_{j}/k_{B}T)$ , $j=1,$ $\ldots$ , 6.

The configurations of arrows satisfy the ‘ice rule’, because at each site of the lattice there are two arrows
in and two arrows out.

$\not\simeq$ $\prec\#$ $\not\simeq$

$1$ 2 3

$\not\simeq$ $arrow*\iota$ $\not\simeq$

$4$ 5 6

Figure 1. The six configurations allowed at a vertex. At each site of the lattice there are two arrows in and two arrows out.
This is known as the ‘ice-rule’.

Suppose that the lattice has dimensions $M\mathrm{x}N$ , that is $N$ sites horizontally and $M$ vertically,
with the imposition of periodic boundary conditions in both directions. The state of an arbitrary row
of $N$ vertical edges is then specified by the configuration of up and down arrows on the edge. Let
$\sigma=(\sigma_{1}, \ldots, \sigma_{N})$ denote the state ( $\sigma_{j}=+1$ for an up arrow at vertex $j,$ $\sigma_{j}=-1$ for a down arrow).
If $\sigma$ is the state of a row and $\sigma’$ the state of the row bellow, the two adjacent states are coupled by
the transfer matrix $T_{\sigma\sigma’}$ , whose entries are given by a trace of 2 $\mathrm{x}2$ matrices

$T_{\sigma\sigma’}=\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}R_{\sigma_{1}\sigma_{1}’}R_{\sigma_{2}\sigma_{2}’}\cdots R_{\sigma_{N}\sigma_{N}’}$ , (2.1)

where

$R_{++}=,$$R_{+-=}$ , $R_{-+}=$ , $R_{--}=$ .

4Catalan numbers are 1, 2, 5, 14, 132, 429, . . .
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A consequence of the (ice rule’ together with the horizontal periodicity of the lattice is that the number
$n$ of down (or up) arrows in a row is a conserved quantity from row to row, and $T$ , a $2^{N}\cross 2^{N}$ matrix,
breaks up into $N+1$ diagonal blocks with one block for each value $n=0,1,$ $\ldots$ , $N$ . The dimension of
block $n$ is
of the lattice $Z=\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}T^{M}$ , and this has implied the diagozalization of matrix $T$ . In the case of a
zero electrical field (the case treated here) where

$a=\omega_{1}=\omega_{2}$ , $b=\omega_{3}=\omega_{4}$ , $c=\omega_{5}=\omega_{6}$ , (2.2)

the eigenvalues A of the transfer matrix are known to be [9]

$\Lambda(v)=(-1)^{n}\frac{\phi(\lambda-v)Q(v+2\lambda)+\phi(\lambda+v\rangle Q(v-2\lambda)}{q(v)}$ , (2.3)

where functions $\phi(v),$ $Q(v)$ are

$\phi(v)=\rho^{N}\sinh^{N}(v/2)$ (2.4)

$Q(v)= \prod_{j=1}^{n}\sinh[(v-v_{j})/2]$ , (2.5)

and $\rho,$ $\lambda,$ $v$ are defined so that

$a= \rho\sinh\frac{1}{2}(\lambda-v)$ , $b= \rho\sinh\frac{1}{2}(\lambda+v)$ , $c=\rho\sinh\lambda$ . (2.6)

To write the eigenvalues (2.3) we have to locate $v_{1},$ $\ldots,$
$v_{n}$ for these eigenvalues. There are many

solutions, corresponding to the different eigenvalues.

3 Catalan numbers or not

Do Catalan numbers count the bound pair states of a square six-vertex model wath periodic boundary
conditions $Q$ The answer is $no$.
As was communicated in ref. [1], it is true that for $N=4$ there is one bound pair in the $n=2$ central
block, that for $N=\mathit{6}$ there are 1, 2, 1 in the $n=2,3,4$ blocks, respectively, and that for $N=8$ there
are 1, 2, 5, 2, 1 in the $n=2,3,4,5,6$ blocks. However, if the counting started in the previous reference
had continued it would have found that there are 1, 2, 6, 10 in $n=2,3,4,5^{5}$ for $N=10$ , and 1, 2, 7, 12
in $n=2,3,4,5$ for $N=12$ . In fact our calculations here show that for general even $N$ the number
is exactly 1, 2, $N/2+1,$ $N$ in the blocks $n=2,3,4,5$ . The numbers of states for $n=6$ and beyond
wont be studied in this paper.

4 Bound pairs and Bethe Ansatz

To obtain the eigenfunctions of the transfer matrix one can either diagonalize exactly the matrix
(impossible when the size is not reasonable) or use the Bethe ansatz, the trial form that Bethe
used for diagonalizing the quantum-mechanical Hamiltonial of the one-dimensional Heisenberg model
[2]. The ansatz suggests that the eigenstate of $T(v)$ , $T(v)|\psi\rangle=\Lambda(v)|\psi\rangle$ , can be written as
$| \psi\rangle=\sum_{x_{1}<\ldots<x_{*}},f(x_{1}, \ldots, x_{n})|x_{1},$ $\ldots,x_{n}\rangle$ , where the coefficients $f(x_{1}, \ldots,x_{n})$ are

$f(x_{1}, \ldots,x_{n})=\sum_{P}A_{\mathrm{p}_{1},\ldots,p_{n}}e^{1k_{P1}x_{1}}\cdots e^{1k_{\mathrm{p}n}x_{\mathrm{n}}}$
. (4.1)

