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1. INTRODUCTION

The Lam\’e operator is a differential operator defined by

$H=- \frac{d^{2}}{dx^{2}}+n(n+1)\wp(x)$ . (1.1)

where $\wp(x)$ is the Weierstrass $\wp$-function and $n$ is a constant. In this manuscript we
assume that $\mathrm{b}\mathrm{a}s$ ic periods of the function $\wp(x)$ are $(1, \tau)$ and $n$ is a positive integer.

We are going to consider eigenvalues of the Lam\’e operator $H$ with boundary con-
dition. In other words, we specify the vector space where the operator $H$ acts and
consider the spectral problem on the space.

Let $f(x)$ be an eigenfunction of the operator $H$ with eigenvalue $E$ , i.e.

$(H-E)f(x)=(- \frac{d^{2}}{dx^{2}}+n(n+1)\wp(x)-E)f(x)=0$. (1.2)

Then Eq.(1.2) is called the Lam\’e equation (or the Lam\’e $‘ \mathrm{s}$ differential equation).
Although the differential equation (1.2) is periodic in $x$ with period 1, the solution may
not be periodic. We also note that the eigenfunction may not be square-integrable
on the interval $(0,1)$ because the potential $n(n+1)\wp(x)$ has poles on Z. In this
manuscript we consider the condition for the eigenvalue $E$ such that Eq.(1.2) has a
singly-periodic eigenfunction (i.e. $f(x+1)=\pm f(x)$), a doubly-periodic eigenfunction
(i.e. $f(x+1)=\pm f(x)$ and $f(x+\tau)=\pm f(x)$ ) or a square-integrable eigenfunction (i.e.
$\int_{0}^{1}|f(x)|^{2}dx<+\infty)$ . These conditions correspond to the boundary condition and the
boundary condition is closely related with the monodromy. For the case $n\in \mathbb{Z}$ , the
monodromy of solutions to Eq.(1.2) is calculated and it has two expressions. One
is expressed by hyperelliptic integral and the other is based on Hermite-Krichever
Ansatz. Note that hyperelliptic-to-elliptic reduction integral formulae are obtained
by comparing two expressions.

A crucial fact on the Lam\’e equation is that the Lam\’e operator is an example of
the finite-gap potential which was established by Ince [5]. By applying the formula of
the monodromy in terms of hyperelliptic integral, we can show results on finite-gap
potential. Moreover relationship between the boundary condition and the finite-gap
potential is clarified.

The eigenvalue $E$ of the Lam\’e operator with boundary condition depends on the
period $\tau$ . In particular we can numerically investigate branching of the eigenvalues
as a complex-analytic function in $\tau$ for the case $n=1$ , and it is compatible with the
convergence radius of the eigenvalue expanded as a power series in $p=\exp(\pi\sqrt{-1}\tau)$ .
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Here we comment on relationship with quantum integrable system. The elliptic
Calogero-Moser-Sutherland model (or elliptic Olshanetsky-Perelomov model [11]) of
type $A_{N}$ is a quantum many body system whose Hamiltonian is given as follows,

$H_{A_{N}}=- \frac{1}{2}\sum_{i=1}^{N+1}\frac{\partial^{2}}{\partial x_{i}^{2}}+n(n+1)\sum_{1\leq:<j\leq N+1}\wp(x_{i}-x_{j})$. (1.3)

This model is known to be integrable, i.e. there exists $N+1$-algebraically independent
commuting operators which commute with the Hamiltonian $H_{A_{N}}$ . For the case $N=1$ ,
we recover the Lam\’e operator by setting $x=x_{1}-x_{\mathit{2}}$ and $y=x_{1}+x_{2}$ . Therefore the
elliptic Calogero-Moser-Sutherland model is a generalization of the Lam\’e operator. In
contract to the case of the trigonometric Calogero-Moser-Sutherland model, spectral
problem of the elliptic Calogero-Moser-Sutherland model is not studied very much.
We hope that the spectral problem of the elliptic Calogero-Moser-Sutherland model
is clarified by developing knowledge on the Lam\’e equation in future. The paper by
Chalykh, Etingof and Oblomkov [2] might suggest us an approach to this problem.

This manuscript is organized as follows. In section 2, we describe relationship
among Lam\’e equation, Heun’s differential equation [12] and hypergeometric polyno-
mial. In section 3, we introduce a doubly-periodic function that satisfies a differential
equation of order three, and obtain an integral representation of solutions to the
Lam\’e equation and a formula of global monodromy in terms of hyperelliptic integral.
In section 4, we explain results on Bethe Ansatz and Hermite-Krichever Ansatz. As
an application of Hermite-Krichever Ansatz, we get a formula of global monodromy
in terms of elliptic integral. In section 5, we obtain hyperelliptic-to-elliptic reduc-
tion integral formulae by comparing two expressions of monodromy. In section 6,
we describe results on the finite-gap potential. In section 7, we consider analytic
continuation of eigenvalues in the variable $\tau$ for the case $n=1$ .

2. RELATIONSHIP WITH OTHER EQUATIONS

It is known that Lam\’e equation is a special case of Heun equation. The Heun
equation (or the Heun’s differential equation) is a differential equation given by

$(( \frac{d}{dw})^{\mathit{2}}+(\frac{\gamma}{w}+\frac{\delta}{w-1}+\frac{\epsilon}{w-t})\frac{d}{dw}+\frac{\alpha\beta w-q}{w(w-1)(w-t)})\tilde{f}(w)=0$ (2.1)

with the condition
$\gamma+\delta+\epsilon=\alpha+\beta+1$ . (2.2)

Note that Eq.(2.1) has four singularities $\{0,1, t, \infty\}$ on the Riemann sphere and
the Heun equation is the standard canonical form of a Fuchsian equation with four
singularities. It is well known that the Fuchsian equation with three singularities is
the hypergeometric differential equation.

