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Abstract
We suggest a new asymptotic representation for the solutions to the 2-D wave

equation with variable velocity and localized initial data. This representation is a gen-
eralization of the $\mathrm{M}\mathrm{a}s$lov canonical operator and gives the formulas for the relationship
between initial localized perturbations and wave profiles near the wave hontv including
the neighborhood of backtracking (focal or turning) and self intersection points. We
apply these formulas to the problem of a propagation of tsunami waves in the frame
of so-called “piston model”. Finally we suggest a fast asymptotically-numerical algo-
rithm for simulation of tsunami wave over nonuniform bottom. Different scenarios of
the distribution of the waves are considered, the wave profiles of the front are obtained
in connection with the different shapes of the source and with the diverse rays gener-
ating the honts. It is possible to use the suggested algorithm to predict in real time
the zones of the beaches where the amplitude of the tsunami wave has dangerous high
values. The paper concentrates mainly on the final formulas and geometrical aspects
of the proposed asymptotic theory.

1 Introduction
The traditional calculations of the diffusion of the tsunami waves are done by solving
the linear shallow water equations in the framework of the so called “piston model”,
which assumes that the source of the perturbation of the wave is given by an instanta-
neous vertical velocity of a certain region of the bottom of the ocean. The correspond-
ing mathematical problem is the search of the solution of the two-dimensional wave
equation with variable velocity and localized initial conditions:

$\frac{\partial^{2}\eta}{\partial t^{2}}=<\nabla,$ $C(x)\nabla>\eta$ , (1.1)

$\eta|_{t=0}=V(\frac{x}{\mu})$ , $\eta_{t}|_{t=0}=0$ . (1.2)
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Here $\mu<<1$ and the function $V(y)$ decays fast as $|y|arrow\infty$ . It is usual to solve directly
with numerical methods this equation for computing the tsunami in $\mathrm{b}\mathrm{a}s$ ins with non
uniform bottom. In this way the position of the front is rather well defined but there
are errors in the estimate of the amplitudes ([2]), this could be the cause of the not
very high effectiveness of the tsunami alarm system ([1]). In particular, in order to
obtai$n$ a good accuracy in a neighborhood of a caustic, it is necessary to spend a
large amount of computer time and this makes almost impossible to use the direct
numerical solution of the wave equation for real time simulation of the propagation of
tsunami. Fkom our point of view the existing methods of computing the wave field
for the case of the ocean with non uniform bottom are good $on$ly for a qualitative
description of the distribution of the wave but satisfactory quantitative calculations
are still missing. The mathematical complications encountered in solving the problem
are connected with the metamorphosis of the solution: at the initial time the wave
is concentrated in a point and after sometime in a neighborhood of a curve (i.e. the
&ont of the wave). The problem is essentially two dimensional with the effect, typical
of the multi dimensional wave equation with variable velocity, of the intersection of
the characteristics. These arguments for the problem of $1\mathit{0}$calized initial conditions
have been treated with accuracy in the paper [15] but the final formulas, based on
the representation of the asymptotic [29] for the equations with constant coefficients,
are not very effective from the point of view of the real applications. The main result
of this paper consists in the derivation $\mathrm{h}\mathrm{o}\mathrm{m}$ the mentioned formulas of essentially
simple asymptotic equations for the wave amplitude $((4.4), (4.7),$ $(4.14))$ generated by
some localized source. It is necessary to emphasize that these formulas refer only to
the well known wave theory and geometrical optic and that can be implemented in a
computer in a relatively easy way by means of programs of the type of Mathematica
and Maple. In this paper we concentrate mainly on the construction of the geometrical
and topological concepts (like the wave front, the Morse and Maslov index etc) $\mathrm{p}\mathrm{l}\mathrm{a}\dot{\mathrm{p}}\mathrm{g}$

a fundamental role in the asymptotic behavior. As we mentioned above our final results
are based on the relatively simple piston model. We observe that until now, despite its
simple formulation and the numerous publications about it, no complete and accurate
asymptotic solutions of this model have been published. On the contrary, we show
that many features, not only qualitative but also quantitative, of the tsunami waves
can be explained by means of the piston model without any useless complications. We
briefly describe the plane of the work. In Sect. 2 we give a detailed description of
the linear case, in Sect. 3, starting $\mathrm{h}\mathrm{o}\mathrm{m}$ the example of the problem with constant
coefficients, we justify the utilization of the wave equation for analyzing the tsunami
waves. In Sec. 4 we give the asymptotic formulas for the case when the front passes
through a focal point and the self-intersections of the wave front appear. In Sec. 5
the topological and geometrical concepts, on which the formulas $((4.4), (4.7),$ $(4.14))$

are based, are shown. The global uniform asymptotic solution $(6.9)-(6.10)$ to problem
$(1.1)-(1.2)$ based on the generalization of the Maslov canonical operator (6.1) (and
reahized in different situations in the various forms of the equations (4.4), (4.7), (4.14) $)$

is presented in Sec. 6. The proofs of the main theorems given in this paper are omitted,
they will be presented in a forthcoming paper.
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2 The main equations and a simple example:
the wave field in the case of constant bottom