5We omit to mention the blocks $n=N/2+1$ to $N-2$ since the number of these states is the same as in the blods
2, . . . , $N/2-1$ but in reverse order
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The numbers $x_{1},$ $\ldots$ , $x_{n}$ indicate the positions of $n$ down arrows on the lower vertical edges of a row
of the lattice, and are ordered so that $1\leq x_{1}<x_{2}<\ldots x_{n}\leq N$ . We have experienced that the
coefficients $A_{\mathrm{p}_{1},\ldots,p_{\iota}}$, suitable to construct bound pairs6 are given by

$A_{\mathrm{p}_{1},\ldots,\mathrm{p}_{l}},= \epsilon_{P}/C\prod_{1\leq\dot{\iota}<j\leq n}s_{\mathrm{p}_{\mathrm{j}},p:}$
, (4.2)

where $\epsilon_{P}=\pm 1$ is the sign of the permutation $\{p_{1}, \ldots,p_{n}\}$ of $\{1, \ldots, n\}$ and $C$ is a non-zero constant
to be fixed later in the most convenient manner (usually normalization). The vertex model defined by
activities $a,$ $b,$ $c$ so that

$\Delta=\frac{a^{2}+b^{2}-c^{2}}{2ab}$ (4.3)

enters in $s_{1j}$ , defined as
$s:j=1-2\Delta e^{1k_{j}}+e^{1(k_{\mathrm{t}}+k_{j})}$ . (4.4)

To write the eigenstates is only necessary then to know the factors $e^{ik_{1}},$
$\ldots,$

$e^{:k_{n}}$ that appear in (4.1)
and (4.4). These factors are the solutions of the equations

$e^{iNk_{p_{1}}}A_{\mathrm{p}_{2\prime}p_{n},p_{1}},\ldots=A_{\mathrm{P}1p},\ldots,,.$ , (4.5)

that impose the periodic boundary conditions on the problem making that $f(x_{1},x_{2}, \ldots,x_{N})=$

$f(x_{2}, \ldots , x_{N},x_{1}+N)$ what identifies the $N+1$ and 1 vertices. To be (4.5) consistent equations
among themselves, it is necessary that

$e^{iN(k_{1}+\cdots+k_{n})}=1$ . (4.6)

Equations (4.1), (4.2), (4.4), (4.5) and (4.6), are sufficient equations to write bound pair eigenfunctions,
and when needed we will refer to them as “the Bethe ansatz equations for bound pairs”. However, and
this is not less important, it is also necessary a correct normalization of the eigenfunction. Without it,
the state cannot be obtained. We have learned the correct normalization in ref. [1, Sect. 4], and show an
example later for $N=\mathit{6}$ and $n=3$ . Equations (8.2), (8.3) and (8.2), (8.3), (8.6) are deduced taking
into account such normalization.

It is important to write, before finishing, the relation between $k_{1}\ldots,$ $k_{n}$ and $v_{1},$ $\ldots,$ $v_{n}$ in (2.5) (or
better between $e^{:k_{\dot{f}}}$ and $e^{v_{j}}$ )

$e^{:k_{\mathrm{j}}}= \frac{e^{\lambda}-e^{v;}}{e^{\lambda+v_{\mathrm{j}}}-1}$ , (4.7)

as mentioned in many papers. This relation permits to move from the eigenvalue (2.3) to the eigenvector
(4.1) of the transfer matrix when we precise it.

5 A change of variables

Before describing any eigenvalue we make a useful change of variables concerning $v$ and $\lambda$ in (2.6).
The change is convenient for those (the author in this specific problem among them) who prefer to work
with polynomials rather than with hyperbolic functions as in (2.5). Define the variables

$z=e^{-v}$ , $y=e^{-\lambda}$ (5.1)

6Because they give the same result that when the transfer matrix is directly diagonalized. When the size of the matrix
allows it it is potssible to carry many numerical experiments and they confirm this choice for the amplitudes
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instead of $v$ and $\lambda$ , then (2.5) is essentially7 the polynomial in $z$ and $1/z$ given by

$Q(z)= \frac{1}{z^{n/2}}\prod_{\mathrm{j}\approx 1}^{n}(z-z_{j})$ , (5.2)

with $z_{j}=e^{-v_{j}},$ $j=1\ldots,$ $n$ . To be correct we should have defined another symbol for (5.2), $\tilde{Q}(z)$ for
instance, however we will use the same letter with the understanding that $Q(v)$ stands for (2.4) and
$Q(z)$ for (5.2). In terms of these variables and together with definitions (2.4) and (2.5), relation (2.3)
becomes

$(2/ \rho)^{N}\Lambda(v)Q(z)=\frac{(-1)^{n}}{(zy)^{N/2}}[(z-y)^{N}Q(zy^{2})+(1-zy)^{N}Q(z/y^{2})]$ , (5.3)

where multiplicative constant factors in $Q$ cancel out of the calculations. To operate in a computer we
prefer to work with this relation more than with (2.3).

6 $\mathrm{n}=2$

This is the simplest case to study because the transfer matrix of $N$ edges (with $N$ even) has only one
bound pair state in this block for arbitrary $\Delta$ defined in (4.3). Since bound pairs are characterized by
$v_{1}=\lambda,$ $v_{2}=-\lambda$ as mentioned in Sec. 1, function (5.2) factorizes as

$Q(z)=(zy-1)(z-y)/z$, (6.1)

the zeros of $Q(z)$ being $z_{1}=y$ and $z_{2}=1/y$ . Introduced this function in (5.3) and noting that the
r.h.s. is exactly divided by $Q(z)$ in the l.h.s, the quotient affords the eigenvalue8

