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ABSTRAC’r. We discuss an extension of Jensen’s uniqueness theorem for
viscosity solutions of second order partial differential equations to the
case of equations generated by vector fields.

1. INTRODUCTION
The comparison principle between sub and super-solutions of elliptic par-

tial differential equations is a basic result that allows for the application of
techniques from potential theory (Perron’s method) and implies that the
notion of viscosity solution is a genuine generalization of the character of
solution for functions that lack the necessary smoothness to be plugged into
the equation.

For second order elliptic equations R. Jensen established in a celebrated
theorem [J] the comparison principle of viscosity solutions of fully non-linear
second order partial differential equations in $\mathbb{R}^{n}$ . These equations are of the
form

$F(x, u(x),$ $Du(x),$ $D^{2}u(x))=0$ ,
where $x$ is in some domain $\Omega\subset \mathbb{R}^{n}$ , the function $u$ : St $rightarrow \mathbb{R}$ is real valued, the
gradient $Du$ is the vector $(\partial_{x_{1}}u, \partial_{x_{2}}u, \ldots, \partial_{x_{n}}u)$ , and the second derivatives
$D^{2}u$ is the $n\cross n$ symmetric matrix with entries $\partial_{x_{i}x_{\mathrm{j}}}^{2}u$ . Jensen’s theorem
was later crafted in the language of jets and extended in [CIL]. In this
latter reference, Jensen’s theorem follows from the Maximum Principle for
Semi-continuous Functi $ons$

In this talk we present and extension of the Crandall-Ishii-Lions maximum
principle for semi-continuous functions following [BBM] and investigate the
analogue of Jensen’s theorem when the vector fields $\{\partial_{x_{1}}, \partial_{x_{2}}, \ldots, \partial_{x_{n}}\}$ are
replaced by an arbitrary collection of vector fields or frame

$X=\{X_{1}, X_{2}, \ldots, X_{m}\}$ .
The natural gradient is the vector

$\mathfrak{X}u=(X_{1}(u), X_{2}(u),$
$\ldots,$ $X_{m}(u))$
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and the natural second derivative is the $rn\cross m$ not $\mathcal{T}|_{}ecessa\dot{n}ly$ symmetric
matrix $\mathfrak{X}^{2}u$ with entries $X_{i}(X_{j}(u))$ . Two important examples are:

(i) when $m=n$ and the frame SC is the orthonormal frame determined by
a Riemannian metric, and

(ii) when $m<n$ and the frame $\mathfrak{X}$ satisfies the H\"ormander condition

(1.1) $\dim$ (Lie Algebra $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{X_{1},$ $X_{2},$
$\ldots,$

$X_{m}\}(x)$ ) $=n$ .
Our main result,. see Theorem 1 below, extends the maximum principle
for semi-continuous functions to the case (i). In case (ii) an extension of
Jensen’s theorem has been recently found by Wang [W] when the frame $\mathfrak{X}$ is
the horizontal subspace of the graded Lie algebra of a Carnot group. Wang
extended a previous result of Bieske [Bil], who considered the Heisenberg
group. To the besti of my knowledge the general case of H\"ormander vector
fields without group structure remains open, except in the case of the Gru\v{s}in
plane, where Bieske has obtained several results [Bi2], $[\mathrm{B}\mathrm{i}3_{\rfloor}^{\rceil}$ .

2. TAYLOR FORMULA FOR VECTOR FIELDS

In order to define point-wise generalized derivatives or jets, we need to
express the regular derivatives in a convenient form. This is done by using
a Taylor formula adapted for our frame $\mathfrak{X}=\{X_{1}, X_{2}, \ldots, X_{n}\}$ in $\mathbb{R}^{n}$ ,con-
sisting of $n$ linearly independent smooth vector fields as in [NSW]. Write
$X_{i}(x)= \sum_{j=1}^{n}a_{ij}(x)\partial_{x_{\mathrm{j}}}$ for smooth functions $a_{ij}(x)$ . Denote by $\mathrm{A}(x)$ the
matrix whose $(i,j)$-entry is $a_{ij}(x)$ . We always assume that $\det(\mathrm{A}(x))\neq 0$ in
$\mathbb{R}^{n}$ .