The Heun equation admits an expression by elliptic function. Let $H_{H}$ be the
Hamiltonian of $BC_{1}$ Inozemtsev model which is given as

$H_{H}=- \frac{d^{\mathit{2}}}{dx^{2}}+\sum_{\dot{*}=0}^{3}l_{i}(\iota_{:}+1)\wp(x+\omega:)$, (2.3)
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where $\omega_{0}=0,$ $\omega_{1}=1/2$ , w2 $=-(\mathcal{T}+1)/2$ and Cd3 $=\tau/2$ are half-periods, and $l_{i}$

$(i=0,1,2,3)$ are coupling constants. This model is a one-particle version of the
$BC_{N}$ Inozemtsev system [6], which is known to be the universal quantum integrable
system with $B_{N}$ symmetry $[6, 10]$ . Let $f(x)$ be an eigenfuction of the operator $H_{H}$

with eigenvalue $E$ , i.e.

$H_{H}f(x)=Ef(x)$ . (2.4)

Under the transformation

$w= \frac{e_{1}-e_{3}}{\wp(x)-e_{3}}$ , $w^{\iota\iota_{2}}\mathrm{n}_{\frac{+1}{2}}B_{\frac{+1}{2}}(w-1)^{arrow+1}(w-t)^{\iota}\tilde{f}(w)=f(x)$, (2.5)

$\mathrm{E}\mathrm{q}.(2.4)$ is transformed to the Heun equation (2.1). In this sense, Eq.(2.4) is an elliptic
representation of the Heun equation. The coupling constants $l_{0},$ $l_{1},$ $l_{2},$ $l_{3}$ correspond
to the exponents a, ..., $\epsilon$ , the elliptic modurus $\tau$ corresponds to the singular point $t$

and the eigenvalue $E$ corresponds to the accessory parameter $q$ . For details see [15].
If $l_{0}\neq 0$ and $l_{1}=l_{\mathit{2}}=l_{3}=0$ , then Eq.(2.4) represents the Lam\’e equation. Thus the
Lam\’e equation is a special case of the Heun equation.

We observe a relationship with hypergeometric polynomial. More precisely, hy-
pergeomertic differential equation is obtained from the Lam\’e equation (or the Heun
equation) by trigonometric limit. Set

$H_{T}=- \frac{d^{\mathit{2}}}{dx^{\mathit{2}}}+n(n+1)\frac{\pi^{2}}{\sin^{2}\pi x}$ . (2.6)

Then $H arrow H_{T}-\frac{\pi^{2}}{3}n(n+1)$ by the trigonometric limit $p=\exp(\pi\sqrt{-1}\tau)arrow 0$.
The equation $(H_{T}-E)f(x)=0$ is transformed to the hypergeometric differential
equation. Set

6 $(x)=(\sin\pi x)^{n+1}$ , $v_{m}=\tilde{c}_{m}C_{m}^{n+1}(\cos\pi x)\tilde{\Phi}(x)$, $(m\in \mathbb{Z}_{\geq 0})$ , (2.7)

where the function $C_{m}^{\nu}(z)= \frac{\Gamma(m+2\nu)}{m!\Gamma(2\nu)}2F1(-m, m+2\nu;\nu+\frac{1}{\mathit{2}};\frac{1-z}{2})$ is the Gegenbauer

polynomial of degree $m$ and $\tilde{c}_{m}==_{\Gamma(m+\mathit{2}n+2)}^{2^{2n+1}(m+n+1)m!\Gamma(n+1)^{2}}$. Then we have

$H_{T}v_{m}=\pi^{2}(m+n+1)^{2}v_{m}$ , (2.8)

and the set $\{v_{m}\}_{m\in \mathrm{z}_{\geq 0}}$ forms a complete orthonormal system on a certain Hilbert
space. Hence the spectral problem for the operator $H_{T}$ is clarified substantially.

To investigate the spectral problem for the Lam\’e operator $H$ , we can apply a
method of perturbation from the operator $H_{T}$ and we have an algorithm for obtaining
eigenvalues and eigenfunctions of the operator $H$ as formal power series in $p$ . It is
shown in [13, 7, 15] that, if $|p|$ is sufficiently small, then the formal power series
of eigenvalues and eigenfunctions converge. Relationship between the convergence
radius and the monodromy will be mentioned later.

3. MONODROMY AND HYPERELLIPTIC INTEGRAL

In this section we review results on an integral representation of solutions and a
monodromy formula which is expressed by hyperelliptic integral. For this purpose we
introduce a doubly-periodic function which plays important roles. Let $h(x)$ be the
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product of any pair of the solutions to Eq.(1.2). Then the function $h(x)$ satisfies the
following third-order differential equation:

$( \frac{d^{3}}{dx^{3}}-4(n(n+1)\wp(x)-E)\frac{d}{dx}-2n(n+1)\wp’(x))h(x)=0$ . (3.1)

It is known that Eq.(3.1) has a nonzero doubly-periodic solution for all $E$ .

