
On the convergence of a three-dimensional
crystalline motion to Gauss curvature flow

Takeo K. Ushijimal Hiroki Yagisita2

Abstract
We consider an approximation of the Gauss curvature flow in $\mathrm{R}^{3}$ by eo-

called crystalline motion. Here, the Gauss curvature flow makes a smooth
strictly convec surface shrink with the outward normal velocity equals
to the Gauss curvature with negative sign. The crystalline motion was
introduced by Rylor [15] and Angenent&Gurtin [1] to analyze crystal
growth mathematically. The most typical crystalline motion of polygon
in $\mathrm{R}^{2}$ makes each edge of a polygon keep the same direction but move
with the norinal speed inversely proportiond to its length Although such
motion is very restrictive at first glance, it is very useful not only in the
mathematical theory of crystal growth but also as a numerical method for
free boundary problems. In two dimensional case, there are already many
researches on the relation between the crystalline motion of polygonal
curves and the curvature driven motion of curves (e.g. [12]).

We extend the moet typical two dimensional crystaUine motion $\sim \mathrm{t}\mathrm{o}$ a
three dimensional one whose Wulff shape i8 a convex polyhedron $(W^{k})$ .
Here the Wulff shape represents the anisotropy of the problem. This mo-
tion makes each side of a polyhedron move with the normal fped inversely
$\mathrm{P}$roportional to its afea. We prove this crystalline motion converges to $\mathrm{t}_{\sim}\mathrm{h}\mathrm{e}$

Gauss curvature flow in $\mathrm{R}^{3}$ under the aesumptions that the polyhedra $W^{k}$

converges to the unit ball $B^{S}$ in the Hausdorff distance and are symmetric
with respect to the origin.

K. Ishii and H.M. Soner[12] showed the convergence of the two di-
mensional crystalline motion to the curve shortening flow by a kind of
perturbed test function methods. We employ their method to prove our
result under aid from the theory of Minkowski problem (e.g. [14]).

1 Introduction
In this paper, we consider an approximation of three dimensional Gauss curva-
ture flow of smooth convex surfaces by using so-called crystalhine algorithm.

First we explain the crystalline algorithm. To investigate the crystal growth
mathematically, Taylor[15] and Angenent&Gurtin[l] introduced the crystalline

$\iota$ Department of Mathematics, Faculty of Science and Technology, Tokyo University of
Science, Chiba, Japan

2Graduate School of Mathematical Sciences, The University of Tokyo, Tokyo, Japan

数理解析研究所講究録
1481巻 2006年 69-78 69



curvature flow and the crystalline motion of specific kind of polygons which
gives the solution to the crystalline curvature flow. Crystalline algorithm is an
approximation method for some kind of moving boundary problems by using
this crystalline motion of the polygons.

Let us explain the crystalline mean curvature flow of closed hypersurface8.
Let $\gamma$ be a positive, continuous, and homogeneous of degree one function on
$\mathbb{R}^{d}(d=\mathit{2},3)$ , which is called surface energy density, and define the surface
energy of closed hypersurface $S\subset \mathbb{R}^{d}$ by

$I(S)= \int_{S}\gamma(\nu)dS$.

Here, $\nu$ denotes the unit normal vector fleld on $S$ . Then, the gradient flow of
$I$ is called anisotropic mean curvature flow. And when $\gamma[p$) $=|p|$ , this flow is
nothing but the classical mean curvature flow. Let u8 define the Wulff shape for
$\gamma$ by

$\tilde{W}=\{x\in \mathbb{R}^{d}|\langle x,\nu\rangle\leq\gamma(\nu)\}$ ,
which represents the anisotropy of the problem. Here, (, $\rangle$ denotes the inner
product in $\mathbb{R}^{d}$ . In the case where this shape is a convex polygon, the energy
$I$ is called crystalline surface energy and the gradient flow is called crystalline
mean cumatuoe flow.

