Interior $C^{2,\alpha}$ regularity for fully nonlinear elliptic equations

XAVIER CABRÉ

1 Introduction

This note is concerned with the $C^{2,\alpha}$ regularity theory for fully nonlinear elliptic equations. First, we briefly present the well established theory for convex equations (see [CC3] and [C] for, respectively, a fully detailed exposition and a survey). Second, we describe a more recent result and method by Cabré and Caffarelli [CC2] on $C^{2,\alpha}$ regularity for a class of nonconvex equations of Isaacs type.

In 1982 Evans [E] and Krylov [K] proved interior $C^{2,\alpha}$ estimates for fully nonlinear elliptic equations $F(D^2u, Du, u, x) = 0$, $x \in \Omega \subset \mathbb{R}^n$, under the assumption that F is either a convex or a concave function of D^2u . These works relied on the Harnack inequality for linear equations in nondivergence form established by Krylov and Safonov in 1979. The Evans-Krylov estimate, together with some extensions due to Caffarelli, Safonov, and Trudinger, led to interior $C^{2,\alpha}$ regularity results for Bellman's equation,

$$\sup_{\beta \in \mathcal{B}} \{ L_{\beta} u(x) - f_{\beta}(x) \} = 0 , \qquad (1.1)$$

associated to a family $L_{\beta} = a_{ij}^{\beta}(x)\partial_{ij}$ of linear uniformly elliptic operators (see [CC3], [GT]). Equation (1.1), which is convex in D^2u , is the dynamic programming equation for the optimal cost in some stochastic control problems.

Since then, the validity of interior $C^{2,\alpha}$ estimates for nonconvex fully nonlinear uniformly elliptic equations $F(D^2u) = 0$, in space dimension $n \ge 3$, has been a challenging open question. Examples of such nonconvex equations appear in stochastic control theory and are called *Isaacs* equations. They are of the form

$$\inf_{\gamma \in \mathcal{G}} \sup_{\beta \in \mathcal{B}} \{ L_{\beta \gamma} u(x) - f_{\beta \gamma}(x) \} = 0 , \qquad (1.2)$$

where $L_{\beta\gamma} = a_{ij}^{\beta\gamma}(x)\partial_{ij}$ is a family of elliptic operators, all of them with same ellipticity constants. Isaacs equation (1.2) is the dynamic programming equation for the value of some two-player stochastic differential games (see [FS]). At the same time, every uniformly elliptic equation $F(D^2u, x) = 0$ can be written in the form (1.2), for some family $L_{\beta\gamma} = a_{ij}^{\beta\gamma}\partial_{ij}$ of operators with constant coefficients and some functions $f_{\beta\gamma}$ (see Remark 2.1 below).

The best estimates known to be valid for all uniformly elliptic equations $F(D^2u) = 0$ are $C^{1,\alpha}$ and $W^{3,\delta}$ estimates (in particular, also $W^{2,\delta}$), where α and δ are (small) constants that belong to (0,1) and depend on the ellipticity constants of F. To our knowledge, before our work [CC2] described below, no interior $C^{2,\alpha}$ estimates were available for a nonconvex Isaacs operator.

In [CC2] we establish the interior $C^{2,\alpha}$ regularity of viscosity solutions, and in particular the existence of classical solutions, for a class of nonconvex fully nonlinear elliptic equations $F(D^2u, x) = f(x)$. Our assumption is that, for every $x \in B_1 \subset \mathbb{R}^n$, $F(\cdot, x)$ is the minimum of a concave operator and a convex operator of D^2u (where these two operators may depend on the point x). We therefore include the "simplest" nonconvex Isaacs equation

$$F_3(D^2 u) := \min \left\{ L_1 u, \max\{L_2 u, L_3 u\} \right\} = 0 , \qquad (1.3)$$

that we call the 3-operator equation and that motivated our work (see subsection 4.2 below). Here

$$L_k u = a_{ij}^k \partial_{ij} u + c_k , \qquad (1.4)$$

where $c_k = L_k 0 \in \mathbb{R}$, are three affine elliptic operators with constant coefficients a_{ij}^k . More generally, our results apply to equations of the form

$$F(D^2 u) := \min\left\{\inf_{k \in \mathcal{L}} L_k u, \sup_{l \in \mathcal{L}} L_l u\right\} = 0 , \qquad (1.5)$$

where \mathcal{K} and \mathcal{L} are arbitrary sets, and L_k, L_l are operators of the form (1.4), all of them with same ellipticity constants and with $\{c_k\}, \{c_l\}$ bounded.