Proposition 3.1. [14, Proposition 3.5] If $n\in \mathbb{Z}_{\geq 1}$ , then Eq. (3.1) has a nonzero even
doubly-periodic $solution—(x, E)$ , which has the expansion

$—(x, E)=c_{0}(E)+ \sum_{j=0}^{n-1}b_{j}(E)\wp(x)^{\mathrm{n}-j}$ , (3.2)

where the coefficients $c_{0}(E)$ and $b_{j}(E)$ are polynomials in $E$ , they do not have common
divisors and the polynomial $c_{0}(E)$ is monic.

For the case of Lam\’e equation, we have $\deg_{E}c_{0}(E)=n$ and $\deg_{B}b_{j}(E)=j$ .
We can derive an integral formula for the solution to Eq.(1.2) by using the doubly-

periodic $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}---(x, E)$ . Set

$Q(E)=—(x, E)^{2}(E-n(n+1) \wp(x))+\frac{1}{2}---(x, E)\frac{d^{\mathit{2}-}--(x,E)}{dx^{2}}-\frac{1}{4}(\frac{d_{-}^{-}-(x,E)}{dx})^{2}$

(3.3)

Then the r.h.s. is independent of $x$ , and $Q(E)$ is a monic polynomial in $E$ of de-
gree $2n+1$ . The following proposition on the integral representation of solutions is
obtained in [14]:

Proposition 3.2. [14, Proposition 3.7] $Let—(x, E)$ be the doubly-Periodic function
defined in Proposition 3.1 and $Q(E)$ be the monic polynomial defined in Eq.(S. 3).
Then the function

$\Lambda(x, E)=\sqrt{---(x,E)}\exp\int\frac{\sqrt{-Q(E)}dx}{---(x,E)}$ (3.4)

is a solution to the differential equation (1.2).

Note that Eq.(3.4) is written in the book of Whittaker and Watson [20] for the
case of the Lam\’e equation.

Example 1. (i) The case $n=1$ .
$—(x, E)=\wp(x)+E$ , $Q(E)=(E+e_{1})(E+e_{\mathit{2}})(E+e_{3})$ . (3.5)

(ii) The case $n=2$ .
$—(x, E)=9 \wp(x)^{2}+3E\wp(x)+E^{2}-\frac{9}{4}g_{2}$ , $Q(E)=(E^{\mathit{2}}-3g_{2}) \prod_{1=1}^{3}.(E-3e_{i})$ , (3.6)

where $g_{\mathit{2}}=-4(e_{1}e_{2}+e_{2}e_{3}+e_{3}e_{1})$ .
(iii) The case $n=3$ .

$—(x, E)=225 \wp(x)^{3}+45E\wp(x)^{\mathit{2}}+6(E^{2}-\frac{75}{8}g_{\mathit{2}})\wp(x)+E^{3}-15g_{\mathit{2}}E-\frac{\mathit{2}\mathit{2}6}{4}g_{3}$ , (3.7)

$Q(E)=E \prod_{i=1}^{3}(E^{2}+6e_{1}E+45e_{i}^{2}-15g_{2})$ , (3.8)

where $g_{3}=4e_{1}e_{\mathit{2}}e_{3}$ .
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Now we consider the monodromy. It follows from Eq.(3.4) that $\Lambda(x+1, E)$ (resp.
$\Lambda(x+\tau, E))$ is expressed as $m_{1}\Lambda(x, E)$ (resp. $m_{\tau}\Lambda(x,$ $E)$ ) for some constant $m_{1}$

(resp. $m_{\tau}$). We determine the constants $m_{1}$ and $m_{\tau}$ . Rewrite the function $–(-x, E)$

as follows:

$–(-x, E)=c(E)+ \sum_{j=0}^{n-1}a_{j}(E)(\frac{d}{dx})^{2j}\wp(x)$ . (3.9)

Proposition 3.3. $[16, 18]$ Assume $n\in \mathbb{Z}_{\geq 1}$ . Let $E’$ be the eigenvalue satisfying
$Q(E’)=0$ . Then there enists $q_{1},q_{3}\in\{0,1\}$ such that $\Lambda(x+2\omega_{k},E’)=(-1)^{q_{k}}\Lambda(x, E’)_{f}$

and we have

$\Lambda(x+1, E)=(-1)^{q_{1}}\Lambda(x, E)\exp(-\frac{1}{2}\int_{E}^{E},$ $\frac{c(\tilde{E})-2\eta_{1}a_{0}(\tilde{E})}{\sqrt{-Q(\tilde{E})}}d\tilde{E})$ , (3.10)

$\Lambda(x+\tau, E)=(-1)^{q\mathrm{s}}\Lambda(x, E)\exp(-\frac{1}{2}\int_{E}^{E},$ $\frac{\tau c(\tilde{E})2\eta_{3}a_{0}(\tilde{E})}{\sqrt{Q(\tilde{E})}}=d\tilde{E})$ , (3.11)

where $\eta_{1}=\zeta(1/2),$ $\eta_{3}=\zeta(\tau/2)$ and $\zeta(x)$ is the Weierstrass zeta function.
Example 2. (i) The case $n=1$ . Set $E’=-e_{1}$ . Then we have $q_{1}=0,$ $q_{3}=1$ . The
polynomials $c(E)$ and $a_{0}(E)$ are calculated as

$c(E)=E$ , $a_{0}(E)=1$ . (3.12)

(ii) The case $n=2$ . Set $E’=\sqrt{3g_{2}}$ . Then $q_{1}=q_{3}=0$ ,

$c(E)=E^{2}- \frac{3}{2}g_{2}$ , $a_{0}(E)=3E$ . (3.13)

(iii) The case $n=3$ . Set $E’=0$ . Then $q_{1}=q_{3}=0$ ,

$c(E)=E^{3}- \frac{45}{4}g_{2}E-\frac{135}{4}g_{3}$ , $a_{0}(E)=6(E^{2}- \frac{15}{4}g_{2})$ . (3.14)

4. BETHE ANSATZ AND HERMITE-KRICHEVER ANSATZ

We review validity of Bethe Ansatz and Hermite-Krichever Ansatz for the Lam\’e
equation, and provide examples of the Hermite-Krichever Ansatz.

