
STRONG COMPARISON PRINCIPLE
OF SEMICONTINUOUS VISCOSITY SOLUTIONS
TO SOME NONLINEAR ELLIPTIC EQUATIONS

徳島大学 総合科学部 1大沼 正樹 (Maeaki Ohnuma)
Department of Mathematical and Natural Sciences,

The University of Tokushima

This note is based on ajoint work with Professor Yoshikazu Giga of Univer-
sity of Tokyo [5].

1. Introduction

In this note we are concerned with a nonlinear elliptic equation of the form
(1.1) $F(Du(x), D^{2}u(x))=0$ in $\Omega$ ,
where $\Omega$ is a domain in $\mathrm{R}^{n}$ . The function $\mathrm{u}:\Omegaarrow \mathrm{R}$ is unknown and $F$ is a
given function. Here $Du$ and $D^{2}u$ denote, respectively, the gradient of $u$ and
the Hessian of $u$ in variables $x$ . The function $F$ : $\mathrm{R}^{n}\cross \mathrm{S}^{n}arrow \mathrm{R}$ is continuous,
where $\mathrm{S}^{n}$ denotes the space of all real $n\cross n$ symmetric matrices.

Our goal is to establish the strong comparison principle for viscosity so-
lutions of (1.1). By the strong comparison principle we mean the principle
that a subsolution $u$ agrees with a supersolution $v$ in $\Omega$ if $u\leq v$ in $\Omega$ and
$u(x_{0})=v(x_{0})$ at some point $x_{0}\in\Omega$ . A typical example of $F=F(p, X)$ we
consider here is of the form

$F(p,X)=- \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\{(I-\frac{p\otimes p}{1+|p|^{2}})X\}$

so that (1.1) becomes

(1.2) $- \sqrt{1+|Du|^{2}}\mathrm{d}\mathrm{i}\mathrm{v}(\frac{Du}{\sqrt{1+|Du|^{2}}})=0$ in $\Omega$ .

The equation (1.2) is called the (graph) minimal surface equation.
We shall establish the strong comparison principle for some elliptic equations

including the graph minimal surface equation. A solution we consider here is
a viscosity solution which may not be continuous.

It is well known that for linear elliptic equations the strong comparison prin-
ciple is equivalent to the strong maximum principle since linear combinations
of solutions are still solutions. The strong maximum principle of classical so-
lutions for linear elliptic equations has been well studied (cf. [12], [7]). There
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are some results on the strong maximum principle for weak $s$olution (distri-
bution sense) of quasilinear possibly degenerate equations (see e.g. [14], [11],
[7] $)$ . For viscosity solutions Kawohl and Kutev [10] prove the strong maximum
principle under continuity condition for subsolutions or supersolutions. Later,
Bardi and Da Lio [1] improve this result without continuity assumption for
solutions and they establish the strong maximum principle for a large class
including the graph minimal surface equation and even for degenerate elliptic
equations, for example, for the p–Laplacian equation with $p>1$ . For a level set
equation of the minimal surface equation a special form of a strong maximum
principle for level sets of solutions was established by [6]. On the other hand,
there are a few results on the strong comparison principle for nonlinear elliptic
equations. For classical solutions E. Hopf established it as a corollary of the
strong maximum principle (see e.g. [11]). For viscosity solutions Trudinger
[13] proved the strong comparison principle for locally strictly elliptic equa-
tions with Lipschitz cotinuity assumptions on subsolutions and supersolutions.
He only state results in [13, Remark 3.2] without the proof. For definitions
and the theory of viscosity solutions we refer to the review paper [4] and a nice
introductory book [9].

After this work was completed, we were informed of a recent work of Ishii and
Yoshimura [8] who proved the strong comparison principle for semicontinous
viscosity solutions of uniformly elliptic equations. Their proof is very similar
to ours [5].

2. Assumptions on $F=F(p, X)$

We list the basic assumptions on $F=F(p,X)$ .
(F1) $F:\mathrm{R}^{n}\cross \mathrm{S}^{n}arrow \mathrm{R}$ is continuous,

where $\mathrm{S}^{n}$ denotes the space of all real $n\cross n$ symmetric matrices.
We will use the following notations;

$USC(\Omega)=$ {upper semicontinuous functions $u:\Omegaarrow \mathrm{R}$},
$LSC(\Omega)=$ {lower semicontinuous functions $u:\Omegaarrow \mathrm{R}$}.

We next describe of a class of equations for which we shall establish a strong
comparison principle. We shall introduce a notion called coercive.