2 Fully nonlinear elliptic operators

Throughout this note and [CC2], we follow the terminology and notation of [CC3]. We say that an operator $F: S \times \Omega \to \mathbb{R}$, where $\Omega \subset \mathbb{R}^n$ is a domain, is *uniformly elliptic* if there exist constants $0 < \lambda \leq \Lambda$ (called ellipticity constants) such that

$$\lambda \|N\| \le F(M+N,x) - F(M,x) \le \Lambda \|N\| \qquad \forall M \in S \quad \forall N \ge 0 \quad \forall x \in \Omega .$$
(2.1)

Here, S is the space of $n \times n$ symmetric matrices, $N \ge 0$ means that $N \in S$ is nonnegative definite and, for $M \in S$, $||M|| := \sup_{|z| \le 1} |Mz|$. We say that a constant C is universal when it depends only on n, λ and Λ .

The simplest examples of uniformly elliptic operators are the affine operators $Lu = a_{ij}\partial_{ij}u + c$ as in (1.4). The coefficients could also depend on x (i.e., $a_{ij} = a_{ij}(x)$), in which case uniform ellipticity is guaranteed by having uniform lower and upper positive bounds in Ω for the eigenvalues of the symmetric matrices $a_{ij}(x)$.

Another useful class is given by Pucci's extremal operators. Pucci's maximal operator is defined by

$$\mathcal{M}^+(M) = \mathcal{M}^+(M,\lambda,\Lambda) := \Lambda \sum_{e_i > 0} e_i + \lambda \sum_{e_i < 0} e_i = \sup_{A \in \mathcal{A}_{\lambda,\Lambda}} L_A M = \max_{A \in \mathcal{A}_{\lambda,\Lambda}} L_A M ,$$

where $e_i = e_i(M)$ are the eigenvalues of $M \in S$, $A \in \mathcal{A}_{\lambda,\Lambda}$ means that A is a symmetric matrix whose eigenvalues belong to $[\lambda, \Lambda]$, and $L_A M = a_{ij} m_{ij} = \text{trace}(AM)$ (see Section 2.2 of [CC3]).

Later we will use the class \underline{S} of subsolutions. We recall that $\underline{S} = \underline{S}(\lambda, \Lambda)$ in B_1 is formed by those continuous functions u in B_1 such that $\mathcal{M}^+(D^2u, \lambda, \Lambda) \ge 0$ in the viscosity sense in B_1 (see Section 2.1 of [CC3] for the definition of the viscosity sense). Similarly, one defines the class \overline{S} of supersolutions through the inequality $\mathcal{M}^-(D^2u) \le 0$, where $\mathcal{M}^-(M) = -\mathcal{M}^+(-M)$ is Pucci's minimal operator. The class S of viscosity solutions is defined by $S = \underline{S} \cap \overline{S}$. More generally, given a continuous function f in B_1 , the class $\underline{S}(f) = \underline{S}(\lambda, \Lambda, f)$ contains those continuous functions u such that $\mathcal{M}^+(D^2u, \lambda, \Lambda) \ge f(x)$ in the viscosity sense in B_1 . Similarly, one defines $\overline{S}(f)$ and S(f).

Finally, we recall that Isaacs equations (1.2) cover all possible fully nonlinear elliptic equations.

