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1 Introduction

This note is concerned with the $C^{2,\alpha}$ regularity theory for fully nonlinear elliptic equations.
First, we briefly present the well established theory for convex equations (see [CC3] and [C]
for, respectively, a fully detailed exposition and a survey). Second, we describe a more recent
result and method by Cabr\’e and Caffarelli [CC2] on $C^{2,\alpha}$ regularity for a class of nonconvex
equations of Isaacs type.

In 1982 Evans [E] and Krylov [K] proved interior $C^{2,\alpha}$ estimates for fuly nonlinear elliptic
equations $F(D^{2}u, Du, u, x)=0,$ $x\in\Omega\subset \mathrm{R}^{n}$ , under the assumption that $F$ is either a convex
or a concave function of $D^{2}u$ . These works relied on the Harnack inequality for linear equations
in nondivergence form established by Krylov and Safonov in 1979. The Evans-Krylov estimate,
together with some extensions due to Caffarelli, Safonov, and Trudinger, led to interior $C^{2,\alpha}$

regularity results for Bellman’s equation,

$\sup_{\beta\in B}\{L_{\beta}u(x)-f_{\beta}(x)\}=0$
, (1.1)

associated to a family $L_{\beta}=a_{tj}^{\beta}(x)\partial_{1j}$ of linear uniformly elliptic operators (see [CC3], [GT]).
Equation (1.1), which is convex in $D^{2}u$ , is the dynamic programming equation for the optimal
cost in some stochastic control problems.

Since then, the validity of interior $C^{2,\alpha}$ estimates for nonconvex fully nonlinear uniformly
elliptic equations $F(D^{2}u)=0$ , in space dimension $n\geq 3$ , has been a challenging open question.
Examples of such nonconvex equations appear in stochastic control theory and are called Isaacs
equations. They are of the form

$\inf_{\gamma\in \mathcal{G}}\sup_{\beta\in B}\{L_{\beta\gamma}u(x)-f_{\beta\gamma}(x)\}=0$
, (1.2)

where $L_{\beta\gamma}=a_{ij}^{\beta\gamma}(x)\partial_{ij}$ is a family of elliptic operators, all of them with same ellipticity con-
stants. Isaacs equation (1.2) is the dynamic programming equation for the value of some
two-player stochastic differential ganies (see [FS]). At the same time, every uniformly elliptic
equation $F(D^{2}u, x)=0$ can be written in the form (1.2), for some family $L_{\beta\gamma}=a_{j}^{\beta\gamma}.\cdot\partial_{ij}$ of
operators with constant coefficients and some functions $f_{\beta\gamma}$ (see Remark 2.1 below).

The best estimates known to be valid for all uniformly elliptic equations $F(D^{2}\mathrm{u})=0$ are
$C^{1,\alpha}$ and $W^{3,\delta}$ estimates (in particular, also $W^{2,\delta}$), where $\alpha$ and 6 are (small) constants that
belong to $(0,1)$ and depend on the ellipticity constants of $F$ . To our knowledge, before our
work [CC2] described below, no interior $C^{2,\alpha}$ estimates were available for a nonconvex Isaacs
operator.
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In [CC2] we establish the interior $C^{2,\alpha}$ regularity of viscosity solutions, and in particular
the existence of classical solutions, for a class of nonconvex fully nonlinear elliptic equations
$F(D^{2}u, x)=f(x)$ . Our assumption is that; for every $x\in B_{1}\subset \mathbb{R}^{n},$ $F(\cdot, x)$ is the minimum of
a concave operator and a convex operator of $D^{2}u$ (where these two operators may depend on
the point $x$). We therefore include the “simplest” nonconvex Isaacs equation

$F_{3}(D^{2}u):= \min\{L_{1}u, \max\{L_{2}u, L_{3}u\}\}=0$ , (1.3)

that we call the $3\neg \mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}$ equation and that motivated our work (see subsection 4.2 below).
Here

$L_{k}u=a_{ij}^{k}\partial_{ij}u+c_{k}$ , (1.4)
where $c_{k}=L_{k}0\in \mathbb{R}$, are three affine elliptic operators with constant coefficients $a_{ij}^{k}$ . More
generally, our results apply to equations of the form

$F(D^{2}u):= \min\{\inf_{k\in \mathcal{K}}L_{k}u,\sup_{l\in \mathcal{L}}L_{l}u\}=0$ , (1.5)

where $\mathcal{K}$ and $\mathcal{L}$ are arbitrary sets, and $L_{k},$ $L_{l}$ are operators of the form (1.4), all of them with
same ellipticity constants and with $\{c_{k}\},$ $\{c_{l}\}$ bounded.