Definition 2.1 We say that a function $f$ : $\mathrm{R}\cross \mathrm{S}^{n}arrow \mathrm{R}$ is coercive if for
each $M>0$ there exists a function $\beta=\beta_{M}$ : $[0, \infty)arrow \mathrm{R}$ satisfying

(i) $\beta$ is continuous on $[0, \infty)$ and $\lim_{\sigmaarrow+\infty}\beta(\sigma)=+\infty$ ,

(ii) $f(p, S)\geq b\beta(N)$

for all $S\in \mathrm{S}^{n},$ $b>0,$ $N>0$ and $p\in \mathrm{R}^{n}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\Phi \mathrm{i}\mathrm{n}\mathrm{g}$

$S\leq bI$ , $\iota_{\mu S\mu}\leq-bN$ , $|p|\leq M$
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for some $\mu\in S^{n-1}$ . Here $I$ denotes the identity matrix, $\mu$ is a row vector, $\iota_{\mu}$

is the transposed vector of $\mu$ and $S^{n-1}$ denotes the set of unit vectors in $\mathrm{R}^{n}$ .
The function $\beta$ is called a bound for $f$ .

We shall assume a kind of ellipticity and a Lipschitz continuity of derivative
variables $p$ for $F=F(p,X)$ .
(F2) There exists a coercive function $f$ such that

$F(p,X)-F(p, -\mathrm{Y})\geq f(p,X+\mathrm{Y})$

for all $p\in \mathrm{R}^{n}$ and for all $X,$ $\mathrm{Y}\in \mathrm{S}^{n}$ .
(F3) Let $M$ and $K$ be positive. There exists a positive constant $L_{M,K}$ such
that

$|F(q, X)-F(\tilde{q},X)|\leq L_{M,K}|q-\tilde{q}|$

for all $q,\tilde{q}\in \mathrm{R}^{n}$ satisfying $|q|,$ $|\tilde{q}|\leq M$ and for all $X\in \mathrm{S}^{n}$ satisfying $||X||\leq K$ ,
where $||X||$ denotes the operator norm of $X$ as a self-adjoint operator on $\mathrm{R}^{n}$ .

We shall see that the locally strictly ellipticity implies (F2). Let us recall
a definition of locally strictly elliptic equations. Let $M$ be positive. If there
exists constant $0<\lambda_{M}\leq\Lambda_{M}$ such that
(2.1) $\lambda_{M}$ trace $\mathrm{Y}\leq F(p, X-\mathrm{Y})-F(p, X)\leq\Lambda_{M}$ trace $\mathrm{Y}$

for all $p\in \mathrm{R}^{n}$ satisfying $|p|\leq M,$ $X,$ $\mathrm{Y}\in \mathrm{S}^{n}$ and $\mathrm{Y}\geq 0$ , then we call
$F=F(p, X)$ is locally strictly elliptic. It turns out that (F2) is fulfilled if
$F=F(p, X)$ is locally strictly elliptic (Proposition 2.4).

Remark 2.2 Of course (F2) is fulfilled if $F=F(p, X)$ is uniformly elliptic.
The definition of uniformly ellipic is the following. If there exists constant
$0<\lambda\leq\Lambda$ such that

$\lambda$ trace $\mathrm{Y}\leq F(p,X-\mathrm{Y})-F(p,X)\leq\Lambda$ trace $\mathrm{Y}$

for all $p\in \mathrm{R}^{n}$ and for all $X,$ $\mathrm{Y}\in \mathrm{S}^{n}$ and $\mathrm{Y}\geq 0$ , then we call $F=F(p,X)$ is
uniformly elliptic.

Let $\lambda_{j}(1\leq j\leq n)$ be the set of eigenvalues of $X$ including multiplicity. Let
$e_{j}$ be eigenvectors of $\lambda_{j}$ . We may assume that $\{e_{j}\}_{j=1}^{n}$ is an orthogonal basis
of $\mathrm{R}^{n}$ . Thus we have a spectral decomposition

$X= \sum_{j=1}^{n}\lambda_{j}e_{j}\otimes e_{j}$ .

We define the plus part $X_{+}$ and minus part $X_{-}$ by

$X_{+}:= \sum_{j=1}^{n}(\lambda_{j})_{+}e_{j}\otimes e_{j}$ , $X_{-}:= \sum_{j=1}^{n}(\lambda_{j})_{-}e_{j}\otimes e_{j}$ ,

where $( \lambda_{j})_{+}:=\max\{0, \lambda_{j}\}$ and $( \lambda_{j})_{-}:=\min\{0, \lambda_{j}\}$ .
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Proposition 2.3 Let $F$ be locally strictly elliptic. Then we have
$F(p,X)-F(p, -\mathrm{Y})\geq-\Lambda_{M}$ trace $(X+\mathrm{Y})_{+}-\lambda_{M}$ trace $(X+\mathrm{Y})_{-}$ .