$\Lambda(v)=a^{2}b^{2}(a^{N-4}+b^{N-4})-c^{2}(a^{N-2}+b^{N-2})$ , $N\geq 4$, $n=2$, (6.2)

that is valid for generic $N$ even. It can be checked numerically that (6.2) is always an eigenvalue of the
transfer matrix for all values of $a,$ $b,$ $c$ real or complex,9 and since the block $n=2$ is among the blocks
of smallest dimensions, it can be done even for $N$ not too small. The eigenvector associated to (6.2)
was known to Bethe himself [2, also after eq. (23)] and is proportional to

$| \psi\rangle=\sum_{l=1}^{N}(-1)^{l}|l,$ $l+1\rangle$ , (6.3)

after appropriate normalization. We do not reproduce here this eigenvector with the Bethe ansatz (the
example that we reproduce is for $N=6,$ $n=3$ later), but want to comment about $e^{:k_{1}}$ and $e^{:k_{2}}$ .
The product of these two factors is for the eigenfunction (6.3) equal to $-1$ , since from (4.1) derives the
relation

$f(x_{1}+1,x_{2}+1)=e^{i(k_{1}+k_{2})}f(x_{1},x_{2})$ , with $N+1\equiv 1$ , (6.4)

which is simply a consequence of the translation invariance of the transfer matrix (2.1). But also $v_{1}=\lambda$

in (4.7) fixes $e^{:k_{1}}=0$ , what obliges to set

$e^{ik_{1}}=-e^{-ik_{2}}=0$, (6.5)

7Essentially means up to multiplicative constants that do not depend on $z$ (they may depend on $y$ because $y$ is
regarded as a constant: after all $y$ is fixed by the value that we choose for $\Delta$ , and viceversa). The constants are not
relevant because do not change the value of $\Lambda(v)$ , as commented after equation (5.3)

$\epsilon\Lambda(v)$ in (5.3) is obtained in terms of $\iota$ and $y$ , of course. We have reexpressed the result in terms of a, $b,$ $c$ to write
(6.2)

$\mathfrak{g}_{a,b,c}$ , the Boltzmann weights (2.2) of the vertex model, are real and positive, but when diagonalization of a matrix
is considered in general, with no restriction to physical values only, they can also be negative or complex
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as was done in [1]. This happens for all bound pairs that we have obtained no matter the values of $N$

and $n$ : it is simply a fact that for these states in this model

$e^{i(k_{1}+k_{2})}=-1$ . (6.6)

This condiction, together with the two identities in (6.5) mark how to work appropiately with bound
pairs.

7 $\mathrm{n}=3$

The trial function (5.2) is now of the form

$Q(z)=(zy-1)(z-y)(z-A)/z^{3/2}$ , (7.1)

with $A$ a constant (numerical or depending on $y$ ) to be determined. Substituting (7.1) in (5.3), the
r.h.s. of this equation is exactly divided by $Q(z)$ in the l.h.s. if and only if $A=0,$ $-1,1$ or $A$ is
the solution of a certain polynomial whose coefficients depend only on $\Delta$ . The root $A=0$ is not an
admissible solution because (7.1) has not the required expansion (5.2); on the contrary, roots $A=-1,1$
yield admissible functions $Q(z)$ because the associated A(v) by (5.3) are always in the spectrum of
the transfer matrix, as we have verified in numerous experiments. For example, the numbers

$\Lambda_{+}\equiv 2a^{3}b^{3}-abc^{2}(a^{2}+ab+b^{2})+c^{4}(a^{2}-ab+b^{2})$ , (7.2)
$\Lambda_{-}\equiv 2a^{3}b^{3}-abc^{2}(a^{2}-ab+b^{2})-c^{4}(a^{2}+ab+b^{2})$ , (7.3)

are eigenvalues of the $N=6$ transfer matrix for arbitrary values of $a,$ $b,$ $c$ . The first is for $A=-1$ ,
the second for $A=1$ . We present some of these numerical tests in Table 1. Regarding the situation in
which $A$ is the solution of a certain polynonial, when $N=6$ such polynomial is

$A^{4}+(8\Delta^{3}-4\Delta)A^{3}+(20\Delta^{2}-14)A^{2}+(8\Delta^{3}-4\Delta)A+1=0$ , (7.4)

but it has to de discarded because none of the four roots of (7.4) is linked to an eigenvalue of the transfer
matrix for arbitrary $\Delta$ (it can be checked also with Table 1). There are only two $Q’ \mathrm{s}$ (that is, two
bound pairs in the block) and two eigenvalues.

$N=6n=.$?
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Table 1. In vertical are shown the 20 eigenvalues of the transfer matrix block $N=6,$ $n=3$ for different values of $a,$ $b,$ $c$ .
The eigenvalues are obtained by numerical diagonalization of the matrix in (2.1), and each result approximated to the number
arrayed in the table with the rule of 5. In all the examples we have fixed $z,$ $y,$ $\rho$ , and $a,$ $b,$ $c$ are derived from them through
(2.6). The values marked with $+$ and –coincide, no matter the number of digits of accuracy demanded in the computation,
with the theoretical values (7.2), (7.3) obtained in this paper solving (5.3). In the third column it is necessary to multiply by
$10^{6}$ to obtain the correct eigenvalue. Notice that when $\Delta=-1/2$ the bound pair (7.9) is degenerated and the transfer matrix
has another linearly independent proper state with the same eigenvalue $a^{6}+b^{6}$ . This degeneration happens for atl values of
$a,$ $b,$ $c$ and not only for the particular value listed here.