2 Fully nonlinear elliptic operators

Throughout this note and [CC2], we follow the terminology and notation of [CC3]: We say
that an operator $F$ : $S\cross\Omegaarrow \mathbb{R}$ , where St $\subset \mathrm{R}^{n}$ is a domain, is uniformly elliptic if there exist
constants $0<\lambda\leq$ A (called ellipticity constants) such that

$\lambda||N||\leq F(M+N, x)-F(M, x)\leq\Lambda||N||$ $\forall M\in S$ $\forall N\geq 0$ $\forall x\in\Omega$ . (2.1)

Here, $S$ is the space of $n\mathrm{x}n$ symmetric matrices, $N\geq 0$ means that $N\in S$ is nonnegative
definite and, for $M\in S,$ $||M||:= \sup_{|z|\leq 1}$ I $Mz|$ . We say that a constant $C$ is universal when it
depends only on $n,$

$\lambda$ and A.
The simplest examples of uniformly elliptic operators are the affine operators $Lu=a_{1j}\partial_{ij}u+c$

as in (1.4). The coefficients could also depend on $x$ (i.e., $a_{ij}=a_{ij}(x)$ ), in which case uniform
ellipticity is guaranteed by having uniform lower and upper positive bounds in $\Omega$ for the eigen-
values of the symmetric matrices $a_{1j}(x)$ .

Another useful class is given by Pucci’s extremal operators. Pucci’s maximal operator is
defined by

$\mathcal{M}^{+}(M)=\mathcal{M}^{+}(M, \lambda, \Lambda):=\Lambda\sum_{\epsilon_{i}>0}e_{i}+\lambda\sum_{\epsilon.<0}e_{i}=\sup_{A\in A_{\lambda\Lambda}},L_{A}M=_{A}\max_{\in A_{\lambda,\mathrm{A}}}L_{A}M$ ,

where $e_{i}=e_{i}(M)$ are the eigenvalues of $M\in S,$ $A\in A_{\lambda,\Lambda}$ means that $A$ is a symmetric matrix
whose eigenvalues belong to $[\lambda, \Lambda]$ , and $L_{A}M=a_{1j}m;_{j}=\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(AM)$ (see Section 2.2 of [CC3]).

Later we will use the class $\underline{S}$ of subsolutions. We recall that $\underline{S}=\underline{S}(\lambda, \Lambda)$ in $B_{1}$ is formed
by those continuous functions $u$ in $B_{1}$ such that $\mathcal{M}^{+}(D^{2}u, \lambda, \Lambda)\geq 0$ in the viscosity sense in
$B_{1}$ (see Section 2.1 of [CC3] for the definition of the viscosity sense). Similarly, one defines the
class $\overline{S}$ of supersolutions through the inequality $\mathcal{M}^{-}(D^{2}u)\leq 0$ , where $\mathcal{M}^{-}(M)=-\mathcal{M}^{+}(-M)$

is Pucci’s minimal operator. The class $S$ of viscosity solutions is defined by $S=\underline{S}\cap\overline{S}$ .
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More generally, given a continuous function $f$ in $B_{1}$ , the class $\underline{S}(f)=\underline{S}(\lambda, \Lambda, f)$ contains
those continuous functions $u$ such that $\mathcal{M}^{+}(D^{2}u, \lambda, \Lambda)\geq f(x)$ in the viscosity sense in $B_{1}$ .
Similarly, one defines $\overline{S}(f)$ and $S(f)$ .

Finally, we recall that Isaacs equations (1.2) cover all possible fully nonlinear elliptic equa-
tions.