Fix a point $p\in \mathbb{R}^{n}$ and let $t=(t_{1}, t_{2}, \ldots, t_{n})$ denote a vector close to
zero. We define the (flow) exponential based at $p$ of $t$ , denoted by $\Theta_{p}(t)$ , as
follows: Let $\gamma$ be the unique solution to the system of ordinary differential
$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\iota\iota \mathrm{s}$

$\gamma’(s)=\sum_{i=1}^{n}t_{i}X_{i}(\gamma(s))$

satisfying the initial condition $\gamma(0)=p$ . We set $\Theta_{p}(t)=\gamma(1)$ and note this
is defined in a a neighborhood of zero. Note that the flow exponential is
different from the Riemannian exponential defined via geodesics.

Applying the one-dimensional Taylor’s formula to $u(\gamma(s))$ we get

Lemma 1. (INSW]) Let $u$ be a smooth function in a neighborhood of $p$ . We
have:

$u( \Theta_{\mathrm{p}}(t))=u(p)+\langle \mathfrak{X}u(p), t\rangle+\frac{1}{2}\langle(\mathfrak{X}^{2}u(p))^{*}t, t\rangle+o(|t|^{2})$

as $tarrow 0$ .
Note that the quadratic form determined by $\mathfrak{X}^{2}u$ is the same as the qua-

dratic form form determined by the symmetrized second derivative

$(X^{2}u)^{*}= \frac{1}{2}(\mathfrak{X}^{2}u+(\mathfrak{X}^{2}u)^{t})$ .
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Applying lemma (1) to the coordinates functions we obtain a relation
between $\mathrm{A}(p)$ and $\Theta_{p}(0)$ :

Lemma 2. Write $\Theta_{p}(t)=(\Theta_{p}^{1}(t), \Theta_{p}^{2}(t),$
$\ldots,$

$\Theta_{p}^{n}(t))$ . Note that we can think
of $X_{i}(x)$ as the i-th row of $\mathrm{A}(x)$ . Similarly $D_{p}^{k}(0)$ is the $k$ -column of $\mathrm{A}(p)$

so that
$D\Theta_{p}(0)=\mathrm{A}(p)$ .

For the second derivative we get
$\langle D^{2}\Theta_{p}^{k}(\mathrm{O})h, h\rangle=\langle \mathrm{A}^{t}(p)h,D(\mathrm{A}^{t}(p)h)_{k}\rangle$

for all vectors $h\in \mathbb{R}^{n}$ .
In the next lemma we denote the gradient relative to the canonical frame

by $Du$ and the second derivative matrix by $D^{2}u$ .
Lemma 3. For smooth functions $u$ we have

$\mathfrak{X}u=\mathrm{A}\cdot Du$ ,
and for all $t\in \mathbb{R}^{n}$

$\langle(X^{2}u)^{*}\cdot t,t\rangle=\langle \mathrm{A}\cdot D^{2}u\cdot \mathrm{A}^{t}\cdot t, t\rangle+\sum_{k=1}^{n}(\mathrm{A}^{t}\cdot t, \nabla(\mathrm{A}^{t}\cdot t)_{k}\rangle\frac{\partial u}{\partial x_{k}}$.

A comparison principle for smooth functions follows right away.

Lemma 4. Let $u$ and $v$ be smooth functions such that $u-v$ has an interior
local macimum at $p$ . Then we have
(2.1) $\mathfrak{X}u(p)=\mathfrak{X}v(p)$

and

(2.2) $(\mathfrak{X}^{2}u(p))^{*}\leq(\mathfrak{X}^{2}v(p))^{*}$

Let us consider some examples:

Example 1. The canonical frame
This is just $\{\partial_{x_{1}}, \partial_{x_{2}}, \ldots\partial_{x_{n}}\}$ . The first and second derivatives are just the
usual ones and the exponential mapping is just addition

$\Theta_{p}(t)=p+t$ .
Example 2. The Heisenberg group

We consider the Riemannian frame which is given by the left invariant vector
fields $\{X_{1}, X_{2}, X_{3}\}$ in $\mathbb{R}^{3}$ . For $p=(x,y, z)$ the matrix A is just

$\mathrm{A}(p)=(001$ $001$ $-y/2x/21)$ .