The situation is the same for arbitrary $N$ even: there are only two bound pairs in the block and
the generalization of (7.2) and (7.3) is

$\Lambda_{+}=a^{3}b^{3}(a^{N-6}+b^{N-6})-abc^{2}(a^{N-4}+b^{N-4}+ab\frac{a^{N-5}+b^{N-5}}{a+b})+c^{4}(\frac{a^{N-3}+b^{N-3}}{a+b})$ ,

$\Lambda_{-}=a^{3}b^{3}(a^{N-6}+b^{N-6})-abc^{2}(a^{N-4}+b^{N-4}-ab\frac{a^{N-5}b^{N-b}}{ab}=)-c^{4}(\frac{a^{N-3}b^{N-3}}{ab}=)$ ,

that correspond to

$Q^{+}(z)=(zy-1)(z-y)(z+1)/z^{3/2}$ and $Q^{-}(z)=(zy-1)(z-y)(z-1)/z^{3/2}$ , (7.5)

respectively. The quotients written in $\Lambda_{\pm}$ above are $\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{u}\mathrm{s}^{1}$ because the divisions can be performed
exactly giving as result polynomials in $a,$ $b,$ $c$ with no denominators.

Each eigenvector of the transfer matrix has associated a given $Q(z)$ , we now calculate as an example
the eigenvector associated to $Q^{+}$ in (7.5) for $N=6$ using Bethe ansatz.11 For such state the product

$e^{i(k_{1}+k_{2}+k_{3})}=1$ , (7.6)

that can be justified in several manners: one, if the eigenvalue is known, (7.2) in this case, it is enough
to set $b=0,$ $a=c$ in the eigenvalue. The coefficient of $c^{N}$ is precisely $e^{\mathrm{t}(k_{1}+\cdots+k_{*})}$’ [9]; or two,
evaluating $(-1)^{n}Q(zy^{2})/Q(z)$ at the point $z=1/y[1]$ . This gives also such product. Since the third
zero of the function $Q^{+}$ is at $z_{3}=-1$ , relation (4.7) indicates that $e^{1k_{3}}=-1$ , that substituted in
(7.6) gives the product $e^{:(k_{1}+k_{2})}=-1$ , something that seems to be shared by all bound pairs of the
model as we remarked in (6.6). For our pair holds again (6.5) what makes that the factor $s_{21}$ vanishes
according to (4.4). To obtain the correct bound pair state the rule $\mathrm{i}\mathrm{s}^{12}$ : calculate the $s_{1j}$ that do not
vanish (in the present case there are five of them) with (4.4), keeping only the dominant term as $e^{:k_{1}}$

goes to zero, and calculate $s_{21}$ with (4.5). In this manner, instead of writting $‘ s_{21}=0$ ’ in the formulae,
$s_{21}$ takes the expression that vanishes most rapidly as $e^{:k_{1}}$ goes to zero. This expression is

$s_{21}=2\Delta(1+2\Delta)e^{i(N-1)k_{1}}$ , (7.7)

while

$s_{12}=2\Delta e^{-ik_{1}}$ , $s_{13}=1+2\Delta$ , $s_{31}=1$ ,
$s_{23}=e^{-1k_{1}}$ , $s_{32}=(1+2\Delta)e^{-ik_{1}}$ . (7.8)

Note that the amplitudes obtained with (4.2) after the substitution of (7.7) and (7.8) do satisfy exactly
equations (4.5), as expected. Take now $N=6$ . Inserting the values (4.2) into (4.1) we find that for

$1_{\mathrm{I}.\mathrm{e}}.$ , introduced by the author to make the exPraesions comPact
1iWe insist on the words Bethe ansatz because some authors refer to bound pair states as non-Bethe states, and they

are Bethe states
12We have taken this rule from [1, Sect. 4]
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example, $f(1,2,3)=-2\Delta(1+2\Delta)^{2}/C$ and $f(1,2,4)=2\Delta(1+2\Delta)e^{-ik_{1}}/C$ . In the case $N=6$
two more components are necessary to write the eigenvector, namely

$f(1,2,5)=-2\Delta(1+2\Delta)e^{-ik_{1}}/C$ , $f(1,3,5)=-\mathit{6}\Delta(1+2\Delta)/C$,

since the remaining components are deduced from these four with the generalization of property (6.4) to
the case $n=3$ . Clearly $f(1,2,4),$ $f(1,2,5)$ are the elements that grow most rapidly as $e^{ik_{1}}$ vanishes
and the sensible choice here is to take $C$ so that $f(1,2,4)=1$ . The result is the right eigenvector
associated to $Q^{+}$ in $(7.5)^{13}$

$|\psi\rangle=|1,2,4\rangle+|2,3,5\rangle+|3,4,6\rangle+|1,4,5\rangle+|2,5,6\rangle+|1,3,6\rangle$

$-|1,2,5\rangle-|2,3,\mathit{6}\rangle-|1,3,4\rangle-|2,4,5\rangle-|3,5,6\rangle-|1,4,6\rangle$ , (7.9)

which coincides with the vector found in [3, eq. (22)] using different methods.