Remark 2.1. Let $F(\cdot, x)$ be uniformly elliptic, with ellipticity constants $0<\lambda\leq\Lambda$ . Then, for
$M$ and $N$ in $S$ ,

$F(M, x)-F(N, x)\leq\Lambda||(M-N)^{+}||-\lambda||(M-N)^{-}||$

$\leq \mathcal{M}^{+}(M-N, \lambda/n, \Lambda)=\max L_{A}(M-N)A\in A$ ’

where $A=A_{\lambda/n,\Lambda}$ (see Chapter 2 of [CC3]). Since there is equality when $N=M$ we deduce
that, for all $M$ and $x$ ,

$F(M, x)= \min_{N\in S}\max_{A}\{L_{A}(M-N)A\in+F(N, x)\}$

$= \min_{N\in SA}\max_{\in A}\{L_{A}M+(F(N, x)-L_{A}N)\}$ .

This is an operator of Isaacs type (1.2) associated to a family $\{L_{A}\}$ of linear operators with
constant coefficients.

3 Regularity theory for convex equations

For a solution of a second order elliptic equation one expects, in general, to control the second
derivatives of the solution by the oscillation of the solution itself. More precisely, the following
$C^{2,\alpha}$ and $W^{2,\mathrm{p}}$ interior a priori estimates hold. Let $u$ be a solution of a linear uniformly elliptic
equation of the form

$a_{ij}(x)\partial_{ij}u=f(x)$ in $B_{1}\subset \mathrm{R}^{n}$

Then we have:

(a) Schauder’s estimates: if $a_{*j}$
. and $f$ belong to $C^{\alpha}(\overline{B}_{1})$ , for some $0<$ a $<1$ , then $\prime u\in$

$C^{2,\alpha}(\overline{B}_{1/2})$ and $||u||_{C^{2,\propto}(\overline{B}_{\iota/2})}\leq C(||u||_{L\infty(B_{1})}+||f||_{C^{\alpha}\Phi_{1})})$ , where $C$ depends on the ellip-
ticity constants and the $C^{\alpha}(\overline{B}_{1})$-norm of $a_{ij;}$ see Chapter 6 of [GT].

(b) Calder\’on-Zygmund estimates: if $a_{ij}\in C(\overline{B}_{1})$ and $f\in L^{p}(B_{1})$ , for some $1<p<\infty$ , then
$u\in W^{2,p}(B_{1/2})$ and $||u||_{W^{2,\mathrm{p}}(B_{1/2})}\leq C(||u||_{L}\infty(B_{1})+||f||_{L^{\mathrm{p}}(B_{1})})$, where $C$ depends on the
ellipticity constants and the modulus of continuity of the coefficients $a_{ij;}$ see Chapter 9 of
[GT].

These statements should be understood as regularity results for appropriate linear small
perturbations of the Laplacian. Indeed, these estimates are proven by regarding the equation
$a_{1j}(x)\partial_{1j}u=f(x)$ as

$a_{ij}(x_{0})\partial_{ij}u=[a_{ij}(x_{0})-a_{1j}(x)]\partial_{1j}u+f(x)$ .
One then applies to this equation the corresponding estimates for the constant coefficients
operator $a_{\dot{\iota}j}(x_{0})\partial_{1j}$ (that one can think of as the Laplacian), observing that the factor in the
right hand side $a_{ij}(x_{0})-a_{ij}(x)$ is small (locally around $x_{0}$ ) in some appropriate norm, due to the
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regularity assumptions made on $a_{ij}$ . Thus, the key point is to prove $C^{2,\alpha}$ and $W^{2,p}$ estimates
for Poisson’s equation $\Delta u=f(x)$ .

The goal is to extend these regularity theories to fully nonlinear elliptic equations of the form
$F(D^{2}u, x)=f(x)$ . The previous discussion shows that one should start considering the case
of equations with constant “coefficients” $F(D^{2}u)=f(x)$ (here, we think of $F(D^{2}u)$ as being
equal to $F(D^{2}u(x), x_{0})$ for a fixed $x_{0}$ ). In fact, the key ideas already appear by considering the
simpler equation

$F(D^{2}u)=0$ .
Assume that $F\in C^{1}$ and that $u\in C^{3}(\overline{B}_{1})$ satisfies $F(D^{2}u)=0$ . Differentiate this equation

with respect to a direction $x_{k}$ . Writing $u_{k}=\partial_{k}u$, we have

$F_{1j}(D^{2}u(x))\partial_{\mathrm{S}j}u_{k}=0$ in $B_{1}$ ,

where $F_{ij}$ denotes the first partial derivative of $F$ with respect to its ij-th entry. This can be
regarded as a linear equation $Lu_{k}=0$ for the function $u_{k}$ , where $L=a_{ij}(x)\partial_{1j}$ and $a_{ij}(x)=$