The method “Bethe Ansatz” appears frequently in physics. In this manuscript, we
use “Bethe Ansatz” in a somewhat restricted sense. We assume that the eigenfucntion
of the Lam\’e operator has a special form as Eq.(4.1). Then the Bethe Ansatz method
replaces the problem of finding eigenstates and eigenvalues of the Hamiltonian with
a problem of solving transcendental equations for a finite number of variables which
are called the Bethe Ansatz equations (see $\mathrm{E}\mathrm{q}.(4.3)$ ). We review a proposition that
almost all eigenfunction is expressed as the form of Bethe Ansatz. For the case of
Lam\’e equation it was discussed in [20], and extended to the case of the Heun equation
in $[3, 14]$ . Note that it is applied to show validity of the Hermite-Krichever Ansatz.
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Proposition 4.1. (i) For the case $Q(E)\neq 0$ , there exists $t_{1},$ $\ldots t_{n}$ and A $su\mathrm{c}h$ that
$t_{j} \neq t_{j’}(J’\neq j^{j})_{f}t_{j}\not\in\frac{1}{2}\mathbb{Z}+\frac{\tau}{\mathit{2}}\mathbb{Z}$ and $\Lambda(x, E)$ is expressed as

$\Lambda(x, E)=A\frac{\prod_{j=1}^{n}\sigma(x+t_{j})}{\sigma(x)^{n}\prod_{j=1}^{n}\sigma(t_{j})}\exp(-x\sum_{i=1}^{n}\zeta(t_{j}))$ , (4.1)

where $\sigma(x)$ is the Weierstrass sigma function.
(ii) The function

$\tilde{\Lambda}(x)=\frac{\prod_{j=1}^{n}\sigma(x+t_{j})}{\sigma(x)^{n}\prod_{j=1}^{n}\sigma(t_{j})}\exp(cx)$ , (4.2)

with the condition $t_{j}\neq t_{j’}(j\neq j’)$ and $t_{j} \not\in\frac{1}{2}\mathbb{Z}+\frac{\tau}{2}\mathbb{Z}$ is an eigenfunction of the Lam\’e

operator (see Eq. (1.1)), if and only if $t_{j}(j=1, \ldots, n)$ and $c$ satisfy the relations,

$-n \zeta(t_{j})+\sum_{k\neq j}\zeta(t_{j}-t_{k})=c(j=1, \ldots, n)$
. (4.3)

The eigenvalue $E$ is given by

$E=-c^{\mathit{2}}-n \sum_{j=1}^{n}(\wp(t_{j})-\zeta(t_{j})^{2})+\sum_{j<k}(\wp(t_{j}-t_{k})-\zeta(t_{j}-t_{k})^{2})$ . (4.4)

Now we deal with the Hermite-Krichever Ansatz. In our situation, the Hermite-
Krichever Ansatz asserts that the differential equation has solutions that are expressed
as a finite series in the derivatives of an elliptic Baker-Akhiezer function, multiplied
by an exponential function. More precisely, we are going to find solutions to Eq.(1.2)
of the form

$f(x)= \exp(\kappa x)(\sum_{j=0}^{n-1}\tilde{b}_{j}(\frac{d}{dx})^{j}\Phi(x, \alpha))$ (4.5)

where $\Phi(x, \alpha)=\exp(\zeta(\alpha)x)\sigma(\alpha-x)/(\sigma(x)\sigma(\alpha))$ . From Eq.(4.5) we have

$f(x+1, E)=\exp(-2\eta_{1}\alpha+\zeta(\alpha)+\kappa)$ , (4.6)
$f(x+\tau, E)=\exp(-2\eta_{3}\alpha+\tau(\zeta(\alpha)+\kappa))$ . (4.7)

If the value $\wp(\alpha)$ is calculated, then the values $\alpha$ and $\zeta(\alpha)$ are expressed as elliptic
integrals. Hence, if a solution $f(x)$ is expressed as Eq.(4.5), and $\wp(\alpha)$ and $\kappa$ are
calculated explicitly, then we obtain a monodromy formula by elliptic integrals.

Hermite and Halphen investigated the Lam\’e equation for the cases $n=1,2,3,4,5$
on this Ansatz in the 19th century. Belokolos, Eilbeck, Enolskii, Kostov and Smirnov
studied for the case $l_{0}=2,$ $l_{1}=1,$ $l_{2}=0,$ $l_{3}=0$ and the case $l_{0}=2,$ $l_{1}=1,$ $l_{2}=$

$1,$ $l_{3}=0$ on the Heun equation (see [1] and the reference therein). On the other
hand, Treibich and Verdier [19] constructed a theory of elliptic soliton following
Krichever’s idea and studied “tangential covering” which would be closely related
with the Hermite-Krichever Ansatz.