Hereafter, we only deal with the case where the polygons and the closed
curves are all convex, for simplicity. The solution to the two dimensional crys-
talline curvature flow is given by so-called crystalline motion. This is the motion
of $\mathrm{a}\mathrm{d}\mathrm{m}\mathrm{i}\mathrm{s}8\mathrm{i}\mathrm{b}\mathrm{l}\mathrm{e}$ polygons. A polygon is called admissible with respect to the Wulff
shape $\tilde{W}$ if and only if the set of all outward unit normal vector of the poly-
gon coincides with the one of $\tilde{W}$ and each pair of normal vectors of adjacent
edges of the polygon is adjacent in $\tilde{W}$ . The crystalline motion which is $\mathrm{p}\mathrm{r}\triangleright$

posed by Taylor is the motion of admissible polygons whose normal velocity $v_{\mathrm{j}}$

is proportional to
$\kappa_{j}=\frac{\tilde{L}_{\mathrm{j}}}{L_{\mathrm{j}}}$ .

Here, $v_{j}$ and $L_{j}$ are the outward normal velocity and the length of the jth edge
of the admissible polygon, respectively, and $\tilde{L}_{j}$ is the length of the jth edge of
the Wulff shape $\tilde{W}$ , respectively. And the quantity $\kappa_{j}$ is called the crystalline
curvature of the $j\mathrm{t}\mathrm{h}$ edge of the admissible polygon. We note that during the
evolution the admissibility is $\mathrm{p}\mathrm{r}\mathrm{e}\Re \mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}$ . Hence, this motion makes each edge
of a polygon keep the same direction but move with the nomal speed inversely
proportional to its length. We also note that this motion is govemed by a system
of ordinary differential equations for $L_{j}$ .

There are already many researches on the two dimensional crystalline mo-
tion. It is known that as the number of edges of $\tilde{W}$ goes to infinity and $\tilde{W}$

converges to a circle, the two dimensional crystalline motion converges to the
curvature flow of plane curves (see [5, 9, 10, 6, 7, 12, 17]). Especially, in $[7, 12]$

the convergence between crystalline motion and curvature flow is proved in the
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case where the curves are not necessarily convex. In other words, we can approx-
imate the curvature flow by crystalline motion. Such a way of approximation
is called crystalline algorithm. Numerical schemes based on this algorithm are
also studied and the class of problems which can be treated by this algorithm
is extended ([17, 18], etc.).

Here, we would like to say about a good nature of crystaUine algorithm as a
numerical scheme for moving boundary problems. Generally speaking, to com-
pute the solution for moving boundary problemI by discretizing the boundary
curves directly is not easy task, since it often causes numerical instability like
concentration of the points. In Fig.1, we plot the result of computation for free
boundary problems which are governed by the evolution law $v=-|H|^{a-1}H$ by
a simple numerical scheme. Here $v$ and $H$ are the outward normal velocity and
the curvature of the free boundary, respectively, and $\alpha$ is a positive parameter.
In this figure, the most outside curves are the initial curves. We can observe
numerical instabilities which we mentioned. Although several methods are pro.
posed preventing such instability, these methods often employ artificial tricks
like distribution of points.

We would like to claim that the crystalline algorithm is a good method from
this point of view. We plot the computation results for the sarne problem as
Fig.1 by the crystalline algorithm in Fig.2. Here, we particularly note that
the crystalline algorithm do not need any artificial technique like redistribution
of the partition points to prevent the instability and the convergence of the
algorithm is proved for the problem of Fig.2 $[17, 18]$ .

Figure 1: A simple method: $\alpha=1(1\mathrm{e}\mathrm{R}),$ $\alpha=1/3(\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t})$ .

It is an interesting question that whether the three dimensional version of
crystalline algorithm can be constructed. However, crystalline dgorithm for
higher dimensional mean curvature flow is not success, yet. In three dimensional
case, it is not clear that the crystalline mean curvature flow can be solved in
the what class of polyhedra. Moreover, for the crystalline mean curvature flow,
the comparison principle does not hold in general, while the convergence results
of the two dimensional case crucially depend on the comparison principle. For
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Figure 2: Crystalline algorithm: $\alpha=1(\mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}),$ $\alpha=1/3(\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t})$ .

more precise information about these things, we refer [8, 2, 3].
Hence, in this research, we consider three dimensional Gauss curvature flow

and the approximation of it by a crystalline algorithm.
The organization of the paper is as follows: In \S 2 we shall introduce the Gauss

curvature flow and a generalization of it. In \S 3, the most typical crystalline
motion in two dimension is extended to a three dimensional crystalline motion.
We shall also explain the wellposedness of this extended problem in this section.
Our main result will be explained in the final section \S 4.

