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Interior C%% regularity for
fully nonlinear elliptic equations

XAVIER CABRE

1 Imtroduction

. This note is concerned with the C*© regularity theory for fully nonlinear elliptic equations.
First, we briefly present the well established theory for convex equations (see [CC3] and [C]
for, respectively, a fully detailed exposition and a survey). Second, we describe a more recent
result and method by Cabré and Caffarelli [CC2] on C** regularity for a class of nonconvex
equations of Isaacs type.

In 1982 Evans [E] and Krylov [K] proved interior C** estimates for fully nonlinear elliptic
equations F(D?u, Du,u,z) = 0, z €  C R®, under the assumption that F is either a convex
or a concave function of D?u. These works relied on the Harnack inequality for linear equations
in nondivergence form established by Krylov and Safonov in 1979. The Evans-Krylov estimate,
together with some extensions due to Caffarelli, Safonov, and Trudinger, led to interior C%2
regularity results for Bellman’s equation,

sup{Lou(z) — fs()} =0, (L1)
BeB

associated to a family Lg = afj ()8;; of linear uniformly elliptic operators (see [CC3], [GT}).
Equation (1.1), which is convex in D?u, is the dynamic programming equation for the optimal
cost in some stochastic control problems.

Since then, the validity of interior C%** estimates for nonconvex fully nonlinear uniformly
elliptic equations F(D?u) = 0, in space dimension n > 3, has been a challenging open question.
Examples of such nonconvex equations appear in stochastic control theory and are called Isaacs
equations. They are of the form

inf s;ég{LﬁW(x) — for(2)} =0, (1.2)

where Lg, = aﬁ.”’(a:)aij is a family of elliptic operators, all of them with same ellipticity con-
stants. Isaacs equation (1.2) is the dynamic programming equation for the value of some
two-player stochastic differential games (see [F'S]). At the same time, every umformly elliptic
equation F(D?u,z) = 0 can be written in the form (1.2), for some family Lg, = a;; P19, of
operators with constant coefficients and some functions fg, (see Remark 2.1 below).

The best estimates known to be valid for all uniformly elliptic equations F'(D?*u) = 0 are
CY* and W39 estimates (in particular, also W2%), where o and § are (small) constants that
belong to (0,1) and depend on the ellipticity constants of F.. To our knowledge, before our
work [CC2] described below, no interior C% estimates were available for a nonconvex Isaacs
operator.
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In [CC2] we establish the interior C% regularity of viscosity solutions, and in particular
the existence of classical solutions, for a class of nonconvex fully nonlinear elliptic equations
F(D?u,z) = f(z). Our assumption is that, for every z € B, C R*, F(-,z) is the minimum of
a concave operator and a convex operator of D?u (where these two operators may depend on
the point ). We therefore include the “simplest” nonconvex Isaacs equation

F3(D?u) := min { Lyu, max{Lyu, Lsu}} = 0, | (1.3)

that we call the 3-operator equation and that motivated our work (see subsection 4.2 below).
Here

Liu = af;0;u + c}c ) (1.4)

where ¢, = Li0 € R, are three affine elliptic operators w1th constant coefficients a’c More
generally, our results apply to equations of the form

F(D%u) := min{inf Liu,sup Llu} =0, | - (1.5)
kex lel :

where K and £ are arbitrary sets, and L, L; are operators of the form (1.4), all of them with
same ellipticity constants and with {cx}, {¢;} bounded.

2 Fully nonlinear elliptic operators

Throughout this note and [CC2], we follow the terminology and notation of [CC3]. We say
that an operator F': § x 2 — R, where Q C R" is a domain, is uniformly elliptic if there exist
constants 0 < A < A (called ellipticity constants) such that

MIN| < F(M+ N,2) - F(M,z) SAIN| VM eS YN0 VzreQ. (2.1)

Here, S is the space of n x n symmetric matrlces N > 0 means that N € S is nonnegatlve
definite and, for M € S, | M| := SUP), <1 | M 2|. We say that a constant C is universal when it
depends only on n, A and A.

The simplest examples of umformly elliptic operators are the affine operators Lu = ‘aij0iju+c
as in (1.4). The coefficients could also depend on z (i.e. , @j = a;;(z)), in which case uniform
ellipticity is guaranteed by having uniform lower and upper posmve bounds in Q for the eigen-
values of the symmetric matrices a;;(z).