Now we remind validity of the Hermite-Krichever Ansatz.
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Theorem 4.2. [18] Assume $n\in \mathbb{Z}_{\geq 1}$ . There exists polynomials $P_{1}(E),$
$\ldots,$

$P_{4}(E)$

such that, if $P_{2}(E)\neq 0$ , then a solution to Eq. (1.2) is written as $Eq.(\mathit{4}\cdot \mathit{5})$ for some
values $\alpha,$ $\kappa$ and $\tilde{b}_{j}$ $(j=0, \ldots , n-1)$ . The values $\alpha$ and $\kappa$ are expressed as

$\wp(\alpha)=\frac{P_{1}(E)}{P_{\mathit{2}}(E)}$ , $\kappa=\frac{P_{3}(E)}{P_{4}(E)}\sqrt{-Q(E)}$. (4.8)

Note that $\alpha$ in Eq.(4.5) and $t_{j}$ in Eq.(4.1) satisfy the relation $\alpha=-\sum_{j=1}^{n}t_{j}$ , which
is crucial to show validity of the Hermite-Krichever Ansatz, and the function $\Lambda(x, E)$

in Eq.(3.4) is also expressed as the r.h.s. of Eq.(4.5).
To calculate the polynomials $P_{1}(E),$

$\ldots,$
$P_{4}(E)$ , it is effective to apply notions

“twisted Lam\’e polynomial” and “theta-twisted Lam\’e polynomial” which were in-
vented by Maier [9]. They are generalized to the case of the Heun equation in [18].

Example3. (i) The case $n=1$ .
$\wp(\alpha)=-E$ , $\kappa=0$ . (4.9)

(ii) The case $n=2$ .

$\wp(\alpha)=e_{1}-\frac{(E-3e_{1})(E+6e_{1})^{\mathit{2}}}{9(E^{2}-3g_{\mathit{2}})}$, $\kappa=\frac{2}{3(E^{2}-3g_{2})}\sqrt{-Q(E)}$ . (4.10)

Note that the term $(E+6e_{1})$ corresponds to the twisted Lam\’e polynomial.
(iii) The case $n=3$ .

$\wp(\alpha)=e_{1}-\frac{(E^{2}+6e_{1}E+45e_{1}^{\mathit{2}}-15g_{\mathit{2}})(E^{\mathit{2}}+15e_{1}E-225e_{1}^{2}+\frac{75}{4}g_{2})^{2}}{36E(E^{\mathit{2}}-\frac{75}{4}g_{\mathit{2}})^{2}}$ , (4.11)

$\kappa=\frac{5}{6E(E^{2}-\frac{75}{4}g_{2})}\sqrt{-Q(E)}$. (4.12)

Note that the $te \mathrm{r}ms(E^{\mathit{2}}+15e_{1}E-225e_{1}^{\mathit{2}}+\frac{75}{4}g_{2})$ and $(E^{2}- \frac{75}{4}g_{2})$ correspond to the
twisted Lam\’e polynomials.

5. $\mathrm{H}\mathrm{Y}\mathrm{P}\mathrm{E}\mathrm{R}\mathrm{E}\mathrm{L}\mathrm{L}\mathrm{I}\mathrm{P}\mathrm{T}\mathrm{I}\mathrm{C}-\mathrm{T}\mathrm{O}$-ELLIPTIC REDUCTION INTEGRAL FORMULA

We obtained two expressions of the monodromy in Eqs.(3.10, 3.11) and Eqs.(4.6,
4.7). By comparing these two expressions we obtain hyperelliptic-to-elliptic reduction
integral formulae. For the proof, see [18].

Theorem 5.1. [18, \S 3] Let $P_{1}(E),$
$\ldots,$

$P_{4}(E)$ be the polynomials defined in Theorem
4.2 and let $a_{0}(E),$ $c(E)$ be the ones in section 3. Set

$\xi=\frac{P_{1}(E)}{P_{2}(E)}$ , $\kappa=\frac{P_{3}(E)}{P_{4}(E)}\sqrt{-Q(E)}$, (5.1)

(i) We have a formula

$- \frac{1}{2}\int_{\infty}^{B}\frac{a(\tilde{E})}{\sqrt{-Q(\tilde{E})}}d\tilde{E}=\int_{\infty}^{\xi}\frac{d\tilde{\xi}}{\sqrt{4\tilde{\xi}^{3}-g_{2}\tilde{\xi}-g_{3}}}$ , (5.2)

which reduces a hyperelliptic integral of the first kind to an elliptic integral of the first
kind.
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(ii) Let $E’$ be the value that satisfies $Q(E’)=0$ and $P_{2}(E’)\neq 0$ , and let $\xi’$ be the
value $\xi$ (see Eq. (5.1)) evaluated at $E=E’$ . Then we have a formula

$\frac{1}{2}\int_{E}^{E},$

$\frac{c(\tilde{E})}{\sqrt{-Q(\tilde{E})}}d\tilde{E}=-\kappa+\int_{\xi’}^{\xi}\frac{\tilde{\xi}d\tilde{\xi}}{\sqrt{4\tilde{\xi}^{3}-g_{\mathit{2}}\tilde{\xi}-g_{3}}}$
, (5.3)

which reduces a hyperelliptic integral of the second kind to an elliptic integral of the
second kind.