$F_{ij}(D^{2}u(x))$ . The ellipticity hypothesis (2.1) leads to the uniform ellipticity of $L$ . Note that a
regularity hypothesis on the coefficients $a_{ij}(x)$ would mean to make a regularity assumption on
the second derivatives of $u$ –which is our goal and hence we need to avoid. The tool that one
uses is the Krylov-Safonov Harnack inequality and its corollary on H\"older continuity of solutions
of uniformly elliptic equations in nondivergence form with measurable coefficients (see [CC3]).
The key point is that the Krylov-Safonov theory makes no assumption on the regularity of the
functions $a_{ij}$ . This theory applied to the equation $Lu_{k}=0\mathrm{l}\mathrm{e}\mathrm{a}\mathrm{d}\mathrm{s}$ to 11 $u_{k}||_{C^{\alpha}(\overline{B}_{1/2})}\leq C||u_{k}||_{L}\infty(B_{f})$ ,
where $0<\alpha<1$ and $C$ are universal constants. Thus, we have the $C^{1,\alpha}$ estimate for $u$ :

$||u||_{C^{1,\alpha}(\overline{B}_{\iota/2})}\leq C||u||_{C^{1}(\overline{B}_{1})}$ . (3.1)

This a priori estimate may be improved in the following way. Let $F$ be uniformly elliptic and
$u\in C(B_{1})$ be a viscosity solution of $F(D^{2}u)=0$ in $B_{1}$ . Then there exist universal constants
$0<\alpha<1$ and $C$ such that $u\in C^{1,\alpha}(B_{1})$ and

$||u||_{C^{1,\mathrm{Q}}(\overline{B}_{1/2})}\leq C\{||u||_{L(B_{1})}\infty.+|F(0)|\}$ .
A direct proof of this result, which does not rely on existence results and which applies to

viscosity solutions and to nondifferentiable functionals $F$ (recall that Pucci’s, Bellman’s, and
Isaacs’ equations are not differentiable in general), was found by the author and Caffarelli in
[CC1]. This paper also contains a direct proof of the $C^{1,1}$ regularity of viscosity solutions when
the operator $F$ is convex–a case that we discuss next.

When the operator $F$ is concave or convex, Evans [E] and Krylov [K] established in 1982
that classical solutions of $F(D^{2}u)=0$ satisfy the $C^{2,\alpha}$ estimate

$||u||_{C^{2,\alpha}(\mathrm{F}_{1/2})}\leq C\{||u||_{L\infty(B_{1})}+|F(0)|\}$ ,

where $0<\alpha<1$ and $C$ are universal constants. Recall that Pucci’s equations are either convex
or concave, and that Bellman’s equations are convex. Recall that convex elliptic equations
$F(D^{2}u)=0$ get transformed into concave ones by writing them as $-F(-D^{2}v)=0$ , where
$v=-u$.
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The proof of this $C^{2,\alpha}$ estimate is based on a delicate application of the Krylov-Safonov weak
Harnack inequality to $C-u_{kk}$ , where $u_{kk}$ denotes a pure second derivative of $u$ . Assuming that
$F$ is concave and differentiating $F(D^{2}u)=0$ twice with respect to $x_{k}$ , we have

$0=$ $F_{ij}(D^{2}u(x))\partial_{ij}u_{kk}+F_{ij,rs}(D^{2}u(x))(\partial_{ij}u_{k})(\partial_{rs}u_{k})$

$\leq$ $F_{ij}(D^{2}u(x))\partial_{ij}u_{kk}$

(by the concavity of $F$), and hence every $u_{kk}$ is a subsolution of a linear equation. Roughly
speaking, this allows to control $D^{2}u$ by above. Once this is acomplished, the ellipticity of
equation $F(D^{2}u)=0$ controls $D^{2}u$ by below.