Remark 2.1. Let $F(\cdot, x)$ be uniformly elliptic, with ellipticity constants $0 < \lambda \leq \Lambda$. Then, for M and N in S,

$$F(M,x) - F(N,x) \leq \Lambda ||(M-N)^+|| - \lambda ||(M-N)^-||$$

$$\leq \mathcal{M}^+(M-N,\lambda/n,\Lambda) = \max_{A \in \mathcal{A}} L_A(M-N) ,$$

where $\mathcal{A} = \mathcal{A}_{\lambda/n,\Lambda}$ (see Chapter 2 of [CC3]). Since there is equality when N = M we deduce that, for all M and x,

$$F(M, x) = \min_{N \in S} \max_{A \in \mathcal{A}} \{ L_A(M - N) + F(N, x) \}$$

= $\min_{N \in S} \max_{A \in \mathcal{A}} \{ L_A M + (F(N, x) - L_A N) \}$

This is an operator of Isaacs type (1.2) associated to a family $\{L_A\}$ of linear operators with constant coefficients.

3 Regularity theory for convex equations

For a solution of a second order elliptic equation one expects, in general, to control the second derivatives of the solution by the oscillation of the solution itself. More precisely, the following $C^{2,\alpha}$ and $W^{2,p}$ interior a priori estimates hold. Let u be a solution of a linear uniformly elliptic equation of the form

$$a_{ij}(x)\partial_{ij}u = f(x)$$
 in $B_1 \subset \mathbb{R}^n$

Then we have:

- (a) Schauder's estimates: if a_{ij} and f belong to $C^{\alpha}(\overline{B}_1)$, for some $0 < \alpha < 1$, then $u \in C^{2,\alpha}(\overline{B}_{1/2})$ and $\|u\|_{C^{2,\alpha}(\overline{B}_{1/2})} \leq C(\|u\|_{L^{\infty}(B_1)} + \|f\|_{C^{\alpha}(\overline{B}_1)})$, where C depends on the ellipticity constants and the $C^{\alpha}(\overline{B}_1)$ -norm of a_{ij} ; see Chapter 6 of [GT].
- (b) Calderón-Zygmund estimates: if $a_{ij} \in C(\overline{B}_1)$ and $f \in L^p(B_1)$, for some $1 , then <math>u \in W^{2,p}(B_{1/2})$ and $||u||_{W^{2,p}(B_{1/2})} \leq C(||u||_{L^{\infty}(B_1)} + ||f||_{L^p(B_1)})$, where C depends on the ellipticity constants and the modulus of continuity of the coefficients a_{ij} ; see Chapter 9 of [GT].

These statements should be understood as regularity results for appropriate linear small perturbations of the Laplacian. Indeed, these estimates are proven by regarding the equation $a_{ij}(x)\partial_{ij}u = f(x)$ as

$$a_{ij}(x_0)\partial_{ij}u = [a_{ij}(x_0) - a_{ij}(x)]\partial_{ij}u + f(x)$$

One then applies to this equation the corresponding estimates for the constant coefficients operator $a_{ij}(x_0)\partial_{ij}$ (that one can think of as the Laplacian), observing that the factor in the right hand side $a_{ij}(x_0) - a_{ij}(x)$ is small (locally around x_0) in some appropriate norm, due to the

82

regularity assumptions made on a_{ij} . Thus, the key point is to prove $C^{2,\alpha}$ and $W^{2,p}$ estimates for Poisson's equation $\Delta u = f(x)$.

The goal is to extend these regularity theories to fully nonlinear elliptic equations of the form $F(D^2u, x) = f(x)$. The previous discussion shows that one should start considering the case of equations with constant "coefficients" $F(D^2u) = f(x)$ (here, we think of $F(D^2u)$ as being equal to $F(D^2u(x), x_0)$ for a fixed x_0). In fact, the key ideas already appear by considering the simpler equation

$$F(D^2u)=0.$$

Assume that $F \in C^1$ and that $u \in C^3(\overline{B}_1)$ satisfies $F(D^2u) = 0$. Differentiate this equation with respect to a direction x_k . Writing $u_k = \partial_k u$, we have