8 $\mathrm{n}=4$ and $\mathrm{n}=5$

There is no problem in repeating the same steps as in $n=3$ to deduce the number of bound pairs when
$n=4$ or $n=5$ . In fact introducing

$Q(z)=(zy-1)(z-y)(z^{2}+Az+B)/z^{2}$ (8.1)

into (5.3), it is possible to find constants $A$ and $B$ so that the function A(v) is an eigenvalue of the
transfer matrix block $n=4$ for arbitrary $a,$ $b,$ $c$ activities. However, we follow a different method in
this section with the intention of obtaining a better trial function $Q$ not as general as in (8.1): we solve
directly Bethe ansatz equations (4.5) instead14. The equations are already solved for $e_{1}$ and $e_{2}$ (for
brevity we will use from now the notation $e_{1}$ to denote the number $e:k_{1},$ $e_{2}$ to denote $e^{k_{2}}$ , and so
on), since we know that $e_{1}=0,$ $e_{2}=-1/e_{1}$ , with the product $e_{1}e_{2}$ equal to $-1$ as a characteristic
of bound pairs. It remains to solve for $e_{3},$ $e_{4}$ in the case $n=4$ , and for $e_{3},$ $e_{4},e_{6}$ in the case of $n=5$ .
And when resolving the same care about $s_{1j}$ has to be taken that when the eigenfunction (7.9) was
constructed in the previous section: $s_{21}$ that vanishes has to be evaluated with (4.5), taking then the
expression that vanishes most rapidly as $e_{1}$ goes to zero, and the remaining $s_{1j}$ with (4.4). With these
remarks taken into consideration the equations to solve are

$e_{3}^{N-1}=-( \frac{1-2\Delta e_{3}}{e_{3}-2\Delta})(=\frac{12\Delta e_{3}+e_{3}e_{4}}{12\Delta e_{4}+e_{3}e_{4}})$ , (8.2)

$e_{4}^{N-1}=-( \frac{1-2\Delta e_{4}}{e_{4}-2\Delta})(=\frac{12\Delta e_{4}+e_{3}e_{4}}{12\Delta e_{3}+e_{3}e_{4}})$ , $N\geq 8$ , (8.3)

in the block $n=4$ , and

$e_{3}^{N-1}=( \frac{1-2\Delta e_{3}}{e_{3}-2\Delta})(=\frac{12\Delta e_{3}+e_{3}e_{4}}{12\Delta e_{4}+e_{3}e_{4}})(=\frac{12\Delta e_{3}+e_{3}e_{6}}{12\Delta e_{5}+e_{3}e_{6}})$ , (8.4)

$e_{4}^{N-1}=( \frac{1-2\Delta e_{4}}{e_{4}-2\Delta})(=\frac{12\Delta e_{4}+e_{3}e_{4}}{12\Delta e_{3}+e_{3}e_{4}})(=\frac{12\Delta e_{4}+e_{4}e_{5}}{12\Delta e_{5}+e_{4}e_{6}})$ , $N\geq 10$ (8.5)

$e_{5}^{N-1}=( \frac{1-2\Delta e_{5}}{e_{5}-2\Delta})(=\frac{12\Delta e_{6}+\mathrm{e}_{3}e_{6}}{12\Delta e_{3}+e_{3}e_{5}})(=\frac{12\Delta e_{5}+e_{4}e_{5}}{12\Delta e_{4}+e_{4}e_{6}})$, (8.6)

$\underline{\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}n=5.}$Remember that $\Delta \mathrm{i}\S$ given by (4.3) and $N$ is an even number.

i3Fbr general $N$ the eigenvector is $|\psi\rangle$ $= \sum_{l\approx 1}^{N}(|l,l+1, l+3\rangle-|l,l+2, l+3\rangle)$ . The state that accompanies to $Q^{-}$

is $|\psi\rangle$ $= \sum_{l=1}^{N}(-1)^{l}(|1,l+1,[+3\rangle+|l,l+2,[+3\rangle)$ . It has eome similary with (6.3) but in the block $n=3$

14Once $\epsilon:k_{\theta},$

$\ldots$ , $\mathrm{e}^{kn}$’ are found solving Bethe equations, we use (4.7) to write $Q$ given by (5.2)
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Consider the equations relative to $n=5$ for a moment. Notice that if $(e_{3}, e_{4}, e_{5})$ is a solution
of equations $(8.4)-(8.6)$ for given $N$ and $\Delta^{15}$ , also $(e_{4}, e_{3}, e_{5})$ , the interchange of $e_{3}$ with $e_{4}$ , is a
solution; and also it is $(e_{3}, e_{5}, e_{4})$ . Equations $(8.4)-(8.6)$ do not distinghish a solution from any of
its permutations. It is for this reason that two solutions are considered the same if coincide up to
permutations.

There is another relevant property of the equations: if $(e_{3}, e_{4}, e_{5})$ is a solution, $( \frac{1}{e_{8}},$ $\frac{1}{e_{4}},$ $\frac{1}{e_{5}})$ is
also a solution for the same $N$ and $\Delta$ . This feature brings considerable insight into the resolution of
$(8.4)-(8.6)$ . For example, if $e_{3}$ is in the solution so does $1/e_{3}$ , as this property establishes, therefore
$1/e_{3}$ is one of the numbers in $(e_{3}, e_{4}, e_{5})$ . If it is equal to its inverse, $e_{3}$ is 1 or $-1$ , but if not, the
inverse of $e_{3}$ has to be say, $e_{4}$ , and thus $e_{3}e_{4}=1$ . The argument is repeated with $e_{4}$ to conclude
that $e_{4}$ is 1 or $-1$ or the inverse of $e_{3}$ . Finally, it is the turn of $e_{5}$ , that can be only $\pm 1$ and not the
inverse of any other number because there are no more left numbers to be paired with. In conclusion:
$(e_{3}, e_{4}, e_{5})$ are (1, 1, 1), $(-1, -1, -1)$ or $(e_{3}, e_{4}, \pm 1)$ , with $e_{3}e_{4}=1$ . There are no more possibilities
for arbitrary $\Delta$ . Something similar happens when $n=4$ : the only solutions $(e_{3}, e_{4})$ of (8.2), (8.3)
with $\Delta$ arbitrary are $(1, -1)$ or the combinations $(e_{3}, e_{4})$ that satisfy $e_{3}e_{4}=1$ . Obviously this is so
because the two properties explained above, permutation and inversion, hold for equations (8.2), (8.3)
as well16.