As said, the Evans-Krylov theory establishes interior $C^{2,\alpha}$ estimates for $F(D^{2}u)=0$ when
$F$ is either convex or concave. More generally, the same proofs of the theory apply when
$\{M\in S : F(M)=0\}$ is a convex hypersurface in the space $S$ of $n\cross n$ symmetric matrices
–that is, when $\{M\in S : F(M)=0\}$ is the boundary of a convex open set. Note that this
does not hold for our simplest model, the 3-operator (1.3).

Under no convexity or concavity assumption, the work [$\mathrm{C}\mathrm{Q}$ by Caffarelli (see also [CC3])
established interior $C^{2,\alpha}$ estimates $\mathrm{a}\mathrm{n}\mathrm{Q}C^{2,\alpha}$ regularity for viscosity solutions of equations of
the form $F(D^{2}u, x)=f(x)$ assuming that the dependence of $F$ and $f$ on $x$ is $C^{\alpha}$ and that,
for every fixed $x_{0}$ , the Dirichlet problem for $F(D^{2}u(x), x_{0})=f(x_{0})$ has classical solutions and
interior $C^{2,\overline{\alpha}}$ estimates, where $0<\alpha<\overline{\alpha}$ . [Cf] also establishes a similar $W^{2,p}$ regularity result.
These are fully nonlinear extensions of the linear Schauder and Calder\’on-Zygmund theories
described at the beginning of this section. By means of Caffarelli’s theory, we can reduce our
study to operators $F(M, x)=F(M)$ with constant coefficients –such as (1.3) and (1.5) defined
by operators of the form (1.4).

4 Regularity for a class of nonconvex equations

By the comments in the previous paragraph, regularity for equations $F(D^{2}u, x)=f(x)$ follows
once it has been established for those of the form $F(D^{2}u)=c$ , with $c$ a constant, that we can
write as $F(D^{2}u)=0$ after subtracting a constant to $F$ .

4.1 The class of operators and the main result$s$

In [CC2], we consider the class of operators $F$ of the following form:

$\{$

$F(M)= \min\{F^{\cap}(M), F^{\cup}(M)\}$ for all $M\in S$ ,
$F(\mathrm{O})=0,$ $p\cap$ and $F^{\cup}$ are uniformly elliptic,
$F^{\cap}$ is concave and $F^{\cup}$ is convex.

(4.1)

Since (2.1) holds for both $F^{\cap}$ and $F^{\cup}$ , it also holds for $F$ . Hence, $F$ is uniformly elliptic. We
assume $F(\mathrm{O})=0$ only for convenience. Indeed, after an appropriate translation in $S$ (which
amounts to subtract a quadratic polynomial to $u$), every operator $F$ can be assumed to satisfy
$F(\mathrm{O})=0$ (see Remark 1 in Section 6.2 of [CC3]). Moreover, the concavity of $F^{\cap}$ and the
convexity of $F^{\cup}$ are preserved under translations in $S$ .

We do not require $F^{\cap}$ and $F^{\cup}$ to be of class $C^{1}$ . In this way, our results apply to the
equations of Isaacs type described above. Note also that the class (4.1) of operators $F$ includes
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all concave operators. Indeed, if $p\cap$ is concave then there is an affine, uniformly elliptic operator
$L$ with constant coefficienptts such that $F^{\cap}\leq L$ in $S$ . Take then $F^{\cup}=L$ , so that $F=F^{\cap}$ .

Our main $\mathrm{r}\mathrm{e}8\mathrm{u}\mathrm{l}\mathrm{t}$ is the following interior $C^{2,\alpha}$ a priori estimate for classical solutions of
$F(D^{2}u)=0$ in $B_{1}\subset \mathrm{R}^{n}$ , where $0<\alpha<1$ is a (small) exponent depending only on $n$ and on
the ellipticity constants $\lambda$ and A.

Theorem 4.1 $([\mathrm{C}\mathrm{C}2])$ . Let $u\in C^{2}(B_{1})$ be a solution of $F(D^{2}u)=0$ in $B_{1}\subset \mathrm{R}^{n}$ , where $Fi\mathit{8}$

of the form (4.1). Then $u\in C^{2,\alpha}(\overline{B}_{1/2})$ and

$||u||_{C^{2,\alpha(\Sigma_{1/2})}}\leq C||u||_{L}\infty(B_{1})$ , (4.2)

where $0<\alpha<1$ and $C$ are universal constants.