Another useful class is given by Pucci’s extremal operators. Pucci’s maximal operator is
defined by

M (M) = MY (M \A):=A e+ ei= sup LAM- max. LAM
e >0 ei<0 AGA"A

where e; = ¢;(M) are the eigenvaluesof M € S, A € Axa means that A is a symmetric matrix
whose eigenvalues belong to [A, A], and L4M = aym,; = trace(AM) (see Section 2.2 of [CC3]).

Later we will use the class S of subsolutions. We recall that S = S(M\A) in B; is formed
by those continuous functions u in By such that M*(D?u, A, A) > 0 in the viscosity sense in
B, (see Section 2.1 of [CC3] for the definition of the viscosity sense). Similarly, one defines the
class S of supersolutions through the inequality M~ (D*u) <0, where M~ (M) = —M*(—M)
is Pucci’s minimal operator. The class S of viscosity solutions is defined by $ = SNS.
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More generally, given a continuous function f in By, the class S(f) = S(A, A, f) contains
those continuous functions u such that M*(D?u, A\, A) > f(z) in the viscosity sense in B;.
Similarly, one defines S(f) and S(f).

Finally, we recall that Isaacs equations (1.2) cover all possible fully nonlinear elliptic equa-
tions.

Remark 2.1. Let F(-, ) be uniformly elliptic, with ellipticity constants 0 < A < A. Then, for
M and N in S, ’

F(M,z) - F(N,z) < A(M — N)*|| = M(M - N)~||
< M*(M = N,Mn,A) = max La(M - N) ,

where A = Aj/n s (see Chapter 2 of [CC3]). Since there is equality when N = M we deduce
that, for all M and z,

F(M,z) = I,é‘égrﬂgf{LA(M - N)+ F(N,z)}

= glégrilg}{LAM + (F(N,z) — LyN)} .

This is an operator of Isaacs type (1.2) associated to a family {L4} of linear operators with
constant coeflicients.

3 Regularity theory for convex equations

For a solution of a second order elliptic equation one expects, in general, to control the second
derivatives of the solution by the oscillation of the solution itself. More precisely, the following
C% and W?2® interior a priori estimates hold. Let u be a solution of a linear uniformly elliptic
.equation of the form ,

a,-j(:c)aiju = f(.'l?) in B CR".
Then we have: '

(a) Schauder’s estimates: if a;; and f belong to C*(B;), for some 0 < a < 1, then u €
C%*(By3) and |\u||cg,°.(;§m) < C(l|lullze(myy + [ fllgacs,)), Where C depends on the ellip-

ticity constants and the C*(B;)-norm of a;;; see Chapter 6 of [GT].

(b) Calderdn-Zygmund estimates: if a;; € C(B,) and f € LP(B), for some 1 < p < 0o, then
u € W**(Byy2) and |[ullwas(s, ) < C(llullze(sy + [ fllzes;)), where C depends on the
ellipticity constants and the modulus of continuity of the coefficients a;;; see Chapter 9 of
[GT].

‘These statements should be understood as regularity results for appropriate linear small
perturbations of the Laplacian. Indeed, these estimates are proven by regarding the equation
aij(z)0iu = f(z) as
| a:j(%0)05u = [ai;(z0) — ai;()] Byju + f(z) .

One then applies to this equation the corresponding estimates for the constant coefficients
operator a;;(2o)8;; (that one can think of as the Laplacian), observing that the factor in the
right hand side a;;(xo) ~—a;;(z) is small (locally around z,) in some appropriate norm, due to the
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regularity assumptions made on a;;. Thus, the key point is to prove C?® and W?P estimates
for Poisson’s equation Au = f(z). ~

The goal is to extend these regularity theories to fully nonlinear elliptic equations of the form
F(D?u,z) = f(z). The previous discussion shows that one should start considering the case
of equations with constant “coefficients” F(D?u) = f(z) (here, we think of F(D?u) as being
equal to F(D?u(z), zo) for a fixed o). In fact, the key ideas already appear by considering the
simpler equation

F(D*u)=0.