Lemma 8.1 $(n=4)$ The numbers $e_{3},$ $e_{4}$ given by equations (8.2), $($8. $S)$ subject to the condition
$e_{3}e_{4}=1$ , are the roots of the quadratic polynomial

$x^{2}-(r+1/r)x+1=0$ , (8.7)

where $r$ is, in $tum$, the solution of the polynomial of degree $N$ with coefficients fixed by $\Delta\dot{\varphi}ven$ by

$r^{N}-3\Delta r^{N-1}+2\Delta^{2}(r^{N-2}+r^{2})-3\Delta r+1=0$. (8.8)

Proof Very simple. Just substitute directly $e_{3}=r,$ $e_{4}=1/r$ in (8.2) and write the relation that
results. Zero solutions $r=0$ are not wanted17. $\square$

Surprisingly, the polynomial in (8.8) has the same coefficients when $N=8$ , say, that when $N=1\mathrm{O}\mathrm{O}$ ,
only that in this case the coefficients are distributed according to a degree 100. Equality (8.8) belongs
to the class of reciprocal equations [10] because the coefficient of $r^{N}$ is the same as the independent
term, the coefficient of $r^{N-1}$ the same as the coefficient of $r$ , and so on. If $R$ is a root of a reciprocal
equation, so it is its reciprocal $1/R$ . This cannot be a surprise, merely it is an expected consequence
of the second property of the Bethe equations remarked a few paragraphs above.

Lemma 8.2 $(n=5)$ The numbers $e_{3},$ $e_{4},$ $e_{5}$ given by equations $(\mathit{8}.\mathit{4})-(\mathit{8}.\mathit{6})$ with the additiond require-
ment $e_{3}e_{4}=1$ , $e_{5}=-1$ , are the roots of the cubic polynomial

$(x+1)(x^{2}+(r+1/r)x+1)=0$, (8.9)

$wheoe\sim r$ is the solution of (for simplicity we write the polynomial when $N=10$ )

$r^{10}+(5\Delta+2)r^{9}+2(2\Delta+1)^{2}r^{8}+2(2\Delta+1)(\Delta+1)^{2}(r^{7}+r^{6}+r^{5}+r^{4}+r^{3})$

+2 $(2 \Delta+1)^{2}r^{2}+(5\Delta+2)r+1=0$ . (8.10)

$1\epsilon_{\Delta}$ flxed though arbitrary
16Observe that for all bound pairs obtain\’e so far the product $e_{1}\cdots e_{n}=\pm 1$ , something already mentioned in [1] and

[3]. The momentum of thaee states, the sum of the $k’ \mathrm{s}$, is therefore $0$ or $\pi$ (mod $2\pi$ )
17We want $e_{3}\mathrm{e}_{4}=1$ with $\mathrm{c}_{3}$ and $e_{4}$ finite numbers. Therefore none of them vanishes. We do not want more snial

objects like the pair $\epsilon_{1}e_{2}=-1$ with $e_{1}=0$
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This is a reciprocal equation too. When $N$ is arbitrary, the polynomial that generalizes (8.10) is
a polynomial of degree $N$ : $r^{10},$ $r^{9},$ $r^{8}$ above change into $r^{N},$ $r^{N-1},$ $r^{N-2}$ , respectively, and
$r^{7}+\cdots+r^{3}$ into $r^{N-3}+\cdots+r^{3}$ . Nothing else changes. With these directions we avoid to write the
generalization explicitly.

When the requirement is $e_{3}e_{4}=1,$ $e_{5}=1$ , the solution (es, $e_{4},$ $e_{5}$ ) of equations $(8.4)-(8.6)$ is given by
$(x$ –1 $)$ $x^{2}+(r+1/r)x+1$ $=0$ , i.e., $e_{3}=-r,$ $e_{4}=-1/r,$ $e_{5}=1$ , with $r$ the roots of the polynomial
obtained changing $r$ by $-r$ and $\Delta$ by $-\Delta$ in (8.10). The polynomial thus obtained is generalized to
other $N‘ \mathrm{s}$ with the directions explained in the previous lines.

Proof The substitution of $e_{3}e_{4}=1$ and $e_{6}=-1$ in (8.6) gives no information because the l.h.s. of
(8.6) reduces to a number and the r.h.s. to the same number. However, substituted in (8.4) (or in (8.5))

is obtained a relation between the sum $e_{3}+ \frac{1}{e_{3}}=e_{4}+\frac{1}{e_{4}}=u$ and $\Delta$ . This relation depends on $N$

and, for example, when $N=10$ is given by

$u^{5}-(5\Delta+2)u^{4}+(8\Delta^{2}+8\Delta-3)u^{3}-(4\Delta^{3}+10\Delta^{2}-12\Delta-6)u^{2}$

$+(4\Delta^{3}-14\Delta^{2}-16\Delta+1)u+2(2\Delta-1)(\Delta^{2}+3\Delta+1)=0$. (8.11)

It is hard to see any recurrence in this equation but if $u$ is decomposed into a number and its inverse,
i.e., as $u=-(r+1/r),$ $r$ is a root of (8.10), which is a much simpler equation than the previous one.
The numbers $e_{3}=-r,$ $e_{4}=-1/r,$ $e_{5}=-1$ , are therefore roots of (8.9) with $r$ given by (8.10) if
$N=10$ . $\square$

Now we count states. Starting with $n=4$ , we have the state characterized by $(e_{1},e_{2},e_{3},e_{4})=$

$(e_{1}, -1/e_{1},1, -1)$ obtained before Lemma 8.1. For this state $e_{1}e_{2}e_{3}e_{4}=1$ , and $Q$ and A are given
by