As we prove later (see Section $4$) $-\Lambda_{M}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(X+\mathrm{Y})_{+}-\lambda_{M}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(X+\mathrm{Y})_{-}$ is
a coercive function for locally strictly elliptic equations. Thus by Proposition
2.3 we have

Proposition 2.4 Let $F$ be locally strictly elliptic. Then $F$ satisfies $(F\mathit{2})$ .

Remark 2.5 After this conference Professor Hitoshi Ishii pointed out
that for $S\in \mathrm{S}^{n}$ the $\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}-\Lambda_{M}$ trace $S_{+}-\lambda_{M}$ trace $S_{-}$ is a Pucci operator.
For the definition of Pucci operators we refer to the book [3]. Moreover, if $F$

satisfies (F1) and (F2) then $F$ is locally strictly elliptic. Of course under the
same assumptions $F$ is uniformly elliptic.

Remark 2.6 (i) For the strong comparison principle one cannot remove
(F2) completely. In fact the strong comparison principle fails for a first order
equation $| \frac{d\mathrm{u}}{dx}|=1$ on $(-1,1)$ which does not fulfill (F2). Indeed there are
solutions $u_{1}(x)=x+1$ and $u_{2}(x)=-|x|+1$ . We observe that $u_{1}(x)\geq u_{2}(x)$

on $(-1,1)$ and $u_{1}(x)\equiv u_{2}(x)$ on $(-1,0)$ . However, $u_{1}(x)>u_{2}(x)$ on $(0,1)$ .
This means that the strong comparison principle is not fulfilled.
(ii) One would like to weaken the Lipschitz condition of $F(p,X)$ in $p$. For
example, we consider

$|F(q,X)-F(\tilde{q}, X)|\leq L_{M,K}|q-\tilde{q}|^{m}$

for some $m(0<m<1)$ . However, for such $F$ we have a counterexample (cf.
[2] $)$ . Let $0<m<1,$ $R>0$ ,

$F(p,X)=$ -trace $X-|p|^{m}$ , $\Omega=B(\mathrm{O}, R)\subset \mathrm{R}^{n}$ .
For this $F$ equation (1.1) becomes
(2.2) $-\Delta u-|Du|^{m}=0$ in $B(\mathrm{O}, R)$ .
In [1] there is a comment to (2.2). For (2.2) the strong minimum princi-
ple holds, however the strong maximum principle does not hold. In fact,
$u(x)=C(R^{k}-|x|^{k})$ with $k=(2-m)/(1-m),$ $C=k^{-1}(n+k-2)^{1/(m-1)}$ is a
non constant solution to (2.2) (cf. [2]). This means for (2.2) the strong com-
parison principle does not hold. So we cannot remove the Lipschitz continuity
assumption completely. If we would like to weaken the assumption (F3), we
have to consider another way.

Remark 2.7 A typical example is the minimal surface equation

(2.3) $- \sqrt{1+|Du|^{2}}\mathrm{d}\mathrm{i}\mathrm{v}(\frac{Du}{\sqrt{1+|Du|^{2}}})=0$ in $\Omega$ .

59



For this equation $F=F(p, X)$ is given by

(2.4) $F(p, X)=- \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\{(I-\frac{p\otimes p}{1+|p|^{2}})X\}$ .
This $F=F(p, X)$ is locally strictly elliptic. Indeed, for (2.4) elliptic constants
are taken by $\lambda_{M}=1/(1+M^{2}),$ $\Lambda_{M}=1$ . An extended equation of (2.3) is the
following.
(2.5)

$- \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\{A(Du)(I-\frac{Du\otimes Du}{1+|Du|^{2}})D^{2}u(I-\frac{Du\otimes Du}{1+|Du|^{2}})\}=0$ in $\Omega$ ,

where $A(p)\in \mathrm{S}^{n}$ satisfies $A(p)\geq 0$ for all $p\in \mathrm{R}^{n}$ . We shall assume that for
each $M>0$ there exists a constant $C=C(M)>0$ such that $A(p)\leq CI$ for
all $p\in \mathrm{R}^{n}$ satisfying $|p|\leq M$ . We also assume a lower bound such that there
exists $c>0$ satisfying $cI\leq A(p)$ for all $p\in \mathrm{R}^{n}$ . For (2.5) $F=F(p, X)$ is
given by

(2.6) $F(p, X)=-\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}\{A(p)\hslash^{x}R\}$ , $R:=I- \frac{p\otimes p}{1+|p|^{2}}$ .

This $F=F(p, X)$ is also locally strictly elliptic. Elliptic constants are taken
by $\lambda_{M}=c/(1+M^{2})^{2},$ $\Lambda_{M}=C$ .