Example 4. (i) The case $n=1$ . The values $\xi$ and $\kappa$ are given by $\xi=-E$ and
$\kappa=0$ . Hence the formulae $(\mathit{5}.\mathit{2}_{f}\mathit{5}.\mathit{3})$ are trivial.
(ii) The case $n=2$ . The values $\xi$ and $\kappa$ are given by

$\xi=e_{1}-\frac{(E-3e_{1})(E+6e_{1})^{2}}{9(E^{2}-3g_{2})}$ ,

Set $E’=3e_{1}$ . Then we have $\xi’=e_{1}$ . $Eqs.(\mathit{5}.\mathit{2},\mathit{5}.\mathit{3})$ are written as

$- \frac{1}{2}\int_{\infty=^{d\tilde{E}=\int_{\infty}^{\xi}\frac{d\tilde{\xi}}{\sqrt{4\tilde{\xi}^{3}-g_{\mathit{2}}\tilde{\xi}-g_{3}’}}}}^{E}-(\tilde{E}^{\mathit{2}}-3g_{\mathit{2}})\prod_{i=1}^{3}(\tilde{E}-3e_{i})3\tilde{E}$
(5.5)

$\frac{1}{2}\int_{3e_{1}=}^{E}\tilde{E}^{\mathit{2}}-\frac{3}{2}g_{\mathit{2}}d\tilde{E}=-\kappa+\int_{e\iota}^{\xi}\frac{\tilde{\xi}d\tilde{\xi}}{\sqrt{4\tilde{\xi}^{3}-g_{\mathit{2}}\tilde{\xi}-g_{3}}}-(\tilde{E}^{\mathit{2}}-3g_{2})\prod_{1=1}^{3}(\tilde{E}-3e_{i})$ . (5.6)

These formulae reduce hyperelliptic integrals of genus two to elliptic integrals. $By$

setting $\xi=-y/6,$ $E=z,$ $g_{2}=a/3,$ $g_{3}=b/54$ , we recover the formula

$\int(z^{2}-a)(8=z^{3}-6az-b)=\frac{1}{2\sqrt{3}}zdz\int_{=_{y^{3}-3ay+b’}^{dy}}$ $(y= \frac{2z^{3}b}{3(z^{2}a)}=)$ , (5.7)

from Eq. (5.5). This formula was found by Hermite in the 19th century. FVom Eq. (5.6)
we have

$\int(z^{\mathit{2}}-a)(8=z^{3}-6az-b)-\frac{1}{3}\sqrt{\frac{8z^{3}-6az-b}{z^{2}-a}}(2z^{2}-a)dz=\frac{1}{2\sqrt{3}}\int_{=_{y^{3}-3ay+b}^{ydy}}$ . (5.8)

(iii) The case $n=3$ . The values $\xi$ and $\kappa$ are given by

(5.9)

(5.10)
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Let $E’$ be a root of an equation $E^{2}+6e_{1}E+45e_{1}^{2}-15g_{2}=0$ . Then we have $\xi’=e_{1}$ .
$Eqs.(\mathit{5}.\mathit{2}_{f}\mathit{5}.\mathit{3})$ are written as

$- \frac{1}{2}\int_{\infty}^{E}=-\tilde{E}\prod_{i=1}^{3}(\tilde{E}^{\mathit{2}}+6e_{i}+45e_{i}^{2}-15g_{2})6(\tilde{E}^{2}-\frac{15}{\tilde{E}4}g_{2})d\tilde{E}=\int_{\infty}^{\xi}\frac{d\tilde{\xi}}{\sqrt{4\tilde{\xi}^{3}-g_{2}\tilde{\xi}-g_{3}}}$ , (5.11)

$\frac{1}{2}\int_{E=}^{E},\tilde{E}^{3}-\frac{45}{4}g_{2}\tilde{E}-\frac{135}{4}g_{3}d\tilde{E}=-\kappa+\int_{e_{1}}^{\xi}\frac{\tilde{\xi}d\tilde{\xi}}{\sqrt{4\tilde{\xi}^{3}-g_{2}\tilde{\xi}-g_{3}}}-\tilde{E}\prod_{i=1}^{3}(\tilde{E}^{2}+6e_{i}\tilde{E}+45e_{i}^{\mathit{2}}-15g_{2})$.

(5.12)
These formulae reduce hyperelliptic integrals of genus three to elliptic integrals.

6. BOUNDARY VALUE PROBLEMS AND FINITE-GAP POTENTIAL

We consider boundary value problems of the Lam\’e operator $H$ . Let $\sigma_{i\mathrm{n}t}(H)$ be the
set of eigenvalues of $H$ whose eigenvector is square-integrable on the interval $(0,1)$ ,
i.e.

$\sigma_{int}(H)=\{E|\exists f(x)\neq 0\mathrm{s}.\mathrm{t}. Hf(x)=Ef(x), \int_{0}^{1}|f(x)|dx<+\infty\}$ . (6.1)

Let $\sigma_{d}(H)$ be the set of eigenvalues of $H$ whose eigenvector is doubly-periodic, i.e.
$\sigma_{d}(H)=\{E|\exists f(x)\neq 0\mathrm{s}.\mathrm{t}. Hf(x)=Ef(x), f(x+1)=\pm f(x), f(x+\tau)=\pm f(x)\}$ ,

(6.2)
Note that the doubly-periodic eigenvector is simply the Lam\’e polynomial up to gauge
transformation and changing variable. It is known that $\#\sigma_{d}(H)=2n+1$ and

$\sigma_{d}(H)=\{E|Q(E)=0\}$ . (6.3)

Let $\sigma_{s}(H)$ be the set of eigenvalues of $H$ whose eigenvector is singly-periodic, i.e.
$\sigma_{t}(H)=\{E|\exists f(x)\neq 0\mathrm{s}.\mathrm{t}. Hf(x)=Ef(x), f(x+1)=\pm f(x)\}$ , (6.4)

On the sets $\sigma_{1nt}(H),$ $\sigma_{d}(H)$ and $\sigma_{\mathit{8}}(H)$ , we have