A simple calculation shows that
(A$.{}^{t}t,$ $D(\mathrm{A}^{t}\cdot t)_{k}\rangle=0$
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not only for $k=1$ and $k=2$ , but also for $k=3$ . That is, although A is not
constant, we have that Lemma 3 simplifies to
(2.3) $\langle(D_{\mathfrak{T}}^{2}u)^{*}\cdot t, t\rangle=\langle \mathrm{A}\cdot D^{2}u\cdot \mathrm{A}^{t}\cdot t, t\rangle$.
The exponential mapping is just the group multiplication

$\mathrm{O}-_{p}(t)=p\cdot\Theta_{0}(t)=(x+t_{1}, y+t_{2}, z+t_{3}+(1/2)(xt_{2}-yt_{1}))$ .
IFlrom Lemma (3). we see that the additional simplification of (2.3) occurs
whenever $D^{2}\Theta_{p}^{k}(0)=0$ . In particular this is true for all step 2 groups as it
can be seen from the Campbell-Hausdorff formula. However this is not true
for groups of rank 3 of higher. See [BBM] for a explicit example.

3. JETS
To define second order superjetsl of an upper-semicontinuous function $u$ ,

let us consider smooth functions $\varphi$ touching $u$ from above at a point $p$ .

$K^{2,+}(u,p)=\{\varphi\in C^{2}$ in a neighborhood of $p,$ $\varphi(p)=u(p)$ ,

$\varphi(q)\geq u(q),$ $q\neq p$ in a neighborhood of $p\}$

Each function $\varphi\in K^{2,+}(u,p)$ determines a pair $(\eta,X)$ by

(3.1) $A_{ij}\eta$
$==$ $\frac{}{2}(X_{i}(X_{j}(\varphi))(p)+X_{j}(X_{i}(\varphi))(p))\zeta^{x_{1\varphi(p),x_{2\varphi(p),\ldots,X_{n}\varphi(p))}}}$

.
This representation clearly depends on the frame $\mathfrak{X}$ . Using the Taylor the-
orem for $\varphi$ and the fact that $\varphi$ touches $u$ from above at $p$ we get

(3.2) $u( \Theta_{\mathrm{p}}(t))\leq u(p)+\langle\eta, t\rangle+\frac{1}{2}\langle Xt, t\rangle+o(|t|^{2})$ .
We may also consider $J_{\mathrm{X}}^{2,+}(u,p)$ defined as the collections of pairs $(\eta, X)$

such that (3.2) holds. Using the identification given by (3.1) it is clear that
$K^{2,+}(u,p)\subset J_{X}^{2,+}(u,p)$ .

In fact, we have equality. This is the analogue of the Crandall-Ishii Lemma
of [C] that follows from [C] and Lemma 3.
Lemma 5.

$K^{2,+}(u,p)=J_{X}^{2,+}(u,p)$ .
Before stating the final version of the comparison principle, we need to

take care of a technicality. We need to consider the closures of the second
order sub and superjets, $J_{\mathrm{X}}^{T,+}(u,p_{\tau})$ and $J_{\mathrm{f}}^{\mathrm{B},-}(v,p_{\tau})$ . These are defined by
taking pointwise limits as follows: A pair $(\eta, X)\in\overline{J}_{X}^{2,+}(u,p)$ if there exist

$1_{\mathrm{N}\mathrm{o}\mathrm{t}\mathrm{e}}$ that superjets are used in the deflnition of subsolution and subjets in the defini-
tion of supersolution.
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sequences of points $p_{m}arrow p$ , vectors $\eta_{m}arrow\eta$ and matrices $X_{m}arrow X$ as
$marrow\infty$ such that $u(p_{m})arrow u(p)$ and $(\eta_{m}, X_{m})\in J_{\chi}^{2,+}(u,p_{m})$ .

Theorem 1. THE COMPARISON PRINCIPLE FOR SEMICONTINUOUS FUNC-

TIONS Let $u$ be upper $\mathit{3}emi$-continuous in a bounded domain srz $\subset \mathbb{R}^{n}$ . Let $v$

be lower semi-continuous in St. Suppose that for $x\in\partial\Omega$ we have

$\lim_{yarrow}\sup_{x}u(y)\leq\lim_{yarrow}\inf_{x}$
$v(y)$ ,

where both sides are $not+\infty or-\infty$ simultaneously. If $u-v$ has a positive
interior local maximum

$\sup_{\Omega}(u-v)>0$

then we have:
For $\tau>0$ we can find points $p_{\tau},$

$q_{\tau}\in \mathbb{R}^{n}$ such that
i) $\lim_{\tauarrow\infty}\tau\psi(p_{\tau}, q_{\tau})=0$ , where $\psi(p, q)=|p-q|^{2}$ ,
ii) there $e$xists a point $\hat{p}\in\Omega$ such that $p_{\tau}arrow\hat{p}$ (and so does $q_{\tau}$ by $(i)$)

and $\sup_{\Omega}(u-v)=u(\hat{p})-v(\hat{p})>0$ ,
iii) there exist $symmei7^{\cdot}ic$ matrices $\mathcal{X}_{\tau},$ $\mathcal{Y}_{\mathcal{T}}$ and vectors $\eta_{\tau}^{+},$