3. Main results

Our main theorem is an extension of the strong comparison theorem to
viscosity subsolutions and supersolutions to (1.1). In this note we simplified
our original proof [5] according to advice of Professor Hitoshi Ishii. Exactly
we simplified our proofs from Lemma 3.5.

Theorem 3.1(Strong comparison principle) Suppose that $\Omega$ is a
domain in $\mathrm{R}^{n}$ . Assume that $F$ satisfies $(Fl)-(F\mathit{3})$ . Let $u\in USC(\Omega)$ and $v\in$

$LSC(\Omega)$ be, respectively, viscosity sub- and supersolutions of (1.1). Assume
that $u\leq v$ in $\Omega$ and that there exists a point $x_{0}\in\Omega$ such that $u(x_{0})=v(x_{0})$ .
Then $u\equiv v$ in $\Omega$ .

If $v$ is a constant function in $\Omega$ and a constant function is a viscosity solution
then Theorem 3.1 gives a strong maximum principle.

We shall prove Theorem 3.1 in several steps. Our proof reflects that of the
maximum principle to uniformly elliptic equations in classical sense. Choice
of an auxiliary function and some domains in $\Omega$ near the point $x_{0}$ are very
similar to the classical work [12], [7].

Let $a\in\Omega,$ $R>0$ ,
$B_{0}:=(a, R)\subset\subset\Omega$ , $x_{0}\in\partial B_{0}$ ,

$B_{1}:=B(x_{0}, \frac{R}{2})\subset\subset\Omega$ ,
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where $B(a, R)$ denotes the open ball in $\mathrm{R}^{n}$ of radius $R$ centered at $a$ . Let for
$\gamma>0$ and $x\in \mathrm{R}^{n}$

$z(x):=e^{-\gamma R^{2}}-e^{-\gamma|x-a|^{2}}$

By definition one observes that
$-1<z(x)<0$ in $B_{0}$ ,

(3.1) $z(x)=0$ on $\partial B_{0}$ ,
$0<z(x)<1$ outside $\overline{B_{0}}$ .

Let $w(x, y)$ be a function on $\Omega\cross\Omega$ . We set for $(x, y)\in\Omega\cross\Omega$ and $\epsilon,$
$\alpha>0$ ,

$\Phi(x, y):=\epsilon z(x)+\alpha|x-y|^{2}$ ,
$\Psi(x, y):=w(x, y)-\Phi(x, y)$ .

For proof of Theorem 3.1 we have to study maximum points of $\Psi(x, y)$ on
$\overline{B_{1}}\cross\overline{B_{1}}$ and their values. First we shall consider the value of $\Psi(x, x)$ for
$x\in\partial B_{1}$ .

Proposition 3.2 Let $B_{0},$ $B_{1}$ and $z(x)$ as stated above. There exists
$\epsilon_{0}>0$ such that if $0<\epsilon<\epsilon_{0}$ then

$w(x, x)-\epsilon z(x)<0$ on $\partial B_{1}$

for all $\gamma>0$ provided that $w$ is upper semicontinuous on $\Omega\cross\Omega,$ $w(x,x)\leq 0$

for all $x\in\Omega$ and

$\{$

$w(x,x)<0$ if $x\in\overline{B_{0}}\backslash \{x_{0}\}$ ,
$w(x_{0}, x_{0})=0$ .

We next study properties of maximum points of $\Psi(x, y)$ on $\overline{B_{1}}\cross\overline{B_{1}}$.
Proposition 3.3 Suppose that $w$ be upper semicontinuous on $\Omega\cross\Omega$ and

that
$w(x, x)<0$ if $x\in\overline{B_{0}}\backslash \{x_{0}\}$ ,
$w(x_{0}, x_{0})=0$ .

Let $B_{0},$ $B_{1}$ and $\Psi$ as stated above and let $\epsilon_{0}$ be as in Proposition 3.2. Let
$\Psi(x, y)\mathrm{a}\mathrm{t}t\mathrm{a}in$ its $m$aximum at $(x_{\alpha}, y_{\alpha})\in\overline{B_{1}}\cross\overline{B_{1}}$ for all $0<\epsilon<\epsilon_{0}$ . Then
1 $x_{\alpha}-y_{a}|arrow 0$ as a $arrow+\infty$; this convergence is uniform in $0<\epsilon<\epsilon_{0}$ and
$\gamma>0$ .

In $p$articular, there exists a point $\hat{x}\in\overline{B_{1}}$ sucb that $x_{a},$ $y_{a}arrow\hat{x}$ as $\alphaarrow+\infty$

by $t$aking a subsequence.