The proof of Theorem 4.1 requires $u\in C^{2}$ and does not apply to viscosity solutions. We need
$u\in C^{2}$ to make sense of Proposition 4.4 below, which states that $F^{\cup}(D^{2}u)$ is in the class of
viscosity subsolutions. It would be interesting to adapt the proof to viscosity solutions $u$ –for
instance, by approximating $F^{\cup}(D^{2}u)$ in the spirit of the regularity theory for convex operators
developed by the author and Caffarelli in [CC1] (see also Section 6.2 of [CC3]).

Recall that the Dirichlet problem associated to every uniformly elliptic operator $F$ always
admits a unique viscosity solution. However, the $C^{2,\alpha}$ estimate of Theorem 4.1 requires the
solution to be $C^{2}$ . Hence, to complete our theory we need to show that $F(D^{2}u)=0$ admits $C^{2}$

solutions whenever $F$ is of the form (4.1). This is given by the following:
Theorem 4.2 $([\mathrm{C}\mathrm{C}2])$ . Let $F$ be of the form (4.1). Then, there exists a universa.l constant
$\overline{\alpha}\in(0,1)$ such that for every $\alpha\in(0,\overline{\alpha}),$ $f\in C^{\alpha}(\overline{B}_{1})$ and $\varphi\in C(\partial B_{1})$ , the problem

$\{$

$F(D^{2}u)=f(x)$ in $B_{1}$

$u=\varphi(x)$ on $\partial B_{1}$

admits a unique solution $u\in C^{2,\alpha}(B_{1})\cap C(\overline{B}_{1})$ . Moreover, we have that

$||u||_{C^{2,\alpha}(\overline{B}_{1/2})}\leq C_{\alpha}\{||f||_{C^{\alpha}(\mathrm{B}_{1})}+||\varphi$ II $L\infty(\partial B_{1})\}$ ,

for some constant $C_{\alpha}$ depending only on $n,$
$\lambda$ , A and $\alpha$ .

The existence of classical solutions, Theorem 4.2, and the a priori estimate of Theorem 4.1
lead immediately to the $C^{2,\alpha}$ regularity of every viscosity solution of $F(D^{2}u)=f(x)\in C^{\alpha}$ ,
when $0<\alpha<\overline{\alpha}$ . Furthermore, we also have $W^{2,p}$ regularity for $n\leq p<\infty$ in case that $f\in L^{\mathrm{p}}$ .
The precise statement is the following:

Corollary 4.3 $([\mathrm{C}\mathrm{C}2])$ . Let $u\in C(B_{1})$ be a viscosity solution of $F(D^{2}u)=f(x)$ in $B_{1}$ , where
$f$ is a continuous function in $B_{1}$ and $F$ is an $opemt,or$ of the form (4.1). Then:
(i) If $f\in C^{a}(B_{1})$ for some $0<\alpha<\overline{\alpha}_{y}$ where $\overline{\alpha}\in(0,1)$ is a universal constant, then
$u\in C^{2,\alpha}(B_{1})$ and

$||u||_{C^{2,\alpha}(\mathrm{H}_{1/2})}\leq C_{\alpha}\{||u||_{L(B_{1})}\infty+||f||_{C^{\alpha}(\overline{B}_{S/4})}\}$ ,

for some constant $C_{\alpha}$ depending only on $n_{f}\lambda$, A and $\alpha$ .
(ii) If $f\in L^{p}(B_{1})$ and $n\leq p<\infty$ , then $\mathrm{u}\in W^{2,p}(B_{1/2})$ and

$||u||_{W^{2,\mathrm{p}}(B_{1/2})}\leq C_{p}\{||u||_{L(B_{1})}\infty+||f||_{L^{\mathrm{p}}(B_{1})}\}$ ,

for some constant $C_{p}$ depending only on $n,$
$\lambda$ , A and $p$ .
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4.2 Motivation: the 2- and 3-operat $o\mathrm{r}\mathrm{s}$

A first hint towards the validity of second derivative estimates for our class of operators came up
when we realized that, for the 3-operator (1.3), $H^{2}=W^{2,2}$ estimates followed $\mathrm{e}\mathrm{a}s$ ily from some
variational tools used by Brezis and Evans in [BE]. Let us explain these interesting ideas, even
that we do not use them in [CC2]. Paper [BE] (written in 1979, that is, before the development
of the Evans-Krylov theory) established $C^{2,\alpha}$ estimates for the 2-operator convex equation