2 Gauss curvature flow
Let us explain the Gauss curvature flow of smooth convex surface $\Gamma(t)\subset \mathbb{R}^{3}$ .
This flow makes $\Gamma(t)$ shrink with the outward normal velocity equals to the
Gauss curvature. Let $v$ and $\kappa$ be the outward normal velocity and the Gauss
curvature of $\Gamma(t)$ , respectively. The support function of the surface $\Gamma(t)$ is
defined by

$h( \nu,t)=\sup\{\langle\nu,p\rangle|p\in\Gamma(t)\}$ ,

where $\nu$ denotes the outward unit normal vector of the surface $\Gamma(t)$ . Using these
notation, the evolution law for the Gauss curvature flow can be described by

$v= \frac{\theta h}{\theta t}=-\kappa$ . (1)

For smooth convex surfaces $\Gamma_{0}$ , the existence and the uniqueness of the
solution to the Gauss curvature flow is shown in $[16, 4]$ . More precisely, the
following theorem holds.

Theorem 1 Let $\Gamma_{0}$ be a smooth, strictly convex, and closed surface. There
exists a unique solution $\Gamma(t)$ for (1) with initial surface $\Gamma_{0}$ . Moreover, $\Gamma(t)$

remains smooth and strictly convex until a finite time, say $T$ , and $\Gamma(t)$ shrinks to
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a point at this time $T$ . The extinction tirne $T$ is given by $T=V(\Omega_{0})/(3V(B^{3}))$ ,
where $\Omega_{0}$ is the set which is enclosed by $\Gamma_{0}$ and $V$ denotes the volume.

Remark 1 We can also consider a generalization of (1):

$v= \frac{\partial h}{\partial t}=-\kappa^{\alpha}$ . (2)

Here, $\alpha$ is a positive constant. For any $\alpha$ and any smooth convex surfaies $\Gamma_{0}$ ,
the existence and the uniqueness of the solution to (2) are also established in
[4]. Moreover, the solution surface disappear in finite time, say T.

3 Three dimensional crystalline motion
In this section, we extend the crystalline motion of convex admissible polygons
in the plane to the one of convex polyhedra. Our three dimensional crystalline
motion is defined as follows: Let the Wulff shape $\tilde{W}$ be an $N$ faceted convex
polyhedron. Let $\tilde{h}_{j},$

$\nu_{j}$ , and $\tilde{A}_{j}$ the support, the unit outward normal vector,
and the area of the $j\mathrm{t}\mathrm{h}$ facet of $\tilde{W}$ , respectively. We set $\tilde{h}=(\tilde{h}_{j})_{\{1\leq j\leq N\}}$ . For
this $\tilde{W}$ , an $N$-faceted polyhedron St and its boundary $\Gamma$ is called $\tilde{W}$ -admissible
if and only if the outward normal vector of the j-th facet, say $\Gamma_{j}$ , of $\Gamma$ is $\nu_{j}$ for
all $j$ . See figure ??. The $\tilde{W}$ -crystalline Gauss curvature flow is the motion of
the $\tilde{W}$-admissible $\Gamma(t)$ , which is the boundary of $\tilde{W}$-admissible polyhedra $\Omega(t)$ ,
whose evolution law is given by

$v_{j}= \frac{dh_{j}}{dt}=-\tilde{h}_{j^{\frac{\tilde{A}_{j}}{A_{j}}}}$ . (3)

Here, $h_{j},$ $A_{j}$ , and $v_{j}$ denote the support, area, and the outward normal velocity
of the jth facet of $\Gamma(t)$ .

Although the comparison principle does not hold in general for the three
dimensional crystalline mean curvature flow, we can prove this principle for the
$\tilde{W}$-crystalline Gauss curvature flow (3). This fact plays an important role in
the proof of our main result.