Proposition 3.4 Assume the same hypotheses ofProposition 3.3. Then
there exists $\alpha_{0}>0$ such that if $\alpha>\alpha_{0}$ then $\Psi$ attains $i\mathrm{t}sm$aximum over $\overline{B_{1}}$

at an interior point $(x_{\alpha}, y_{\alpha})\in B_{1}\cross B_{1}$ for all $0<\epsilon<\epsilon_{0}$ and $\gamma>0$ .
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Proof. We will show $\hat{x}\in B_{1}$ . Suppose that $\hat{x}\in\partial B_{1}$ . By definition of $\Psi$

and $\Psi(x_{\alpha}, y_{\alpha})\geq 0$ we have
$w(x_{\alpha}, y_{\alpha})-\epsilon z(x_{\alpha})\geq\Psi(x_{\alpha}, y_{\alpha})\geq 0$ .

Letting $\alphaarrow+\infty$ by taking a subsequence we observe that
$w(\hat{x},\hat{x})-\epsilon z(\hat{x})\geq 0$

which contradicts to Proposition 3.2. Thus if $\alpha>0$ is sufficiently large say
$\alpha>\alpha_{0}$ , then $x_{\alpha},$ $y_{\alpha}\in B_{1}$ .

For the proof of Theorem 3.1 we will use a maximum principle for semicon-
tinuous functions due to Crandall and Ishii [4]. In particular, we shall study
several properties on matrices which are useful to calculate matrices appeared
in their theory.

Let
$d(x, \gamma):=2\epsilon\gamma e^{-\gamma|x-a|^{2}}$ ,
$B:=d(x, \gamma)(I-2\gamma(x-a)\otimes(x-a))$ .

Lemma 3.5 For all $0<\epsilon\leq 1$ and $N_{1}>0$ there exists $\gamma 0>0$ such that
if $\gamma>\gamma_{0}$ , then
(i) $B\leq d(x, \gamma)I$ ,

(ii) $\iota_{\nu B\nu}\leq-d(x,\gamma)|\nu|^{2}N_{1}$ for all $x\in B_{1}$ ,
where $\nu$ is an outward normal vector on $\partial B_{0}$ at $x_{0}\in\partial B_{0}$ such that $\nu=x_{0}-a$ .

Proof. (i) This is obvious. (ii) By direct calculation we have
$\iota_{\nu B\nu}=d(x, \gamma)\{|\nu|^{2}-2\gamma\langle\nu, x-a\rangle^{2}\}$ .

Note that $\langle\nu,x-a\rangle>0$ for all $x\in B_{1}$ . For all $N_{1}>0$ there exists $\gamma_{0}>0$ such
that if $\gamma>\gamma_{0}$ then

$1-2 \gamma\langle\frac{\nu}{|\nu|}, x-a\rangle^{2}\leq-N_{1}$

for all $x\in B_{1}$ . Thus for all $N_{1}>0$ there exists $\gamma 0>0$ such that if $\gamma>\gamma_{0}$ then
${}^{t}\nu B\nu\leq-d(x, \gamma)|\nu|^{2}N_{1}$ for all $x\in B_{1}$

Now we are in a position to prove Theorem 3.1.
Proof of Theorem 3.1. We will argue by contradiction. We set $w(x, y)=$

$u(x)-v(y)$ so that $w$ is upper semicontinuous on $\Omega\cross\Omega$ . Suppose that there
would exist a point $x_{1}\in\Omega$ such that $u(x_{1})<v(x_{1})$ . By a standard argument
there would exist an open ball $B_{0}$ with $\overline{B_{0}}\subset\Omega$ and $x_{0}’\in\partial B_{0}$ that satisfies

$u<v$ in $\overline{B_{0}}\backslash \{x_{0}^{j}\}$ ,
$u(x_{0}’)=v(x_{0}’)$ .
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We shall replace $x_{0}’$ with $x_{0}$ since $u(x_{0})=v(x_{0})$ . We set $B_{0}=B(a, R)$ and
$B_{1}=B(x_{0}, \frac{R}{2})$ so that $\overline{B_{1}}\subset\Omega$ . Now we see that all conclusions of Proposition
3.2-3.4 would hold for $\Psi=w-\Phi$ on $\overline{B_{1}}\cross\overline{B_{1}}$ for sufficiently small $\epsilon$ and
sufficiently large $\alpha$ . Proposition 3.4 says that $\Psi$ attains its maximum over
$\overline{B_{1}}\cross\overline{B_{1}}$ at $(x_{\alpha}, y_{\alpha})\in B_{1}\cross B_{1}$ for sufficiently small $\epsilon>0$ and sufficiently large
$\alpha>0$ . In particular,

$u(x)-v(y)\leq u(x_{\alpha})-v(y_{\alpha})+\Phi(x, y)-\Phi(x_{\alpha}, y_{\alpha})$

and we observe that
$u(x)-\epsilon z(x)-v(y)-\alpha|x-y|^{2}\leq u(x_{\alpha})-\epsilon z(x_{\alpha})-v(y_{a})-\alpha|x_{a}-y_{a}|^{2}$ .
Expanding $\alpha|x-y|^{2}$ at $(x_{\alpha}, y_{\alpha})$ we get