$\max\{L_{1}u-f_{1}(x), L_{2}u-f_{2}(x)\}=0$ . (4.3)

For simplicity let us take $L_{k}=a_{ij}^{k}\partial$; to have constant coefficients. The first vtep in [BE] is to
obtain an $H^{2}$ estimate using Sobolevsky’s inequality, which states that

$||u||_{H^{2}(B_{1})}^{2} \leq C\{\int_{B_{1}}L_{1}uL_{2}udx+||u||_{L^{2}(B_{1})}^{2}\}$ (4.4)

for all $u\in H^{2}(B_{1})\cap H_{0}^{1}(B_{1})$ , where $C$ is a universal constant. Then, for a sufficiently nice
solution $u$ of (4.3) in $B_{1}$ , we have $(L_{1}u-f_{1})(L_{2}u-f_{2})\equiv 0$ and hence $L_{1}uL_{2}u=f_{1}L_{2}u+$

$f_{2}L_{1}u-f_{1}f_{2}$ . Then, if $u\equiv 0$ on $\partial B_{1}$ , the previous equality, (4.4) and Cauchy-Schwarz lead to
$||u||_{H^{2}}\leq C\{||u||_{L^{2}}+||f_{1}||_{L^{2}}+||f_{2}||_{L^{2}}\}$ .

We realized that the same idea works for the 3-operator equation

$\min\{L_{1}u, \max\{L_{2}u, L_{3}u\}\}=f(x)$ , (4.5)

among other equations. Indeed, we have $L_{2}u-f \leq\max\{L_{2}u-f, L_{3}u-f\}$ and, since $L_{1}u-f\geq 0$ ,
we deduce $(L_{1}u-f)(L_{2}u-f) \leq(L_{1}u-f)\max\{L_{2}u-f, L_{3}u-f\}\equiv 0$ . Hence $L_{1}uL_{2}u\leq f(L_{1}u+$

$L_{2}u)-f^{2}$ , that combined with Sobolevsky’s inequality (4.4) leads to $||u||_{H^{2}}\leq C\{||u||_{L^{2}}+||f||_{L^{2}}\}$

for every solution of (4.5) with $u\equiv 0$ on $\partial B_{1}$ .
We do not use this tool in [CC2]. Instead, the proof of Theorem 4.1 is based in the following

fact of nonvariational nature. We observe that if $F(D^{2}u)=0$ in $B_{1}$ and $F$ is of the form (4.1),
then $F^{\cup}(D^{2}u)$ belongs to the class $\underline{S}$ of subsolutions in $B_{1}$ .

Let us prove the previous assertion in the easiest situation, that is, when $\mathrm{u}$ is a classical
solution of (1.3):

$F_{3}(D^{2}u)= \min\{\Delta u, \max\{L_{2}u, L_{3}u\}\}=0$ in $B_{1}$ ,

and $L_{k}$ are second order operators with constant coefficients and where we have taken $L_{1}=\Delta$ .
Then, it is elementary to vhow that the continuous function

$F^{\cup}(D^{2}u):= \max\{L_{2}u, L_{3}u\}$

is subharmonic in $B_{1}$ . Indeed, note first that $F^{\cup}(D^{2}u)\geq 0$ in $B_{1}$ . Hence, it suffices to show
that $F^{\cup}(D^{2}u)$ is subharmonic in the opem set $\Omega=\{F^{\cup}(D^{2}u)>0\}$ . But $\triangle u=0$ in $\Omega$ and,
therefore, $L_{2}u$ and $L_{3}u$ are also harmonic in $\Omega$ . It follows that $F^{\cup}(D^{2} \mathrm{u})=\max\{L_{2}u, L_{3}u\}$ is
subharmonic in $\Omega$ .

4.3 Main lemmas and ideas of proofs

The proof of Theorem 4.1 uses two main ingredients. The first one is stated ae follows.
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Proposition 4.4. Let $u\in C^{2}(B_{1})$ satisfy $F(D^{2}u)=0$ in $B_{1;}$ where $F$ is of the form (4.1).
Then

$0\leq F^{\cup}(D^{2}u)\in\underline{S}(\lambda/n, \Lambda)$ in $B_{1}$ .