$$F_{ij}(D^2 u(x)) \partial_{ij} u_k = 0 \quad \text{in } B_1 ,$$

where F_{ij} denotes the first partial derivative of F with respect to its ij-th entry. This can be regarded as a linear equation $Lu_k = 0$ for the function u_k , where $L = a_{ij}(x)\partial_{ij}$ and $a_{ij}(x) = F_{ij}(D^2u(x))$. The ellipticity hypothesis (2.1) leads to the uniform ellipticity of L. Note that a regularity hypothesis on the coefficients $a_{ij}(x)$ would mean to make a regularity assumption on the second derivatives of u —which is our goal and hence we need to avoid. The tool that one uses is the Krylov-Safonov Harnack inequality and its corollary on Hölder continuity of solutions of uniformly elliptic equations in nondivergence form with measurable coefficients (see [CC3]). The key point is that the Krylov-Safonov theory makes no assumption on the regularity of the functions a_{ij} . This theory applied to the equation $Lu_k = 0$ leads to $||u_k||_{C^{\alpha}(\overline{B}_{1/2})} \leq C||u_k||_{L^{\infty}(B_1)}$, where $0 < \alpha < 1$ and C are universal constants. Thus, we have the $C^{1,\alpha}$ estimate for u:

$$\|u\|_{C^{1,\alpha}(\overline{B}_{1/2})} \le C \|u\|_{C^{1}(\overline{B}_{1})}.$$
(3.1)

This a priori estimate may be improved in the following way. Let F be uniformly elliptic and $u \in C(B_1)$ be a viscosity solution of $F(D^2u) = 0$ in B_1 . Then there exist universal constants $0 < \alpha < 1$ and C such that $u \in C^{1,\alpha}(B_1)$ and

$$||u||_{C^{1,\alpha}(\overline{B}_{1/2})} \leq C\{||u||_{L^{\infty}(B_1)} + |F(0)|\}.$$

A direct proof of this result, which does not rely on existence results and which applies to viscosity solutions and to nondifferentiable functionals F (recall that Pucci's, Bellman's, and Isaacs' equations are not differentiable in general), was found by the author and Caffarelli in [CC1]. This paper also contains a direct proof of the $C^{1,1}$ regularity of viscosity solutions when the operator F is convex —a case that we discuss next.

When the operator F is concave or convex, Evans [E] and Krylov [K] established in 1982 that classical solutions of $F(D^2u) = 0$ satisfy the $C^{2,\alpha}$ estimate

$$\|u\|_{C^{2,\alpha}(\overline{B}_{1/2})} \le C \{\|u\|_{L^{\infty}(B_{1})} + |F(0)|\},\$$

where $0 < \alpha < 1$ and C are universal constants. Recall that Pucci's equations are either convex or concave, and that Bellman's equations are convex. Recall that convex elliptic equations $F(D^2u) = 0$ get transformed into concave ones by writing them as $-F(-D^2v) = 0$, where v = -u. The proof of this $C^{2,\alpha}$ estimate is based on a delicate application of the Krylov-Safonov weak Harnack inequality to $C - u_{kk}$, where u_{kk} denotes a pure second derivative of u. Assuming that F is concave and differentiating $F(D^2u) = 0$ twice with respect to x_k , we have

$$0 = F_{ij}(D^2u(x))\partial_{ij}u_{kk} + F_{ij,rs}(D^2u(x))(\partial_{ij}u_k)(\partial_{rs}u_k)$$

$$\leq F_{ij}(D^2u(x))\partial_{ij}u_{kk}$$

(by the concavity of F), and hence every u_{kk} is a subsolution of a linear equation. Roughly speaking, this allows to control D^2u by above. Once this is accomplished, the ellipticity of equation $F(D^2u) = 0$ controls D^2u by below.

As said, the Evans-Krylov theory establishes interior $C^{2,\alpha}$ estimates for $F(D^2u) = 0$ when F is either convex or concave. More generally, the same proofs of the theory apply when $\{M \in S : F(M) = 0\}$ is a convex hypersurface in the space S of $n \times n$ symmetric matrices —that is, when $\{M \in S : F(M) = 0\}$ is the boundary of a convex open set. Note that this does not hold for our simplest model, the 3-operator (1.3).