$(,$$A)\in J^{2,+}((u-\epsilon z)(x_{\alpha})-v(y_{a}))$

with

$A=$ .
We shall apply the elliptic version of Crandall-Ishii’s Lemma [4, Theorem3.2].
We see that for all positive $\lambda$ , there exists $X,$ $\mathrm{Y}\in \mathrm{S}^{n}$ such that
(i)

$(2\alpha(x_{\alpha}-y_{\alpha}), X)\in\overline{J^{2,+}}((u-\epsilon z)(x_{\alpha}))$,
$(-2\alpha(x_{\alpha}-y_{a}), \mathrm{Y})\in\overline{J^{2,+}}(-v(y_{\alpha}))$

$(\Leftrightarrow(2\alpha(x_{\alpha}-y_{a}), -\mathrm{Y})\in\overline{J^{2,-}}v(y_{\alpha}))$ ,

(ii)

$(\mathrm{M}\mathrm{I})$ $-( \frac{1}{\lambda}+||A||)I_{2n}\leq\leq A+\lambda A^{2}$ .

Here $\overline{J^{2,+}}\mathrm{a}\mathrm{n}\mathrm{d}\overline{J^{2,-}}$ , respectively, denote closure of $J^{2,+}$ and $J^{2,-}$ (cf. $[4],[9]$ ).
By the definition of elliptic jets $J^{2,+}$ and $\overline{J^{2,+}}\mathrm{w}\mathrm{e}$ see

$(2\alpha(x_{\alpha}-y_{\alpha})+\epsilon Dz(x_{\alpha}), X+\epsilon D^{2}z(x_{a}))\in\overline{J^{2,+}}u(x_{\alpha})$ .
By definition of $d$ and $B$ (see the paragraph just before Lemma 3.5) we obtain
identities at $x=x_{\alpha}$

$\epsilon Dz(x_{\alpha})=d(x_{\alpha},\gamma)(x_{\alpha}-a)$ , $\epsilon D^{2}z(x_{a})=B$ .
Let $\rho(x, \gamma)=d(x, \gamma)(x-a)$ and let $p_{a}=2\alpha(x-y)$ . Since $u$ is a viscosity
subsolution of (1.1), we have
(3.2) $F(\rho(x_{\alpha}, \gamma)+p_{\alpha},$ $X+B)\leq 0$ .
Since $v$ is a viscosity supersolution of (1.1), we have

(3.3) $F(p_{\alpha}, -\mathrm{Y})\geq 0$ .
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Subtracting (3.3) from (3.2), we get

(3.4) $F(\rho(x_{\alpha}, \gamma)+p_{\alpha},$ $X+B)-F(p_{a}, -\mathrm{Y})\leq 0$ .
By (F3) we see that

$F(\rho(x_{\alpha}, \gamma)+p_{\alpha},$ $X+B)-F(p_{\alpha}, X+B)$ $\geq-L_{M,K}|\rho(x_{\alpha}, \gamma)|$

$=-L_{M,K}d(x_{\alpha}, \gamma)|x_{\alpha}-a|$ .
IFYom $(\mathrm{M}\mathrm{I})$ we observe that

$X+\mathrm{Y}\leq O$ and $X+\mathrm{Y}+B\leq B$ .
By (F2) and Lemma 3.5 we observe that

$F(p_{\alpha}, X+B)-F(p_{\alpha}, -\mathrm{Y})\geq f(p_{\alpha}, X+\mathrm{Y}+B)\geq d(x_{\alpha}, \gamma)\beta(N_{1})$

for all $N_{1}>0$ by taking $\gamma$ sufficiently large. From (3.4) and $R\leq 2|x_{\alpha}-a|\leq 3R$

we see
$0 \geq d(x_{\alpha}, \gamma)\beta(N_{1})-L_{M,K}d(x_{\alpha}, \gamma)\frac{3}{2}R$ .

Since $d(x, \gamma)>0$ we have

$0 \geq\beta(N_{1})-L_{M,K}\frac{3}{2}R$ .
Letting $N_{1}arrow+\infty$ yields $\beta(N_{1})arrow+\infty$ . This means that there exists $N_{0}$ such
that if $N_{1}>N_{0}$ then

$L_{M,K} \frac{3}{2}R<\beta(N_{1})$ .
We get a contradiction. Now we have completed the proof of Theorem 3.1. $\square$

We also establish the Hopf boundary Lemma.
Theorem 3.6(The Hopf boundary Lemma) Suppose that $\Omega$ is a

domain in $\mathrm{R}^{n}$ and that $x_{0}\in\partial\Omega$ . Assume that $F$ satisfies $(Fl),$ $(F2)$ and $(F\mathit{3})$ .
Let $u\in USC(\Omega\cup\{x_{0}\})$ and $v\in LSC(\Omega\cup\{x_{0}\})$ be a viscosity subsolution
and a supersolution of (1.1), respectively.