It is remarkable that this leads immediately to interior $W^{2,p}$ estimates for every $p<\infty$ .
Indeed, since $0\leq F^{\cup}(D^{2}u)$ is a subsolution in $B_{1}$ , a local version of the ABP estimate gives an
interior $L^{\infty}$ bound for $F^{\cup}(D^{2}u)$ . In particular, $F^{\cup}(D^{2}u)\in L^{p}$ in the interior, for all $p<\infty$ .
Then, since $F^{\cup}$ is a convex operator, the fully nonlinear Calder\’on-Zygmund theory proved by
Caffarelli [Cf] leads to $W^{2,p}$ estimates for $u$ (for all $p<\infty$ ).

The second important ingredient in the proof of Theorem 4.1 is the following. It applies to
more general equations than those of the form (4.1). Its statement assumes that $u$ is a solution
of $G(D^{2}u)=0$ in $B_{1}$ , where $G$ is uniformly elliptic and $G(\mathrm{O})=0$ , and that $H$ is a uniformly
elliptic operator with $C^{2,\alpha}$ estimates. The conclusion is that if $G$ and $H$ coincide in a ball
in $S$ centered at $0$ of sufficiently large radius compared to $||u||_{L}\infty(B_{1})$ , then $H(D^{2}u)=0$ in the
smaller ball $B_{1/2}$ .

Applied to our class of operators, the results reads as follows:
Proposition 4.5. Let $u\in C^{2}(B_{1})$ satisfy $F(D^{2}u)=0$ in $B_{1}$ , where $F$ is of the form (4.1).
Then, there exists a universal constant $c_{f}>0$ such that

if $F^{\cup}(0)>c_{f}||u||_{L(B_{1})}\infty$ then $F^{\cap}(D^{2}u)=0$ in $B_{1/2}$ .
Recall that, by assumption, $F( \mathrm{O})=\min(F^{\cap}(0), F^{\cup}(0))=0$. The previous proposition gives

that if $F^{\cup}(0)$ is positive and too large compared to $||u||_{L(B_{1})}\infty$ , then we have $F^{\cap}(D^{2}u)=0$

in $B_{1/2}$ –that is, only $F^{\cap}$ acts on $D^{2}u$ in the smaller ball $B_{1/2}$ , in which case regularity is
automatic since $F^{\cap}$ is concave.

After translations in $S$ , this result allows to control $F^{\cup}(D^{2}P)$ (and not only $F^{\cup}(0)$ ) for every
quadratic polynomial $P$ with $F(D^{2}P)=0$ –unless $F^{\cap}(D^{2}u)=0$ in $B_{1/2}$ . This will be crucial
when deriving $C^{2,\alpha}$ estimates through approximations of $u$ by quadratic polynomials $P$ , that
we describe next.

The proof of Theorem 4.1 uses the two previous propositions and the $C^{2,a}$ iteration scheme
developed in [ $\mathrm{C}\mathrm{Q}$ . The goal is to approximate $u$ by polynomials of degree two in $L^{\infty}(B_{\mu^{k}}(0))-$

norm, where $0<\mu<1$ , and to do it better and better as $k$ increases. For this, we set
$S_{0}:= \sup_{B_{1/2}}F^{\cup}(D^{2}u)$ and we distinguish two cases. The first case is when most points $x$ , in
measure, have $F^{\cup}.(D^{2}u(x))$ close to $S_{0}$ . Then we can approximate $u$ by a solution of $F^{\cup}(D^{2}v)=$

$S_{0}$ , which is $C^{2,\alpha}$ at the origin since $F^{\cup}$ is convex. In the other case, the weak Harnack inequality
of Krylov-Safonov, applied to the supersolution $S_{0}-F^{\cup}(D^{2}u)\geq 0$ , forces the supremum of
$F^{\cup}(D^{2}u)$ in a smaller ball to decrease by a factor (with respect to $S_{0}$ ). Heuristically, if this
second case happens “often” as $karrow\infty$ , then $F^{\cup}(D^{2}u)$ is concentrating near $\{F^{\cup}=0\}$ , and
hence $u$ can be approximated by the quadratic part of a solution of $F^{\cup}(D^{2}v)=0$ .
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