Lemma 1 Let $\tilde{W}$ be a convex polyhedron in $\mathbb{R}^{3}$ including the origin as its
interior point, and $\Gamma’(t)$ and $\Gamma(t)$ solutions to $\tilde{W}$-crystalline flow for $t\in[0,T)$ .
Then, $\Gamma’(0)\subset\Gamma(0)\cup\Omega(0)$ implies $\Gamma’(t)\subset\Gamma(t)\cup\Omega(t)$ for all $t\in[0,T)$ . Here,
$\Omega(t)$ is the open Iet enclosed by $\Gamma(t)$ .

For this problem (3), we can prove the following theorem.

Theorem 2 Let $\Gamma_{0}$ be $\tilde{W}$-admissible convex $N$ faceted polyhedron, $\Omega_{0}$ the
boundary of it. There exists unique solution to the problem (3) with initial
surface $\Gamma_{0}$ . Moreover, $V(\Gamma(t))$ vanishes at a finite time, say $T$ . This $T$ is given
by $T=V(\Omega_{0})/(3V(\tilde{W}))$ .
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Figure 3: Example of a Wulff shape $\dagger\tilde{V}$(left) and a $\tilde{W}$ admissible polygon(right)

Proof of the lemma and the theorem can be found in [19].

Remark 2 We can also consider a generalization of (3):

$v_{j}= \frac{dh_{j}}{dt}=-\tilde{h}_{j}(\frac{\tilde{A}_{j}}{A_{j}})^{\alpha}$ $(4\rangle$

Here $\alpha$ is a positive constant. For this problem (4), we can also prove the
comparison lemma and the existence and the uniqueness of solution.

We also note that for the solution $\Gamma(t)$ of this problem, the volume $V(\Gamma(t))$

vanishes in finite time but $\Gamma(t)$ does not necessarily shrinks to a point. For
example, let us consider the solution to the problem (4) which starts from a
rectangular parallelepiped under the condition that the Wulff shape is a cube.
We assume that the rectangular parallelepiped has the symmetry, $h_{1}=h_{4}$ and
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$h_{2}=h_{3}=h_{5}=h_{6}$ . Then the problem can be reduced to the following system
of ordinary differential equations:

$\frac{dh_{1}}{dt}$
$=-h_{2^{\alpha}}\sim^{1}$ ,

$\frac{dh_{2}}{dt}$
$=-h_{1}^{\alpha}=^{1}h_{2}$ .

Since $h_{1}^{-\alpha}\dot{h}_{1}=h_{2}^{-\alpha}\dot{h}_{2}$ holds, we obtain

$h_{1}^{1-}$
’ $(t)-h_{2}^{1-\alpha}(t)=h_{1}^{1-\alpha}(0)-h_{2}^{1-\alpha}(0)$,

where denotes the derivative with respect to time $t$ . Hence, for $0<\alpha<1$ ,
if $h_{1}^{1-\alpha}(0)-h_{2}^{1-a}(0)>0$ then $\Gamma(t)$ Ihrinks to a line segment and if $h_{1}^{1-\alpha}(0)-$

$h_{2}^{1-\alpha}(0)<0$ then $\Gamma(t)$ shrinks to a plane segment.
For two dimensional crystalline motion, such degeneracy of the extinction is

already known and extensively studied in [13].

4 Main result
Now we consider the approximation of the Gauss curvature flow by a sequence
of the crystalline Gauss curvature flow. Hereafter, $k$ denotes the parameter
which indicates the approximation, and the larger $k$ corresponds to the better
approximation. Let $\tilde{W}^{k}$ be an $N^{k}$ faceted convex polyhedron which is symmet-
ric with respect to the origin. For this $\tilde{W}^{k}$ , we have a $\tilde{W}^{k}$-crystalline Gauss
curvature flow. Let $\Gamma^{k}(t)$ be the solution of this flow with initial surface $\Gamma_{0}^{k}$

and $\Omega^{k}(t)$ the $\tilde{W}^{k}$-admissible convex $N^{k}$ faceted polyhedron which is enclosed
by $\Gamma^{k}(t)$ . Under several assumption, we can prove the convergence of $\Gamma^{k}(t)$ to
a solution $\Gamma(t)$ of the Gauss curvature flow as $k$ goes to infinity. Let $B^{\theta}$ be
$\{P\in \mathbb{R}^{3}||P|\leq 1\}$ and $d_{H}$ the Haussdorff distance.