$Q(z)=(zy-1)(z-y)(z^{2}-1)/z^{2}$ , (8.12)

$\Lambda=a^{4}b^{4}(a^{N-8}+b^{N-8})-a^{2}b^{2}c^{2}(a^{N-6}+b^{N-6}-2a^{2}b^{2}\frac{a^{N-8}b^{N-8}}{a^{2}b^{2}}=)$

$-3a^{2}b^{2}c^{4}( \frac{a^{N-6}b^{N-6}}{a^{2}b^{2}}=)+c^{6}(\frac{a^{N-4}b^{N-4}}{a^{2}b^{2}}=)$ , $N\geq 8$ (8.13)

as deduced from (4.7), (5.2) and the relation (5.3). As in $\Lambda_{\pm}$ obtain\’e in Sect. 7, the quotients in (8.13)
are artificial, and the divisions can be performed exactly giving for A an homogeneous expression of
order $N$ in $a,$ $b,$ $c$ with constant coefficients. Regarding the solution $(e_{1}, -1/e_{1},r, 1/r)$ of Lemma 8.1,
notice that since the roots of (8.8) are single or at most double18, there are $N/2$ different solutions
because of the reciprocity of (8.7) and (8.8). For these $N/2$ solutions (i.e., states) $e_{1}e_{2}e_{3}e_{4}=-1$ , and
$Q$ is given by

$Q(z)=(zy-1)(z-y)(z^{2}-(t+1/t)z+1)/z^{2}$ , (8.14)

with
$t+ \frac{1}{t}=-\frac{2\Delta(r+1/r)-4}{r+1/r-2\Delta}$ , $\Delta\neq\pm 1$ . (8.15)

The number A(v) is obtained inserting (8.14) and (8.15) into (5.3). This result shows also that (8.12)
and (8.14) are more accurate trial functions to solve (5.3) than the general (8.1). Contrary to what

i8The discriminant of (8.8) in $r$ vanishes only for $\Delta=\pm 1/2,$ $\pm 1$ , thus indicating multiplicity of the roots $r$ more
than 1 only for thaee values. Why for these $\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{a}\mathrm{e}^{\gamma}$ Notice that the bilinear transformation $\mathrm{e}_{3}arrow 1\underline{-}2\Delta \mathrm{e}$ in the $\mathrm{r}.\mathrm{h}.\epsilon$ .

$\mathrm{e}0-2\Delta$

of (8.2) (and in the r.h.s. of (8.3) for $e_{4}$ ) collapses to a constant when $\Delta=\pm 1/2$ instead of being a one-toone mapping.
This $\mathrm{j}\mathrm{u}\epsilon \mathrm{t}\mathrm{f}\mathrm{f}\mathrm{i}\infty$ the multiplicities at $\Delta=\pm 1/2$ . A similar reason happeng when $\mathrm{e}_{3}e_{4}=1$ and $\Delta=\pm 1$ to the second
factor in the r.h.s. of equations (8.2), (8.3)
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we have done along this paper, we do not write the function A(v) associated to (8.14) and (8.15) for
general $N$ , but we write it when $N=8$ , which is

$\Lambda(v)=2a^{4}b^{4}+c^{2}$ ( $2\lambda_{2}a^{3}b^{3}-\lambda_{3^{O^{2}}}b^{2}(a^{2}+b^{2})-2\lambda_{1}$ab $(a^{4}+b^{4}-a^{2}b^{2})-a^{6}-b^{6}$ ), (8.16)

with $\lambda_{1},$ $\lambda_{2},$ $\lambda_{3}$ certain numbers depending on $\Delta$ that we do not specify. The object to present (8.16)
is to comment about the excluded cases $\Delta=\pm 1$ pointed in (8.15). We have excluded these two points
for mathematical reasons only. Let us fix $\Delta=1$ (we center the discussion in this value because the
polynomial (8.8) indicates that the situation when $\Delta=-1$ is the same just negating $r$ ). Subtituting
$\Delta=1$ in (8.15), the r.h.s. reduces either to the constant $-2$ or to the indetermination 0/019: which
is then the function (8.14) and how many of them can one write when $\Delta=1$ ? We wont be more
explicit in this point now, however we want to convince the reader that for $N=8,$ $\Delta=1$ there are four
(eventually $N/2$ for general $N$ , if things go as they shall) bound pair states with $e_{1}e_{2}e_{3}e_{4}=-1$ : we
have just constructed the states (4.1) with (4.2), (4.4) and (4.5) imposing the conditions (6.5) and (6.6);
we have obtained exactly four states, and have checked (diagonalizing numericaUy the matrix block)
that they are eigenvectos of the transfer matrix (2.1) when $N=8,$ $n=4$ . The associated eigenvalues
are precisely (8.16) with $\lambda_{1}=0,$ $-3.69963$, -1.76088, 0.46050520, and $\lambda_{2},$ $\lambda_{3}$ given in terms of $\lambda_{1}$ by

$\lambda_{2}=\frac{2-3\lambda_{1}^{2}-4\lambda_{1}}{2+\lambda_{1}}$ , $\lambda_{3}=2\lambda_{1}^{2}+2\lambda_{1}-1$ , $\Delta=1$ . (8.17)

In conclusion, for each real value of $\Delta$ in the vertex model, there are $N/2+1$ bound pair states
in the $n=4$ block of the $N$ -site transfer matrix. The number of such states is correct21 because
exact diagonalization of the block corroborates it: our numerical experiments carried up to $N=12$
with different but arbitrary values of the activities $a,$ $b,$ $c$ confirm that the numbers A(v) obtained
substituting $Q$ by (8.14) with (8.15) and (8.8) into (5.3) are true eigenvalues of the transfer matrix.
The number (8.13) is also an eigenvalue. We have no reason then to doubt that they are eigenvalues for
general $N$ as well. The author thus admits the number $N/2+1$ as absolutely right.