Under no convexity or concavity assumption, the work [Cf] by Caffarelli (see also [CC3]) established interior $C^{2,\alpha}$ estimates and $C^{2,\alpha}$ regularity for viscosity solutions of equations of the form $F(D^2u, x) = f(x)$ assuming that the dependence of F and f on x is C^{α} and that, for every fixed x_0 , the Dirichlet problem for $F(D^2u(x), x_0) = f(x_0)$ has classical solutions and interior $C^{2,\overline{\alpha}}$ estimates, where $0 < \alpha < \overline{\alpha}$. [Cf] also establishes a similar $W^{2,p}$ regularity result. These are fully nonlinear extensions of the linear Schauder and Calderón-Zygmund theories described at the beginning of this section. By means of Caffarelli's theory, we can reduce our study to operators F(M, x) = F(M) with constant coefficients —such as (1.3) and (1.5) defined by operators of the form (1.4).

4 Regularity for a class of nonconvex equations

By the comments in the previous paragraph, regularity for equations $F(D^2u, x) = f(x)$ follows once it has been established for those of the form $F(D^2u) = c$, with c a constant, that we can write as $F(D^2u) = 0$ after subtracting a constant to F.

4.1 The class of operators and the main results

In [CC2], we consider the class of operators F of the following form:

$$\begin{cases} F(M) = \min\{F^{\cap}(M), F^{\cup}(M)\} \text{ for all } M \in \mathcal{S}, \\ F(0) = 0, F^{\cap} \text{ and } F^{\cup} \text{ are uniformly elliptic,} \\ F^{\cap} \text{ is concave and } F^{\cup} \text{ is convex.} \end{cases}$$
(4.1)

Since (2.1) holds for both F^{\cap} and F^{\cup} , it also holds for F. Hence, F is uniformly elliptic. We assume F(0) = 0 only for convenience. Indeed, after an appropriate translation in S (which amounts to subtract a quadratic polynomial to u), every operator F can be assumed to satisfy F(0) = 0 (see Remark 1 in Section 6.2 of [CC3]). Moreover, the concavity of F^{\cap} and the convexity of F^{\cup} are preserved under translations in S.

We do not require F^{\cap} and F^{\cup} to be of class C^1 . In this way, our results apply to the equations of Isaacs type described above. Note also that the class (4.1) of operators F includes

all concave operators. Indeed, if F^{\cap} is concave then there is an affine, uniformly elliptic operator L with constant coefficients such that $F^{\cap} \leq L$ in S. Take then $F^{\cup} = L$, so that $F = F^{\cap}$.

Our main result is the following interior $C^{2,\alpha}$ a priori estimate for classical solutions of $F(D^2u) = 0$ in $B_1 \subset \mathbb{R}^n$, where $0 < \alpha < 1$ is a (small) exponent depending only on n and on the ellipticity constants λ and Λ .

Theorem 4.1 ([CC2]). Let $u \in C^2(B_1)$ be a solution of $F(D^2u) = 0$ in $B_1 \subset \mathbb{R}^n$, where F is of the form (4.1). Then $u \in C^{2,\alpha}(\overline{B}_{1/2})$ and

$$\|u\|_{C^{2,\alpha}(\overline{B}_{1/2})} \le C \|u\|_{L^{\infty}(B_1)} , \qquad (4.2)$$

where $0 < \alpha < 1$ and C are universal constants.

The proof of Theorem 4.1 requires $u \in C^2$ and does not apply to viscosity solutions. We need $u \in C^2$ to make sense of Proposition 4.4 below, which states that $F^{\cup}(D^2u)$ is in the class of viscosity subsolutions. It would be interesting to adapt the proof to viscosity solutions u —for instance, by approximating $F^{\cup}(D^2u)$ in the spirit of the regularity theory for convex operators developed by the author and Caffarelli in [CC1] (see also Section 6.2 of [CC3]).