Assume that F € C* and that u € C3(B,) satisfies F(D?u) = 0. Differentiate this equation
with respect to a direction z;. Writing ux = du, we have

F,,(Dzu(z)) 6,-juk =0 in B1 y '

where F;; denotes the first partial derivative of F' with respect to its ij-th entry. This can be
regarded as a linear equation Luy = 0 for the function ug, where L = ;;(2)8;; and a;j(z) =
F;j(D*u(z)). The ellipticity hypothesis (2.1) leads to the uniform ellipticity of L. Note that a
regularity hypothesis on the coefficients a;;(z) would mean to make a regularity assumption on
the second derivatives of u —which is our goal and hence we need to avoid. The tool that one
uses is the Krylov-Safonov Harnack inequality and its corollary on Hélder continuity of solutions
of uniformly elliptic equations in nondivergence form with measurable coefficients (see [CC3]).
The key point is that the Krylov-Safonov theory makes no assumption on the regularity of the
functions a;;. This theory applied to the equation Luy = 0 leads to [jus/| ez, 1) S Clltll oo sy,
where 0 < o < 1 and C are universal constants. Thus, we have the C** estimate for u:

||u”01.a(§1,2) < CHUHCI(E)- (3.1)

This a priori estimate may be improved in the following way. Let F' be uniformly elliptic and
u € C(By) be a viscosity solution of F(D?u) = 0 in B;. Then there exist universal constants
0 <a <1 and C such that u € C*(B;) and

lullcragm, ) < Clllulls,) + [F(0)]} .

A direct proof of this result, which does not rely on existence results and which applies to
viscosity solutions and to nondifferentiable functionals F' (recall that Pucci’s, Bellman’s, and
Isaacs’ equations are not differentiable in general), was found by the author and Caffarelli in
[CC1]. This paper also contains a direct proof of the C'! regularity of viscosity solutions when
the operator F is convex —a case that we discuss next.

When the operator F' is concave or convex, Evans [E] and Krylov [K] estabhshed in 1982
that classical solutions of F'(D?%u) = 0 satisfy the C** estimate

(ullcaag, ) < C {llullzecay + FO)I}

where 0 < o < 1 and C are universal constants. Recall that Pucci’s equations are either convex
or concave, and that Bellman’s equations are convex. Recall that convex elliptic equations
F(D?u) = 0 get transformed into concave ones by writing them as —F(—D%) = 0, where
v=—u. ‘
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The proof of this C%* estimate is based on a delicate application of the Krylov-Safonov weak
Harnack inequality to C — ug, where ug, denotes a pure second derivative of u. Assuming that
F' is concave and differentiating F(D?u) = 0 twice with respect to zj, we have

0 = Fy(D*u(z))Bisurk + Firs(D*u(x))(Oi5ur)(Orsux)
< Fy(D*u(x))05urk

(by the concavity of F'), and hence every uy is a subsolution of a linear equation. Roughly
speaking, this allows to control D?u by above. Once this is acomplished, the ellipticity of
equation F(D?u) = 0 controls D?u by below.
As said, the Evans-Krylov theory establishes interior C%* estimates for F(D?u) = 0 when
F' is either convex or concave. More generally, the same proofs of the theory -apply when
{M € §: F(M) = 0} is a convex hypersurface in the space S of n x n symmetric matrices
—that is, when {M € S : F(M) = 0} is the boundary of a convex open set. Note that this
does not hold for our simplest model, the 3—operator (1.3).
Under no convexity or concavity assumption, the work [Cf] by Caffarelli (see also [CC3])
established interior C%* estimates and C%® regularity for viscosity solutions of equations of
. the form F(D?u,z) = f(z) assuming that the dependence of F and f on z is C* and that,
for every fixed zo, the Dirichlet problem for F(D?u(z), zo) = f(zo) has classical solutions and
interior C** estimates, where 0 < o < @. [Cf] also establishes a similar W2? regularity result.
These are fully nonlinear extensions of the linear Schauder and Calderén-Zygmund theories
described at the beginning of this section. By means of Caffarelli’s theory, we can reduce our
study to operators F(M, z) = F(M) with constant coefficients —such as (1.3) and (1.5) defined
by operators of the form (1.4). ' :

4 Regularity for a class of nonconvex equations

By the comments in the previous paragraph, regularity for equations F(D%u, z) = f(z) follows
once it has been established for those of the form F(D?*u) = c, with ¢ a constant, that we can
write as F'(D?u) = 0 after subtracting a constant to F.

4.1 The class of operators and the main results

In [CC2], we consider the class of operators F' of the following form:

F(M) = min{F"(M), F¥(M)} for all M € S,
F(0) =0, F" and FV are uniformly elliptic, (4.1)
F™ is concave and FV is convex.

Since (2.1) holds for both F" and FVY, it also holds for F. Hence, F is uniformly elliptic. We
assume F'(0) = O only for convenience. Indeed, after an appropriate translation in & (which
amounts to subtract a quadratic polynomial to u), every operator F' can be assumed to satisfy
F(0) = 0 (see Remark 1 in Section 6.2 of [CC3]). Moreover, the concavity of F" and the
convexity of FV are preserved under translations in S.