We assume the following four things.

(A1) The convex $N^{k}$ faceted polyhedron $W^{k}$ is Iymmetric with respect to
the origin.

(A2) $\lim_{karrow\infty}d_{H}(\tilde{W}^{k}, B^{3})=0$ .

(A3) $\Gamma_{0}^{k}$ is $\tilde{W}^{k}$ -admissible convex $N^{k}$ faceted polyhedron.

(A4) $\lim_{karrow\infty}d_{H}(\Gamma_{0}^{k}, \Gamma_{0})=0$ .

Theorem 3 We assume $(\mathrm{A}1),(\mathrm{A}2),(\mathrm{A}3),(\mathrm{A}4)$ . Let $\Gamma(t)$ be the solution to (1)
with initial data $\Gamma_{0},$ $T$ its extinction time, $\Gamma^{k}(t)$ the solution to the $\overline{W}^{k}-$

crystalline Gauss curvature flow with initial data $\Gamma_{0}^{k}$ . Then for any $\epsilon>0$ ,
we have

$\lim_{karrow\infty}\sup_{0\leq t\leq T-\epsilon}d_{H}(\Gamma^{k}(t),\Gamma(t))=0$ .
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We briefly comment on the proof of this result. Precise description will be
found in [19]. By the aid from the theory of Minkowski problem ([14]), we
can construct a nice sequence of $\tilde{W}^{k}$-admissible polyhedra which converges to
ellipsoid.

Lemma 2 For positive numbers $a$ and $b$, we set

$E=E(a, b)=\{(x,y, z)|ax^{2}+by^{2}+z^{2}\leq 1\}$ .
For any $k\in \mathrm{N}$ , there uniquely exists a $\tilde{W}^{k}$-admissible polyhedron $E^{k}$ symmetric
with respect to the origin such that

$\kappa^{E}(\nu_{i}^{k})=\frac{\tilde{A}_{i}^{k}}{A_{i}^{E^{k}}}$ (5)

holds for all $1\leq i\leq N^{k}$ . Moreover,

$\lim_{karrow\infty}d_{H}(E^{k}, E)=0$ (6)

holds. Here, $\nu_{i}^{k}$ denotes the outward normal vector of the i-th side of $\tilde{W}^{k},$ $\kappa^{B}(\nu)$

Gauss curvature of $E$ at the point where the outward normal vector is $\nu,\tilde{A}^{k}|$
’ the

area of the i-th side of $\tilde{W}^{k},$ $A_{\mathfrak{i}}^{E^{k}}$ the area of the i-th Iide of $E^{k}$ , respectively.

Using this sequence, we can prove that the upper and lower semicontinuous
envelopes of $\{\Omega^{k}(t)\}$ ,

$\hat{\Omega}(t)=\bigcap_{e>0,N\in \mathrm{N}}$
cl $( \bigcup_{|\epsilon-t|\leq\epsilon,\epsilon\geq 0,k\geq N}(\Gamma^{k}(s)\cup\Omega^{k}(\epsilon)))$ ,

$\underline{\Omega}(t)=\bigcup_{e>0,N\in \mathrm{N}}$
int $( \bigcap_{|s-t|\leq\epsilon,s\geq 0,k\geq N}\Omega^{k}(\epsilon))$ ,

are weak sub and super solutions in viscosity sense. Using a kind of perturbed
test function methods, which is employed by K. IIhii and H.M. $\mathrm{S}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{r}[1\mathit{2}]$ to
prove the convergence of two dimensional crystalline algorithm, we can obtain
the result above.

Remark 3 We can also prove the convergence between (2) and (4) under the
same assumptions (A1) to (A4). The proof is a simple modification of proof of
the main result.
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