Recall that the Dirichlet problem associated to every uniformly elliptic operator F always admits a unique viscosity solution. However, the $C^{2,\alpha}$ estimate of Theorem 4.1 requires the solution to be C^2 . Hence, to complete our theory we need to show that $F(D^2u) = 0$ admits C^2 solutions whenever F is of the form (4.1). This is given by the following:

Theorem 4.2 ([CC2]). Let F be of the form (4.1). Then, there exists a universal constant $\overline{\alpha} \in (0,1)$ such that for every $\alpha \in (0,\overline{\alpha})$, $f \in C^{\alpha}(\overline{B}_1)$ and $\varphi \in C(\partial B_1)$, the problem

$$\begin{cases} F(D^2u) = f(x) & \text{in } B_1 \\ u = \varphi(x) & \text{on } \partial B_2 \end{cases}$$

admits a unique solution $u \in C^{2,\alpha}(B_1) \cap C(\overline{B}_1)$. Moreover, we have that

$$\|u\|_{C^{2,\alpha}(\overline{B}_{1/2})} \leq C_{\alpha} \Big\{ \|f\|_{C^{\alpha}(\overline{B}_{1})} + \|\varphi\|_{L^{\infty}(\partial B_{1})} \Big\}$$

for some constant C_{α} depending only on n, λ , Λ and α .

The existence of classical solutions, Theorem 4.2, and the a priori estimate of Theorem 4.1 lead immediately to the $C^{2,\alpha}$ regularity of every viscosity solution of $F(D^2u) = f(x) \in C^{\alpha}$, when $0 < \alpha < \overline{\alpha}$. Furthermore, we also have $W^{2,p}$ regularity for $n \leq p < \infty$ in case that $f \in L^p$. The precise statement is the following:

Corollary 4.3 ([CC2]). Let $u \in C(B_1)$ be a viscosity solution of $F(D^2u) = f(x)$ in B_1 , where f is a continuous function in B_1 and F is an operator of the form (4.1). Then:

(i) If $f \in C^{\alpha}(B_1)$ for some $0 < \alpha < \overline{\alpha}$, where $\overline{\alpha} \in (0,1)$ is a universal constant, then $u \in C^{2,\alpha}(B_1)$ and

$$\|u\|_{C^{2,\alpha}(\overline{B}_{1/2})} \leq C_{\alpha}\{\|u\|_{L^{\infty}(B_{1})} + \|f\|_{C^{\alpha}(\overline{B}_{3/4})}\}$$

for some constant C_{α} depending only on n, λ , Λ and α . (ii) If $f \in L^{p}(B_{1})$ and $n \leq p < \infty$, then $u \in W^{2,p}(B_{1/2})$ and

$$\|u\|_{W^{2,p}(B_{1/2})} \leq C_p\{\|u\|_{L^{\infty}(B_1)} + \|f\|_{L^p(B_1)}\},\$$

for some constant C_p depending only on n, λ , Λ and p.

4.2 Motivation: the 2- and 3-operators

A first hint towards the validity of second derivative estimates for our class of operators came up when we realized that, for the 3-operator (1.3), $H^2 = W^{2,2}$ estimates followed easily from some variational tools used by Brezis and Evans in [BE]. Let us explain these interesting ideas, even that we do not use them in [CC2]. Paper [BE] (written in 1979, that is, before the development of the Evans-Krylov theory) established $C^{2,\alpha}$ estimates for the 2-operator convex equation

$$\max\{L_1 u - f_1(x), L_2 u - f_2(x)\} = 0.$$
(4.3)

For simplicity let us take $L_k = a_{ij}^k \partial_{ij}$ to have constant coefficients. The first step in [BE] is to obtain an H^2 estimate using Sobolevsky's inequality, which states that

$$\|u\|_{H^{2}(B_{1})}^{2} \leq C\left\{\int_{B_{1}} L_{1}u L_{2}u \, dx + \|u\|_{L^{2}(B_{1})}^{2}\right\}$$

$$(4.4)$$

for all $u \in H^2(B_1) \cap H^1_0(B_1)$, where C is a universal constant. Then, for a sufficiently nice solution u of (4.3) in B_1 , we have $(L_1u - f_1)(L_2u - f_2) \equiv 0$ and hence $L_1uL_2u = f_1L_2u + f_2L_1u - f_1f_2$. Then, if $u \equiv 0$ on ∂B_1 , the previous equality, (4.4) and Cauchy-Schwarz lead to $||u||_{H^2} \leq C\{||u||_{L^2} + ||f_1||_{L^2} + ||f_2||_{L^2}\}.$