We do not require F™ and FV to be of class C*. In this way, our results apply to the
equations of Isaacs type described above. Note also that the class (4.1) of operators F includes
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all concave operators. Indeed, if F" is concave then there is an affine, uniformly elliptic operator
L with constant coefficients such that £ < L in S. Take then FV = L, so that F = F".
Our main result is the following interior C*® g priori estimate for classical solutions of
F(D*u)=0in By CR", where 0 < o < 1 is a (small) exponent depending only on n and on
the ellipticity constants A and A.

Theorem 4.1 ([CC2]). Let u € C?*(B,) be a sblutz’on of F(D*u) = 0 in B; C R", where F is
of the form (4.1). Then u € C**(Bys) and

lullcz.agm, ) < CIIUHLw(Bn ; A (4.2)
where 0 < a < 1 and C are universal constants. '

The proof of Theorem 4.1 requires u € C? and does not apply to viscosity solutions. We need
u € C? to make sense of Proposition 4.4 below, which states that FY(D?u) is in the class of
viscosity subsolutions. It would be interesting to adapt the proof to viscosity solutions u —for
instance, by approximating F¥(D?u) in the spirit of the regularity theory for convex operators
developed by the author and Caffarelli in [CC1] (see also Section 6.2 of [CC3]).

Recall that the Dirichlet problem associated to every uniformly elliptic operator F' always
admits a unique viscosity solution. However, the C%* estimate of Theorem 4.1 requires the
solution to be C2. Hence, to complete our theory we need to show that F'(D?u) = 0 admits C?
solutions whenever F is of the form (4.1). This is given by the following:

Theorem 4.2 ([CC2]). Let F be of the form (4.1). Then, there ezists a universal constant
@ € (0,1) such that for every o € (0,@), f € C*(B;) and ¢ € C(OB,), the problem

{ F(D%u) = f(z) in By
v =p(z) ondB,

admits a unique solution u € C**(B;) N C(B;). Moreover, we have that

lullcaa@, z) < Ca{ I fllca@y + Illzee@ay }
for some constant Ca dependmg only onn, A\, A and a.

The existence of classical solutions, Theorem 4.2, and the a priori estimate of Theorem 4.1
lead immediately to the C?= regularity of every viscosity solution of F(D?*u) = f(z) € C°,
when 0 < @ < @. Furthermore, we also have W?? regularity for n < p < oo in case that f € L?.
The precise statement is the following:

Corollary 4.3 ([CC2]). Let u € C(B,) be a viscosity solution of F(D*u) = f(z) in B,, where
- [ is a continuous function in By and F is an operator of the form (4.1). Then:
(¢) If f € C*(By) for some 0 < o < @&, where @ € (0,1) is a universal constant, then
u € C**(B;) and

[ullcraca,,) < Collltllzesy + [ flloa@, o} »
Jor some constant C, depending only onn, A\, A and o.
(i) If f € LP(B1) and n < p < o0, then u € W?P(By) and

Nullwar(s, ) < Colllullzeo(my) + 11 fllzoean)}

for some constant C, depending only on n, A, A and p.
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4.2 Motivation: the 2- and 3-operators

A first hint towards the validity of second derivative estimates for our class of operators came up
when we realized that, for the 3-operator (1.3), H?> = W?? estimates followed easily from some
variational tools used by Brezis and Evans in [BE]. Let us explain these interesting ideas, even
that we do not use them in [CC2]. Paper [BE] (written in 1979, that is, before the development
of the Evans-Krylov theory) established C%* estimates for the 2-operator convex equation

ma.x{Llu - fl(l'), Lz’u - fz(m)} =0. (43)

For simplicity let us take Ly = af;0;; to have constant coefficients. The first step in [BE] is to
obtain an H? estimate using Sobolevsky's inequality, which states that

“u”%{z(gl) < C{L L]_U Lg'u. dx + ”U“iz(Bl)} (44)
1

for all u € H 2(B;) N H}(B,), where C is a universal constant. Then, for a sufficiently nice
solution u of (4.3) in By, we have (Lyu — f;)(Lou — f2) = 0 and hence LiuLou = fiLou +
faLiu — f1f2. Then, if u = 0 on 8B, the previous equality, (4.4) and Cauchy—Schwa.rz lead to

[ullgs < C{llullzz + || fillz2 + | fallz2}-
We realized that the same idea works for the 3-operator equation

" min {Lu, max{Lyu, Lau}} = f(z) | (4.5)

among other equations. Indeed, we have Lou— f < max{Lyu—f, Lsu— f} and, since Lyu—f > 0,
we deduce (Lyu— f)(Lou—f) < (Lyu—f) max{Lou— f, Lyu—f} = 0. Hence LyuLou < f(Liu+
Lou)— f2, that combined with Sobolevsky’s inequality (4.4) leads to |jullg2 < C{||ullz2+|fllc2}
for every solution of (4.5) with u =0 on 9B;.