Assume that
$u\leq v$ in $\Omega\cup\{x_{0}\}$

and that there exists a ball $B_{0}\subset\Omega$ and a point $x_{0}\in\partial B_{0}$ such that

$u<v$ in $\overline{B}_{0}\backslash \{x_{0}\}$

and $u(x_{0})=v(x_{0})$ .
Then for any $w\in \mathrm{R}^{n}$ satisfying $\langle w, \nu\rangle<0$ ,

(3.5) $\lim_{s\downarrow}\sup_{0}\frac{(u-v)(x_{0}+sw)-(u-v)(x_{0})}{s}\leq c\langle w, \nu\rangle$

with some $c>0$ independent of $w$ and $\nu$ , where $\nu$ denotes the outward normal
of the bound$\mathrm{a}\mathrm{r}y\partial B$ at $x_{0}$ .
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Proof Let $B_{0}=B(a, R)$ and let $z$ be the same function as in (3.1).

To show (3.5) it suffices to prove
(3.6) $(u-v-\epsilon z)(x)\leq 0$ in $Z$

for sufficiently small $\epsilon>0(0<\epsilon<1)$ and a domain $Z$ which is neighborhood
of $x_{0}$ and is contained in $B_{0}$ . If we have (3.6), we can see

$(u-v-\epsilon z)(x_{1})\leq(u-v-\epsilon z)(x_{0})$ for all $x_{1}\in Z$ .
For small $s>0$ we set $x_{1}=x_{0}+sw$ . Now we observe that

$\frac{(u-v)(x_{0}+sw)-(u-v)(x_{0})}{s}\leq\frac{\epsilon z(x_{0}+sw)-\epsilon z(x_{0})}{s}$.
Since $\langle\nu,w\rangle<0$ , we get

$\lim_{s\downarrow 0}\sup\frac{(u-v)(x_{0}+sw)-(u-v)(x_{0})}{s}$ $\leq\epsilon\langle Dz(x_{0}), w\rangle$

$=2\epsilon\gamma e^{-\gamma R^{2}}\langle\nu, w\rangle<0$ .
Thus we obtain (3.5).

It remains to prove (3.6). .We argue by contradiction. Let $B_{1}=B(x_{0}, \frac{R}{2})$

and $Z=B_{0}\cap B_{1}$ . Suppose that for all $\epsilon(0<\epsilon<1)$ there would exist $\tilde{x}\in\overline{Z}$

such that
$(u-v- \epsilon z)(\tilde{x})=\max_{Z}(u-v-\epsilon z)=\sigma_{\epsilon}>0$ .

On the boundary $\partial Z$ there exits $\epsilon_{0}>0$ such that if $\epsilon\in(0, \epsilon_{0})$ th.en
(3.7) $(u-v-\epsilon z)(x)\leq 0$ on $\partial Z$.
We see that $\tilde{x}\in Z$ and

$\max_{Z}(u-v-\epsilon z)=\sigma_{\epsilon}$ .
Now we set

$\Phi(x, y)=\epsilon z(x)+\alpha|x-y|^{2}$ ,
where $\alpha>0$ . We define

$\Psi(x, y)=u(x)-v(y)-\Phi(x, y)$ .
Let $\Psi$ attain its maximum at $(\overline{x},\overline{y})\in\overline{Z}\cross\overline{Z}$ for all $\epsilon\in(0,\epsilon_{0})$ and $\alpha>0$ , i.e.,

$\max\Psi(x, y)=\Psi(\overline{x},\overline{y})Z\mathrm{x}Z^{\cdot}$

We easily see that $\Psi(\overline{x},\overline{y})>0$ since
(3.8) $\max_{\overline{z}\mathrm{x}\overline{Z}}\Psi(x, y)\geq\max_{\overline{Z}}(u-v-\epsilon)(x)=\sigma_{\epsilon}>0$ .

We observe that
$M\geq u(\overline{x})-v(\overline{y})-\epsilon z(\overline{x})>\alpha|\overline{x}-\overline{y}|^{2}\geq 0$

and there exists $\hat{x}\in\overline{Z}$ such that
$\overline{x},\overline{y}arrow\hat{x}$ as $\alphaarrow+\infty$
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by taking a subsequence. Note that $\hat{x}\in Z$ . Suppose that $\hat{x}\in\partial Z$ . By (3.8)
$u(\overline{x})-v(\overline{y})-\epsilon z(\overline{x})\geq u(\overline{x})-v(\overline{y})-\epsilon z(\overline{x})-\alpha|\overline{x}-\overline{y}|^{2}\geq\sigma_{e}>0$ .