We realized that the same idea works for the 3-operator equation

$$\min\{L_1u, \max\{L_2u, L_3u\}\} = f(x) , \qquad (4.5)$$

among other equations. Indeed, we have $L_2u-f \leq \max\{L_2u-f, L_3u-f\}$ and, since $L_1u-f \geq 0$, we deduce $(L_1u-f)(L_2u-f) \leq (L_1u-f)\max\{L_2u-f, L_3u-f\} \equiv 0$. Hence $L_1uL_2u \leq f(L_1u+L_2u)-f^2$, that combined with Sobolevsky's inequality (4.4) leads to $||u||_{H^2} \leq C\{||u||_{L^2}+||f||_{L^2}\}$ for every solution of (4.5) with $u \equiv 0$ on ∂B_1 .

We do not use this tool in [CC2]. Instead, the proof of Theorem 4.1 is based in the following fact of nonvariational nature. We observe that if $F(D^2u) = 0$ in B_1 and F is of the form (4.1), then $F^{\cup}(D^2u)$ belongs to the class \underline{S} of subsolutions in B_1 .

Let us prove the previous assertion in the easiest situation, that is, when u is a classical solution of (1.3):

$$F_3(D^2 u) = \min \{ \Delta u, \max\{L_2 u, L_3 u\} \} = 0 \quad \text{in } B_1 ,$$

and L_k are second order operators with constant coefficients and where we have taken $L_1 = \Delta$. Then, it is elementary to show that the continuous function

$$F^{\cup}(D^2u) := \max\{L_2u, L_3u\}$$

is subharmonic in B_1 . Indeed, note first that $F^{\cup}(D^2u) \ge 0$ in B_1 . Hence, it suffices to show that $F^{\cup}(D^2u)$ is subharmonic in the open set $\Omega = \{F^{\cup}(D^2u) > 0\}$. But $\Delta u = 0$ in Ω and, therefore, L_2u and L_3u are also harmonic in Ω . It follows that $F^{\cup}(D^2u) = \max\{L_2u, L_3u\}$ is subharmonic in Ω .

4.3 Main lemmas and ideas of proofs

The proof of Theorem 4.1 uses two main ingredients. The first one is stated as follows.

Proposition 4.4. Let $u \in C^2(B_1)$ satisfy $F(D^2u) = 0$ in B_1 , where F is of the form (4.1). Then

$$0 \leq F^{\cup}(D^2u) \in \underline{S}(\lambda/n,\Lambda)$$
 in B_1

It is remarkable that this leads immediately to interior $W^{2,p}$ estimates for every $p < \infty$. Indeed, since $0 \le F^{\cup}(D^2u)$ is a subsolution in B_1 , a local version of the ABP estimate gives an interior L^{∞} bound for $F^{\cup}(D^2u)$. In particular, $F^{\cup}(D^2u) \in L^p$ in the interior, for all $p < \infty$. Then, since F^{\cup} is a convex operator, the fully nonlinear Calderón-Zygmund theory proved by Caffarelli [Cf] leads to $W^{2,p}$ estimates for u (for all $p < \infty$).

The second important ingredient in the proof of Theorem 4.1 is the following. It applies to more general equations than those of the form (4.1). Its statement assumes that u is a solution of $G(D^2u) = 0$ in B_1 , where G is uniformly elliptic and G(0) = 0, and that H is a uniformly elliptic operator with $C^{2,\alpha}$ estimates. The conclusion is that if G and H coincide in a ball in S centered at 0 of sufficiently large radius compared to $||u||_{L^{\infty}(B_1)}$, then $H(D^2u) = 0$ in the smaller ball $B_{1/2}$.

Applied to our class of operators, the results reads as follows:

Proposition 4.5. Let $u \in C^2(B_1)$ satisfy $F(D^2u) = 0$ in B_1 , where F is of the form (4.1). Then, there exists a universal constant $c_f > 0$ such that

if
$$F^{\cup}(0) > c_f \|u\|_{L^{\infty}(B_1)}$$
 then $F^{\cap}(D^2 u) = 0$ in $B_{1/2}$.