Proposition 6.1. [17] Assume that $\tau\in\sqrt{-1}\mathbb{R}_{>0}$ . Then
$\sigma_{int}(H)$ LI $\sigma_{d}(H)=\sigma_{s}(H)$ . (6.5)

Next, we briefly explain a relationship with finite-gap potential. Let

$H_{s}=- \frac{d^{2}}{dx^{2}}+n(n+1)\wp(x+\tau/2)$ (6.6)

be the operator which is obtained by the shift $xarrow x+\tau/2$ . Then the potential of
the operator $H_{\epsilon}$ does not have poles on $\mathbb{R}$ and it is real-analytic, if $\tau\in\sqrt{-1}\mathbb{R}_{>0}$ . Let
$\sigma_{b}(H_{\epsilon})$ be the set such that

$E\in\sigma_{b}(H_{s})\Leftrightarrow \mathrm{A}\mathrm{l}1$ solutions to $(H_{s}-E)f(x)=0$ are bounded on $x\in \mathbb{R}$ .
It is known in the theory of Hill’s equation [8] that, if the potential of the op-
erator $-d^{2}/dx^{\mathit{2}}+q(x)$ is real-analytic and singly-periodic, then the open set $\mathbb{R}\backslash$

$\overline{\sigma_{b}(-d^{2}/dx^{\mathit{2}}+q(x))}$ is expressed as $(- \infty, E_{0})\cup\bigcup_{i\in I}(E_{2i-1}, E_{2i})$ where $I=\{1, \ldots, n\}$

$(n\in \mathbb{Z}_{\geq 0})$ or $I=$ Z. If the number of the unstable bands (gaps) is finite (i.e.
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$I=\{1, \ldots, n\}$ for some $(n\in \mathbb{Z}_{\geq 0}))$ , then the potential $q(x)$ is called finite-gap po-
tential or finite-band potential.

It is known that the potentials of the Lam\’e operator (see Eq. (6.6)) for $n\in \mathbb{Z}_{\geq 1}$ is
typical examples of the finite-gap potential, which was established by Ince [5].

Theorem 6.2. Assume that $\tau\in\sqrt{-1}\mathbb{R}_{>0}$ and $n\in \mathbb{Z}_{\geq 1}$ . Then

$\mathbb{R}\backslash \overline{\sigma_{b}(H_{s})}=(-\infty, E_{0})\cup(E_{1}, E_{2})\cup\cdots\cup(E_{2n-1}, E_{\mathit{2}n})$ (6.7)

where $E_{0}<E_{1}<\cdots<E_{\mathit{2}n}$ and $E_{j}\in\sigma_{d}(H)(i=0, \ldots, 2n)$ .

Now we present a brief sketch of a new proof of the theorem which is based on
the monodromy formule in terms of hyperelliptic integral. From Eq.(3.10) we have
$\Lambda(x+1, E)=\pm\exp(-\tilde{m}_{1}/2)\Lambda(x, E)$ , where

$\tilde{m}_{1}=\int_{E}^{E},$
$\frac{c(\tilde{E})-2\eta_{1}a_{0}(\tilde{E})}{\sqrt{-Q(\tilde{E})}}d\tilde{E}$

, (6.8)

and $E’$ satisfies $Q(E$‘
$)$ $=0$ . Note that, if $\tau\in\sqrt{-1}\mathbb{R}_{>0}$ , then $a_{0}(E),$ $c(E),$ $Q(E)\in \mathbb{R}$

for $E\in$ R. If $Q(E)>0$ , then the integrand is pure imaginary by choosing $E$‘

appropriately, and we have an equality $|\exp(-\tilde{m}_{1}/2)|=1$ . Thus the eigenfunction is
bounded. If $Q(E)<0$ , then the integrand is real by choosing $E’$ appropriately, and
unboundedness of the eigenfunction is shown.

In the theory of stationary soliton equation (see [4] and the reference therein), alter-
native definition of the finite-gap potential is known. If there exists an odd-order dif-
ferential operator $A=(d/dx)^{2g+1}+ \sum_{j=0}^{2g-1}b_{j}(x)(d/dx)^{\mathit{2}g-1-j}$ such that $[A,$ $-d^{\mathit{2}}/dx^{\mathit{2}}+$

$q(x)]=0$ , then $q(x)$ is called the algebro-geometric finite-gap potential. Note that the
equation $[A, -d^{\mathit{2}}/dx^{2}+q(x)]=0$ is equivalent to the function $q(x)$ being a solution to
some stationary higher-order $\mathrm{K}\mathrm{d}\mathrm{V}$ equation. It is known that, if $q(x)$ is real-analytic
on $\mathbb{R}$ and $q(x+1)=q(x)$ , then $q(x)$ is a finite-gap potential if and only if $q(x)$ is an
algebro-geometric finite-gap potential. For the case of the Lam\’e equation (and the
Heun equation), the operator $A$ is calculated by using the $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}---(x, E)$ . Write

$—(x, E)= \sum_{i=0}^{n}\tilde{a}_{n-i}(x)E^{i}$ . (6.9)

From Proposition 3.1 we have $\tilde{a}_{0}(x)=1$ .