Letting $\alphaarrow+\infty$ by taking a subsequence we have $(u-v-\epsilon z)(\hat{x})>0$ that
contradicts (3.7). Thus if $\alpha>0$ is sufficiently large say $\alpha>\alpha_{0}$ , then $\overline{x},\overline{y}\in Z$ .
Since $u(x)-v(y)\leq u(\overline{x})-v(\overline{y})+\Phi(x, y)-\Phi(\overline{x},\overline{y})$ , we argue in the same way
as in the proof of Theorem 3.1 with $x_{\alpha}=\overline{x},$ $y_{\alpha}=\overline{y}$ to get a contradiction.

Remark 3.7 Our result roughly speaking that $\partial u/\partial\nu<\partial v/\partial\nu$ at $x=x_{0}$

if $u$ and $v$ are differentiable at $x=x_{0}$ . For linear elliptic equations the Hopf
boundary Lemma implies the strong maximum principle. For some nonlin-
ear degenerate elliptic equations a version of the Hopf boundary Lemma is
established by [1, Theorem 1] to prove the strong maximum principle for semi-
continuous viscosity solutions. In their situation $v$ is taken a constant.

The proof of Theorem 3.6 is essentialy the same as that of Theorem 3.1.
However, $u$ and $v$ may not satisfies the equation (1.1) at $x=x_{0}$ . So we should
discuss separately the place where $w-\Phi$ takes maximum values.

4. Key lemma for locally strictly elliptic equations

We give some examples of equation (1.1) and we shall check (F2) holds. Our
condition (F2) holds for locally strictly elliptic equations (cf. Proposition 2.3
and 2.4). To $\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{f}\mathrm{y}-\Lambda \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(X+\mathrm{Y})_{+}-\lambda \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(X+\mathrm{Y})$-which is appeared in
Proposition 2.3 is a coercive function, we prepare the following lemma.

Lemma 4.1 Let $\Lambda\geq\lambda>0$ . Suppose that $b>0,$ $N>0,$ $S\in \mathrm{S}^{n}$ satisfy

(4.1) $S\leq bI$ ,
(4.2) $\iota_{\mu S\mu}\leq-bN$ for some $\mu\in S^{n-1}$ ,

where $S^{n-1}$ denotes the set of unit vector in $\mathrm{R}^{n}$ . Then we have

$\Lambda traceS_{+}+\lambda \mathrm{t}raceS_{-}\leq\Lambda(n-1)b-\frac{\lambda N}{n}b$.

Proof. We may assume that $S$ is a diagonal matrix. Let $\lambda_{1}(1\leq i\leq n)$ be
eigenvalues of $S$ . From (4.1) we see $\lambda;\leq b$ for all $i$ . From (4.2) there exists
number $p$ that satisfies $\lambda_{\ell}\leq-bN/n$ . We may assume that

$\lambda_{1}\geq\lambda_{2}\geq\cdots\geq\lambda_{j}\geq 0>\lambda_{j+1}\geq\cdots\geq\lambda_{n-1}\geq\lambda_{n}$ .
From (4.2) at least one eigenvalue is negative. We do not worry about the case
all eigenvalues are negative. By the definition of $S_{+}$ and $S_{-}$ we see that

$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}S_{+}=\sum_{k=1}^{j}\lambda_{k}$ , trace$S_{-}= \sum_{k=j+1}^{n}\lambda_{k}$ .
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Then we obtain

$\Lambda \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}S_{+}+\lambda \mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}S_{-}=\Lambda\sum_{k=1}^{j}\lambda_{k}+\lambda\sum_{k=j+1,k\neq\ell}^{n}\lambda_{k}+\lambda\lambda_{\ell}$ .

By (4.1) and (4.2) we see that

$\leq\Lambda\sum_{k=1}^{j}b+\lambda\sum_{k=j+1,k\neq\ell}^{n}b-\lambda\frac{Nb}{n}\leq\Lambda(n-1)b-\lambda\frac{Nb}{n}$.

口

Remark 4.2 By Proposition 2.3 and Lemma 4.1 we conclude that to locally
strictly elliptic equations coercive function $f$ and a function $\beta$ which is a bound
for $f$ are following; for each $M>0$ if $|p|\leq M$ then

$f(p, S)=-\Lambda_{M}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}S_{+}-\lambda_{M}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}S_{-}$,

$\beta(N)=-\Lambda_{M}(n-1)+\frac{\lambda_{M}N}{n}$ .
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