For $n=5$ , we count a total of $N$ bound pairs. This is so because the solutions $(e_{3}, e_{4}, e_{6})=$

$(1,1,1),$ $(-1, -1, -1)$ of equations $(8.4)-(8.6)^{22}$ do not afford eigenvalues of the transfer matrix for $\Delta$

generic. We noticed this fact from our numerical tests carried with different values of $a,$ $b,$ $c$ and
$N=10,12$ : the numbers A obtained with (5.3) and $Q$ as in (5.2) with zeros at $z_{1}=y,$ $z_{2}=1/y,$ $z_{3}=$

$z_{4}=z_{5}=\pm 1$ and $y$ arbitrary, do not correspond to eigenvalues of the transfer matrix23. Unlike this,
the solutions in Lemma 8.2 that $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}6^{r}e_{3}e_{4}e_{5}=-1$ afford $N/2$ bound pairs for each $\Delta$ , and the
solutions that satisfy $e_{3}e_{4}e_{5}=1$ afford another $N/2$ bound pairs (even for $\Delta=\pm 1$ in both cases).
The corresponding numbers A were checked numerically. These eigenvalues are obtained with

$Q(z)=(zy-1)(z-y)(z^{2}-(t+1/t)z+1)(z\pm 1)/z^{5/2}$ , (8.18)

the plus sign in $\pm \mathrm{i}\mathrm{s}$ for $e_{1}e_{2}e_{3}e_{4}e_{6}=1$ (i.e., $e_{3}e_{4}e_{5}=-1$ ), the minus sign for $e_{1}e_{2}e_{3}e_{4}e_{5}=-1$ . In
both functions written in (8.18)

$t+ \frac{1}{t}=-\frac{2\Delta(r+1/r)+4}{r+1/r+2\Delta}$ , $\Delta\neq\pm 1$ , (8.19)

but $r$ is the root of different polynomials, as stated in Lemma 8.2.
$19_{f}=1$ is solution of (8.8) when $\Delta=1$

$20\mathrm{A}\mathrm{p}\mathrm{p}\mathrm{r}\alpha \mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ to the nearest six digit number the last three data
21In reference [1] were found 5 states when $N=8,$ $n=4$ , as we mentioned in Sect. 1. Our result agrees with that

number
22We mentioned these solutions in the paragraph before Lemma 8. 1
23The reason is that the states derived $\mathrm{h}\mathrm{o}\mathrm{m}$ these solutions proceeding as in Sections 4 and 8 are the zero vector
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We write an example for $N=10$ and $\Delta=-1/2$ , with the choice of $z,$ $y,$ $\rho$ as in the left column
of Table 1. After diagonalizing numerically the blocks $n=4,5$ of the transfer matrix, the eigenvalues
corresponding to bound pairs (we have recognized them because they match exactly our predicted
values) $\mathrm{a}\mathrm{p}\mathrm{n}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}_{}\theta \mathrm{d}$ to the $\mathrm{n}\Leftrightarrow \mathrm{a}\mathrm{r}\mathrm{p}..\mathrm{q}\mathrm{t}.$ six $\mathrm{d}\mathrm{i}\sigma \mathrm{i}\mathrm{f},$

$\mathrm{n}\iota\iota \mathrm{r}\mathrm{n}\mathrm{b}_{6\mathrm{r}\mathrm{a}YP}..24$:

Table 2. Each eigenvalue listed is followed by a sign $+\mathrm{o}\mathrm{r}$ –: the sign $+\mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{s}$ that $e_{1}e_{2}e_{3}e_{4}=1$ (or that $e_{1}e_{2}\epsilon_{3}\epsilon_{4}\mathrm{e}_{6}=1$

if $n=5$ ), the sign –that the product of the Bethe roots is $-1$ . The degeneration of the eigenvalue is $[\deg]$ . In the column
corresponding to $n=4$ , the number 0.111240 coincides with (8.13), and the remaining five values agree with the theoretical
A obtained inserting (8.14) and (8.15) into (5.3). The eigenvalue that corresponds to $r=-1$ , remember that in this column $r$

is a solution of (8.8), is degenerated. $\mathrm{T}\mathrm{h}\dagger \mathrm{s}$ degeneration is not a surprise, because it $is$ a case in which two Bethe roots coincide
$(e_{3}=e_{4}=-1)$ , and when it is true that the eigenvector associated to such cases is usually the zero vector, when $\Delta=-1/2$

it is not. Regarding the list when $n=5$ , the values with a $+$ correspond to solutions $r$ of (8.10), and the values with a
-to solutions $r$ of the polynomial that is obtained changing in (8.10) the variables $r,$

$\Delta$ by $-r,$ $-\Delta$ . Totally expected is
the degeneration of the eigenvalue -0.0869220 since $e_{3}=e_{4}=-1,$ $e\mathrm{s}=1$ . But the degeneration of -0.0657464 which
happens for $e_{3}=-2,$ $\epsilon_{4}=-1/2,$ $e_{6}=-1$ is less expected.

The last comment of the paper: the numerators of (6.1), (7.5), (8.12), (8.14) and (8.18) are polyno-
mials in $z$ with a reciprocal property: if $R$ is a solution, so it is $1/R$ . When looking for other $Q’s$ in
$n=7$ (say) one has to restrict to numerators with this property.
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