$\eta_{\tau}^{-}$ so that
iv)

$(\eta_{\tau}^{+}, \mathcal{X}_{\tau})\in\overline{J}_{\mathrm{X}}^{2,+}(u,p_{\tau})$ ,
v)

$(\eta_{\tau}^{-}, \mathcal{Y}_{\tau})\in\overline{J}_{X}^{2,-}(v, q_{\tau})$ ,
vi)

$\eta_{\tau}^{+}-\eta_{\tau}^{-}=o(1)$

and
vi)

$\mathcal{X}_{\tau}\leqq \mathcal{Y}_{\mathcal{T}}+o(1)$

as $\mathcal{T}arrow\infty$ .
Note that the first generalized derivatives $\eta_{\tau}^{+}$ and $\eta_{\tau}^{-}$ do not agree but the

error term vanishes as $\tauarrow\infty$ . Similarly we don’t have the usual order of
the generalized second derivatives , $\mathrm{Y}_{\tau}$ and $\mathcal{Y}_{\mathcal{T}}$ but the error term is also $o(1)$

as $\mathcal{T}arrow\infty$ .
Proof. The idea of the proof is to use the Euclidean theorem to get the jets
and then twist them into position. As in the Euclidean case we get points $p_{\tau}$

and $q_{\tau}$ so that (i) and (ii) hold. We apply now the Euclidean maximum
principle for semicontinuous functions of Crtdall-Ishii-Lions [CIL]. There
exist $n\cross n$ symmetric matrices $X_{\tau},$ $Y_{\tau}$ so that

$(\tau D_{\mathrm{p}}(\psi(p_{\tau}, q_{\tau})),$
$X_{\tau})\in\overline{J}_{\mathrm{e}\mathrm{u}\mathrm{c}1}^{2_{)}+}$. $(u,p_{\tau})$

and
$(-\tau D_{q}(\psi(p_{\tau}, q_{\tau})),$

$Y_{\tau})\in\overline{J}_{\mathrm{e}\mathrm{u}\mathrm{c}1}^{2,-}$. $(v, q_{\tau})$

with the property

(3.3) $\langle X_{\tau}\gamma,\gamma\rangle-\langle \mathrm{Y}_{\tau}\chi, \chi\rangle\leqq\langle C\gamma\oplus\chi, \gamma\oplus\chi\rangle$
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where the vectors $\gamma,$ $\chi\in \mathbb{R}^{n}$ , and

$C=\tau(A^{2}+A)$

and
$A=D_{p,q}^{2}(\psi(p_{\tau}, q_{\tau}))$

are $2n\cross 2n$ matrices.
Let us now twist the jets according to lemma 3. Call $\xi_{\tau}^{+}=\tau D_{p}(\psi(p_{\tau}, q_{\tau}))$

and $\xi_{\tau}^{-}=-\tau D_{q}(\psi(p_{\tau}, q_{\tau}))$ . By our choice of $\psi$ we get $\xi_{\tau}^{+}=\xi_{\tau}^{-}$ . Set
$\eta_{\tau}^{+}=\mathrm{A}(p_{\tau})\cdot\xi_{\tau}^{+}$

and
$\eta_{\tau}^{-}=\mathrm{A}(q_{\tau})\cdot\xi_{\tau}^{-}$ .

We see that

$|\eta_{\tau}^{+}-\eta_{\tau}^{-}|$ $=$ $|\mathrm{A}(p_{\tau})-\mathrm{A}(q_{\tau})||\xi_{\tau}^{+}|$

$\leq$ $C\tau|p_{\tau}-q_{\tau}||D_{p}(\psi(p_{\tau}, q_{\tau}))|$

$\leq$ $C\tau\psi(p_{\tau}, q_{\tau})$

$=$ $o(1)$ ,
where we have used the fact that $|p-q||D_{p}\psi(p, q)|\leq C\psi(p, q)$ , property (i)
and the smoothness, in the form of a Lipschitz condition, of $\mathrm{A}(p)$ .