Proposition 6.3. [16] Define the $(2n+1)st$-order differential operator $A$ by

$A= \sum_{j=0}^{n}\{\tilde{a}_{j}(x+\tau/2)\frac{d}{dx}-\frac{1}{2}(\frac{d}{dx}\tilde{a}_{j}(x+\tau/2))\}H_{l}^{n-j}$ . (6.10)

Then the operator A commutes with the operator $H_{s}$ . Moreover we have

$A^{\mathit{2}}+Q(H_{\epsilon})=0$ . (6.11)

Another formula for the operator $A$ of determinant type is obtained in [16, \S 3.2].
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7. THE CASE $n=1$ AND ANALYTIC CONTINUATION OF EIGENVALUES

In this section we consider the case $n=1$ . The Hamiltonian is given as

$H=- \frac{d^{2}}{dx^{2}}+2\wp(x)$ . (7.1)

Eigenvalues which admits doubly-periodic eigenfunction are written as
$\sigma_{d}(H)=\{-e_{1}, -e_{\mathit{2}}, -e_{3}\}$ . (7.2)

The functions $e_{1},$ $e_{2}$ and $e_{3}$ are analytic on the upper half plane $\mathbb{R}+\sqrt{-1}\mathbb{R}_{>0}$ and
they are related with automorphic functions.

Next we consider eigenvalues which admits square-integrable eigenfunctions. Set
$p=\exp(\pi\sqrt{-1}\tau)$ . Then $\tauarrow\sqrt{-1}\infty$ corresponds to $parrow \mathrm{O}$ , and $\tau\in \mathbb{R}+\sqrt{-1}\mathbb{R}_{>0}$

corresponds to $|p|<1$ . For the case $p=0$, a complete orthonormal $\mathrm{b}\mathrm{a}s$ is for square-
integrable eigenfunctions are written as $v_{m}(m\in \mathbb{Z}_{\geq 0})$ in Eq.(2.7) with the eigenvalue
$E_{m}=\pi^{2}(-2/3+(m+2)^{2})$ . Based on the eigenvalues $E_{m}$ and the eigenfunctions
$v_{m}$ for the case $p=0$, we determine eigenvalues $E_{m}(p)=E_{m}+ \sum_{k=1}^{\infty}E_{m}^{\{\mathit{2}k\}}p^{2k}$ and
normalized eigenfunctions $v_{m}(p)=v_{m}+ \sum_{k=1}^{\infty}\sum_{m\in \mathrm{Z}_{>0}},c_{m,m}^{\{2k\}},v_{m’}p^{\mathit{2}k}$ for the operator
$H$ as formal power series in $P$ by applying a method $\mathrm{o}\mathrm{T}$ perturbation. For details see
$[15, 17]$ . Convergence of the formal power series of eigenvalues in the variable $p$ was
shown in [15].

Proposition 7.1. [15, Corollary 3.7] Let $E_{m}(p)(m\in \mathbb{Z}_{\geq 0})$ (resp. $v_{m}(p)$) be the
formal eigenvalue (resp. eigenfunction) of the Hamiltonian H. $If|p|$ is sufficiently
small then the power series $E_{m}(p)$ converges.

If the function $E_{0}(p)$ is analytic on the upper half plane $\mathbb{R}+\sqrt{-1}\mathbb{R}_{>0}$ , then the
radius of convergence in $p$ should be 1, thought it is numerically inferred to be.749.
Hence it seems that the function $E_{0}(p)$ has singularity.

Now we consider analytic continuation of the eigenvalues $E_{m}(p)(m\in \mathbb{Z}_{\geq 0})$ in the
variable $p$ . From Eq.(3.10) or Eqs.(4.6, 4.9), the eigenvalue $E$ is continued analytically
in $p$ by keeping the conditions

$E=-\wp(t_{0})$ , (7.3)
$\exists m\in \mathbb{Z}$ , $-\zeta(t_{0})+2\eta_{1}t_{0}=m\pi\sqrt{-1}$ . (7.4)
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Let $\Re a$ (resp. $\Im a$) be the real part (resp. the imaginary part) of the number $a$ , and
let $C_{a}$ be the cycle starting from $\Re a$ , approaching the point $a$ parallel to the imaginary
axis, turning anti-clockwise around $a$ and returning to $\Re a$ as shown in Figure 2.

Figure 2. Cycle $C_{a}$ .
We continue the eigenvalue $E$ analytically along the cycle $C_{a}$ on where $a$ is a possible

branching point for $|a|<.90,$ $\Re a\geq 0$ and $\Im a\geq 0$ . The branching points for $|a|<.90$ ,
$\Re a\geq 0$ and $\Im a\geq 0$ are calculated in [17], and they are listed in Table 3. Branching
along the cycle $C_{a}$ is determined as shown in Table 3 (see also [17]).

Table 3. Branching along the cycle $C_{a}$

The closest branching point from the origin is $p=.258666+.697448I(|p|=$
.743869) and the eigenvalues $E_{0}(p)$ and $E_{\mathit{2}}(p)$ are connected by continuing analytically
along the cycle $C_{\mathrm{p}}(p=.258666+.697448I)$ (see Table 3). On the other hand, by
the method of perturbation the convergence radii of the expansions of the eigenvalues
$E_{0}(p)$ and $E_{2}(p)$ are both inferred to be around.749 from Table 1. Thus, convergence
radii calculated by different methods are very close and compatibility between the
method of perturbation and the method of monodromy is confirmed. Moreover, we
obtain a reason why the convergence radii of the eigenvalues $E_{0}(p)$ and $E_{\mathit{2}}(p)$ are
very close by considering the branching point. For details see [17].

It would be able to consider analytic continuation of eigenvalues for the case $n\geq 2$

and the case of the Heun equation by applying results on the Hermite-Krichever
Ansatz.
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