We do not use this tool in [CC2]. Instead, the proof of Theorem 4.1 is based in the following
fact of nonvariational nature. We observe that if F(D?u) =0 in B, and F is of the form (4.1),
then FY(D?%u) belongs to the class S of subsolutions in B.

Let us prove the previous assertion in the easiest situation, that 1s, when u is a classma.l
solution of (1.3):

F3(D?u) = min {Au, max{Lyu, Lsu}} = 0 in By,

and Ly are second order operators with constant coefficients and where we have taken L =A.
Then, it is elementary to show that the continuous function

FY(D%u) = max{Lou, Lau}

is subharmonic in B;. Indeed, note first that F“(D?u) > 0 in B;. Hence, it suffices to show
that FY(D?u) is subharmonic in the open set Q = {FY(D?) > 0}. But Au = 0 in Q and,
therefore, Lyu and Lsu are also harmonic in Q. It follows that FY(D?%u) = max{Lpu, L3u} is
subharmonic in 2.

4.3 Main lemmas and ideas of proofs

The proof of Theorem 4.1 uses two main ingredients. The first one is stated as follows.
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Proposition 4.4. Let u € C?(B;) satisfy F(D%u) = 0 in By, where F is of the form (4.1).
Then |
0 < FY(D?*u) € S(A\/n,A) in B .

It is remarkable that this leads immediately to interior W?2® estimates for every p < oo.
Indeed, since 0 < F¥(D?u) is a subsolution in By, a local version of the ABP estimate gives an
interior L* bound for F¥(D?u). In particular, F¥(D%u) € L? in the interior, for all p < oo.
Then, since F" is a convex operator, the fully nonlinear Calderén-Zygmund theory proved by
Caffarelli [Cf] leads to W27 estimates for u (for all p < co). .

The second important ingredient in the proof of Theorem 4.1 is the following. It applies to
more general equations than those of the form (4.1). Its statement assumes that u is a solution
of G(D*u) = 0 in B, where G is uniformly elliptic and G(0) = 0, and that H is a uniformly
elliptic operator with C% estimates. The conclusion is that if G and H coincide in a ball
in S centered at 0 of sufficiently large radius compared to |ul|z=(s,), then H(D?%) = 0 in the
smaller ball 31 /2- _

Applied to our class of operators, the results reads as follows:

Proposition 4.5. Let u € C*(By) satisfy F(D*u) = 0 in B,, where F is of the form (4.1).
Then, there exists a universal constant c; > 0 such that

if F2(0) > csllullzoo(m,) then F"(D*u) =0 in By .

Recall that, by assumption, F(0) = min(F"(0), F*(0)) = 0. The previous proposition gives

that if F¥(0) is positive and too large compared to |u||ze(s,), then we have F(D%*) = 0
in B; s2 —that is, only F” acts on D?u in the smaller ball B, /2, in which case regularity is
automatic since F" is concave. ’

After translations in &, this result allows to control FY(D?P) (and not only FY(0)) for every
quadratic polynomial P with F(D?P) = 0 —unless F"(D?u) = 0 in By/,. This will be crucial
when deriving C%® estimates through approximations of u by quadratic polynomials P, that
we describe next. :

The proof of Theorem 4.1 uses the two previous propositions and the C?¢ iteration scheme
developed in [Cf]. The goal is to approximate u by polynomials of degree two in L*(B,«(0))-
norm, where 0 < p < 1, and to do it better and better as k increases. For this, we set
Sp := supg, 12 FY(Du) and we distinguish two cases. The first case is when most points z, in
measure, have F'Y/(D?u(z)) close to Sp. Then we can approximate u by a solution of FY(D%) =
So, which is C%* at, the origin since FY is convex. In the other case, the weak Harnack inequality
of Krylov-Safonov, applied to the supersolution Sy — FY(D%u) > 0, forces the supremum of
FY(D%u) in a smaller ball to decrease by a factor (with respect to So). Heuristically, if this
second case happens “often” as k — oo, then FY(D?u) is concentrating near {F¥ = 0}, and
hence u can be approximated by the quadratic part of a solution of FY(D%) =0.
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