The second order parts of the jets are given by

$\langle \mathcal{X}_{\tau}\cdot t, t\rangle=\langle \mathrm{A}(p_{\tau})X_{\tau}\mathrm{A}^{t}(p_{\tau})\cdot t, t\rangle+\sum_{k=1,n}\langle \mathrm{A}^{t}(p_{\tau})\cdot t, D(\mathrm{A}^{t}(p)\cdot t)_{k}[p_{\tau}]\rangle(\xi_{\tau}^{+})_{k}$

and

$\langle \mathcal{Y}_{\tau}\cdot t, t\rangle=\langle \mathrm{A}(q_{\tau})\mathrm{Y}_{\tau}\mathrm{A}^{t}(q_{\tau})\cdot t, t\rangle+\sum_{k=1,n}\langle \mathrm{A}^{t}(q_{\tau})\cdot i, D(\mathrm{A}^{t}(p)\cdot t)_{k}[q_{\tau}]\rangle(\xi_{\tau}^{-})_{k}$
.

In order to estimate their difference we write
$(\mathcal{X}_{\tau}\cdot t,$ $t\rangle-\langle \mathcal{Y}_{\mathcal{T}}\cdot t, t\rangle$ $=$ $\langle X_{\tau}\mathrm{A}^{t}(p_{\tau})\cdot t,\mathrm{A}^{t}(p_{\tau})\cdot t\rangle-\langle \mathrm{Y}_{\tau}\mathrm{A}^{t}(q_{\tau})\cdot t, \mathrm{A}^{t}(q_{\tau})\cdot t\rangle$

$+ \sum_{k=1}^{n}\langle \mathrm{A}^{t}(p_{\tau})\cdot t, D(\mathrm{A}^{t}(p)\cdot t)_{k}[p_{\tau}]\rangle(\xi_{\tau}^{+})_{k}$

$- \sum_{k=1}^{n}\langle \mathrm{A}^{t}(q_{\tau})\cdot t, D(\mathrm{A}^{t}(p)\cdot t)_{k}[q_{\tau}]\rangle(\xi_{\tau}^{-})_{k}$ .

Using inequality 3.3, we get
$\langle \mathcal{X}_{\tau}\cdot t,t\rangle-\langle \mathcal{Y}_{\mathcal{T}}\cdot t, t\rangle$ $\leq$ $\langle C(\mathrm{A}(p_{\tau})\cdot t\oplus \mathrm{A}(q_{\tau})\cdot t),\mathrm{A}(p_{\tau})\cdot t\oplus \mathrm{A}(q_{\tau})\cdot t\rangle$

$+ \mathcal{T}[\sum_{k=1}^{n}\langle \mathrm{A}^{t}(p_{\tau})\cdot t, D(\mathrm{A}^{t}(p)\cdot t)_{k}[p_{\tau}]\rangle\frac{\partial\psi}{\partial p_{k}}(p_{\tau}, q_{\tau})]$

$- \mathcal{T}[\sum_{k=1}^{n}\langle \mathrm{A}^{t}(q_{\tau})\cdot t, D(\mathrm{A}^{t}(p)\cdot t)_{k}[q_{\tau}]\rangle\frac{\partial\psi}{\partial p_{k}}(p_{\tau}, q_{\tau})]$
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To estimate the first term in the right hand side we note that symmetries
of $\psi$ give a block structure to $D_{p,q}^{2}\psi$ so that we have

$\langle C(\gamma\oplus\delta),$ $\gamma\oplus\delta)\leq C\tau|\gamma-\delta|^{2}$ .
Replacing $\gamma$ by $\mathrm{A}(p_{\tau})\cdot t$ and 6 by $\mathrm{A}(q_{\tau})\cdot t$ , using the smoothness of $\mathrm{A}$ , and
property (i) we get that this first term is $o(1)$ . The second and third term
together are also $o(1)$ since their difference is estimated by a constant times
$\tau|p_{\tau}-q_{\tau}||D_{p}\psi(p_{\tau}, q_{\tau})|$ .