Recall that, by assumption, $F(0) = \min(F^{\cap}(0), F^{\cup}(0)) = 0$. The previous proposition gives that if $F^{\cup}(0)$ is positive and too large compared to $||u||_{L^{\infty}(B_1)}$, then we have $F^{\cap}(D^2u) = 0$ in $B_{1/2}$ —that is, only F^{\cap} acts on D^2u in the smaller ball $B_{1/2}$, in which case regularity is automatic since F^{\cap} is concave.

After translations in S, this result allows to control $F^{\cup}(D^2P)$ (and not only $F^{\cup}(0)$) for every quadratic polynomial P with $F(D^2P) = 0$ —unless $F^{\cap}(D^2u) = 0$ in $B_{1/2}$. This will be crucial when deriving $C^{2,\alpha}$ estimates through approximations of u by quadratic polynomials P, that we describe next.

The proof of Theorem 4.1 uses the two previous propositions and the $C^{2,\alpha}$ iteration scheme developed in [Cf]. The goal is to approximate u by polynomials of degree two in $L^{\infty}(B_{\mu^{k}}(0))$ norm, where $0 < \mu < 1$, and to do it better and better as k increases. For this, we set $S_{0} := \sup_{B_{1/2}} F^{\cup}(D^{2}u)$ and we distinguish two cases. The first case is when most points x, in measure, have $F^{\cup}(D^{2}u(x))$ close to S_{0} . Then we can approximate u by a solution of $F^{\cup}(D^{2}v) =$ S_{0} , which is $C^{2,\alpha}$ at the origin since F^{\cup} is convex. In the other case, the weak Harnack inequality of Krylov-Safonov, applied to the supersolution $S_{0} - F^{\cup}(D^{2}u) \geq 0$, forces the supremum of $F^{\cup}(D^{2}u)$ in a smaller ball to decrease by a factor (with respect to S_{0}). Heuristically, if this second case happens "often" as $k \to \infty$, then $F^{\cup}(D^{2}u)$ is concentrating near $\{F^{\cup} = 0\}$, and hence u can be approximated by the quadratic part of a solution of $F^{\cup}(D^{2}v) = 0$.

References

[BE] Brezis, H. and Evans, L.C., A variational inequality approach to the Bellman-Dirichlet equation for two elliptic operators, Arch. Rational Mech. Anal. 71 (1979), 1-13.

- [C] Cabré, X., Topics in regularity and qualitative properties of solutions of nonlinear elliptic equations, Discrete and Continuous Dynamical Systems 8 (2002), 331-359.
- [CC1] Cabré, X. and Caffarelli, L.A., Regularity for viscosity solutions of fully nonlinear equations $F(D^2u) = 0$, Topological Meth. Nonlinear Anal. 6 (1995), 31-48.
- [CC2] Cabré, X. and Caffarelli, L.A., Interior $C^{2,\alpha}$ regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Math. Pures Appl. 82 (2003), 573-612.
- [Cf] Caffarelli, L.A., Interior a priori estimates for solutions of fully nonlinear equations, Annals Math. 130 (1989), 189–213.
- [CC3] Caffarelli, L.A. and Cabré, X., Fully Nonlinear Elliptic Equations, Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995.
- [E] Evans, L.C., Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 25 (1982), 333-363.
- [FS] Fleming, W.H. and Souganidis, P.E., On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ. Math. J. 38 (1989), 293-314.
- [GT] Gilbarg, D. and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2nd edition, 1983.
- [K] Krylov, N.V., Boundedly inhomogeneous elliptic and parabolic equations, Izvestia Akad. Nauk. SSSR 46 (1982), 487-523 (Russian). English translation in Math. USSR Izv. 20 (1983), 459-492.

XAVIER CABRÉ

ICREA AND UNIVERSITAT POLITÈCNICA DE CATALUNYA DEPARTAMENT DE MATEMÀTICA APLICADA 1 DIAGONAL 647. 08028 BARCELONA. SPAIN xavier.cabre@upc.edu