$\square$

3.1. Fully Non-Linear Elliptic Equations. Consider a continuous func-
tion

$F:\mathbb{R}^{n}\cross \mathbb{R}\dot{\cross}\mathbb{R}^{n}\cross S(\mathbb{R}^{n})arrow \mathbb{R}$

$(x, z, \eta, \mathcal{X})arrow F(x, z, \eta, \mathcal{X})$ .
We will always assume that $F$ is proper; that is, $F$ is increasing in $u$ and $F$

is decreasing in $\mathcal{X}$ .
Definition 1. A lower semicontinuous function $v$ is a viscosity superso-
lution of the equation

$F(x,u(x),\mathfrak{X}u(x),(X^{2}u(x))^{*})=0$

if whenever $(\eta, \mathcal{Y})\in J_{X}^{2,-}(v, x_{0})$ we have

$F(x_{0}, v(x_{0}),$ $\eta,\mathcal{Y})\geq 0$ .
Equivalently, if $\varphi\in C^{2}$ touches $v$ from below at $x_{0}$ , then we must have

$F(x_{0},v(x_{0}),$ $\mathfrak{X}\varphi(x\mathrm{o}),$ $(X^{2}\varphi(x_{0}))^{*})\geq 0$ .
Definition 2. An upper semicontinuous function $u$ is a viscosity subso-
lution of the equation

$F(x, u(x),$ $Xu(x),$ $(X^{2}u(x))^{*})=0$

if whenever $(\eta, \mathcal{X})\in J_{\mathrm{X}}^{2,+}(u, x_{0})$ we have

$F(x_{0}, u(x_{0}),$ $\eta,$
$\mathcal{X})\leq 0$ .

Equivalently, if $\varphi\in C^{2}$ touches $u$ fivm above at $x_{0}$ , then we must have
$F(x_{0}, u(x_{0}),$ $\mathfrak{X}\varphi(x_{0}),$ $(\mathfrak{X}^{2}\varphi(x_{0}))^{*})\leqq 0$ .

Note that if $u$ is a viscosity subsolution and $(\eta, \mathcal{X})\in\overline{J}_{\mathrm{X}}^{2,+}(u, x_{0})$ then, by
the continuity of $F$ , we still have

$F(x_{0}, u(x_{0}),\eta,$ $\mathcal{X})\leq 0$ .
A similar remark applies to viscosity supersolutions and the closure of second
order subjets.

A viscosity solution is defined as being both a viscosity subsolution and
a viscosity supersolution. Observe that since $F$ is proper, it follows easily
that if $u$ is a smooth classical solution then $u$ is a viscosity solution.
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Examples:

$\bullet$ Uniformly elliptic equations with continuous coefficients:

$-Lu=- \sum_{j=1}^{n}\alpha_{i,j}(p)X_{j}X_{j}u(p)=f(p)$ ,

where the symmetric matrix $(\alpha_{i,j})$ has eigenvalues in an interval $[\lambda, \Lambda],$ $\lambda>$

$0$ , and $f$ is continuous. When the matrix $(\alpha_{i,j})$ is the identity matrix the
operator $L$ is the H\"ormander-Kohn Laplacian and it is denoted by $\triangle \mathrm{x}$ .

$\bullet$ The $\infty$-Laplace equation $([\mathrm{B}\mathrm{i}1])$ relative to the $\mathrm{h}\cdot \mathrm{a}\mathrm{m}\mathrm{e}\mathfrak{X}$ :

$-\Delta_{\mathfrak{T},\infty^{u}}=$. $- \sum_{i,j=1}^{n}(X_{\iota’}u)(X_{j}u)X_{i}X_{j}u=-((X^{2}u)^{*}\mathfrak{X}u,$ $\mathfrak{X}u\rangle$

$\bullet$ The p–Laplace equation, $2\leq p<\infty$ , relative to the frame $\mathfrak{X}$ :

$-\Delta_{x_{p}},u==_{\mathrm{d}\mathrm{i}\mathrm{v}x(|\mathfrak{X}u|^{p-2}\mathfrak{X}u)=0}[|\mathfrak{X}u|^{p-2}\triangle xu+(p-2)|\mathfrak{X}u|^{p-4}\triangle x,\infty^{u]}=$

Here $\mathrm{d}\mathrm{i}\mathrm{v}_{\mathrm{X}}$ is the natural divergence relative to the frame X defined by duality
with respect to $\mathfrak{X}u$ . See [M] for details. We need $p\geq 2$ for the continuity
assumption of the corresponding $F$ .

Once we have the maximum principle (Theorem 1) we get comparison
theorems for viscosity solutions of various classes of fully nonlinear equations
of the general form

$F(x,u(x),$ $\mathfrak{X}u(x),$ $(\mathfrak{X}^{2}u(x))^{*})=0$

where $F$ is continuous and proper as it is done in [CIL]. We refer to [M]
for concrete examples that include the uniformly elliptic case as well as the
p–Laplacian. The infinite Laplacian case has recently been settled by Bieske
[Bi4].
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