2.1 Some notations
Let us introduce the notations used in this paper. A two dimensional vector can be
written with capital or small letters $X=(X_{1},X_{2})$ or $x=(x_{1}, x_{2})$ . The vector can

be written also as a column vector

form a column vector

vectors $X$ and $\mathrm{Y}$ , with real components, is indicated by $<X,\mathrm{Y}>$ , the complex scalar
product among $\mathrm{b}\mathrm{i}$-dimensional vectors $Z,$ $W$ , with complex components, is written as
$<Z,$ $W>_{c}$ , the two by two matrix generated by two $\mathrm{b}\mathrm{i}$-dimensional vectors $X,$ $\mathrm{Y}$ is
written as (X, Y) where in the first column there are the components of the vector $X$

and in the second column those of the vector $\mathrm{Y}$ ; the transposed matrix of $C$ is denoted
by ${}^{t}C$ .

2.2 The main equations
Let us remind the statements of problems used in tsunami wave problems as well as in
general linear water wave theory; see e.g. $([2]-[14])$ where it is possible to find a more
complete bibliography.

Let us assume that the bottom of the basin is moving $H=H_{0}(x)-H_{1}(x, t)$ .
We assume also that the perturbation $H_{1}(x, t)$ is small with respect to $H_{0}$

$|H_{1}|<<H_{0}(x)$ , and that $H_{1}$ is localized in a neighborhood of some given point $x_{0}$ . If
$L$ is the dimension of the region where the wave phenomena is studied, \‘and $l$ is the
dimension of the perturbed region, then our hypothesis implies that $l<<L$ . Another
assumption is that the bottom “changes slowly”, i.e. that $\nabla H_{0}\sim\mu$ , where $\mu$ is some
small (”adiabatic parameter”). We discuss below its meaning. Introducing the scaled
variables $x’=\Sigma x$ , then $H=H_{0}(x’)-H_{1}( \frac{x’}{\mu}, t)$, where $\mu=\frac{\iota}{L}<<1$ .

The equation for the velocity potential $\Phi$ in the $\mathrm{w}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}-H\leq z\leq\eta$ , where $\eta(x,t)$ is
the sea elevation in the linear approximation, has the form: in dimensional variables,:

$\Delta\Phi=0$ , (2.1)

$\eta_{t}-\frac{\partial\Phi}{\partial z}|_{z=0}=0$ , $\Phi_{t}+g\eta|_{z=0}=0$ , (2.2)

$\frac{\partial\Phi}{\partial n}\equiv\frac{\partial\Phi}{\partial z}+<\nabla H,\nabla\Phi>=v(x, t)|_{z=-H}$ . (2.3)

where $v(x, t)$ is the normal component of the velocity of the motion of the bot-
tom in the point $x$ . The velocity $v$ can be expressed by means of the derivative
$*^{\partial H}$ by : $\underline{\partial}H*/\sqrt{(\nabla H)^{2}+1}$ , since $v$ is the projection of the velocity on the vector
$\sqrt{(\nabla H)^{2}+1}^{1}{}^{t}(\nabla H, 1)$ normal to the surface $z=-H$. If we consider $\nabla H_{0}$ to be small (be-

cause of the slow variation of the bottom relief), and that also V$H_{1}$ is small (because
of the small amplitude $H_{1}$ ), then we have $v=\ovalbox{\tt\small REJECT}^{\partial H}$ .
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3 A simple example: the wave field in the case
of constant bottom

3.1 The solution in the form of the Fourier transform
Let us begin considering the system $(2.1)-(2.3)$ in the case of constant bottom. In this
case the velocity potential and its derivatives are zero for $t=0$ . We make the Fourier
transform of the system $(2.1)-(2.3)$ with respect to the variables $x_{1},$ $x_{2}$ . The dual
variables will be denoted with $p_{1},p_{2}$ and the Fourier transform of the corresponding
function will be considered as a “wave”. Then $(2.1)-(2.3)$ get the form

$\tilde{\Phi}_{zz}-p^{2}\overline{\Phi}=0$ , (3.1)

$\eta_{t}-\sim\frac{\partial\tilde{\Phi}}{\partial z}|_{z=0}=0$ , (3.2)

$(\tilde{\Phi}_{t}+g^{\sim}\eta)|_{z=0}=0$ , (3.3)

$\frac{\partial\tilde{\Phi}}{\partial z}|_{z=-H}=\tilde{v}\equiv\frac{\partial\tilde{H}_{1}}{\partial t}$ . (3.4)

Solving $((3.1))-((3.4))$ , we find

$\tilde{\Phi}=\frac{\mathrm{c}\mathrm{h}((z+H)|p|)}{\mathrm{c}\mathrm{h}H|p|}\tilde{\varphi}+\frac{\mathrm{s}\mathrm{h}(z|p|)}{|p|\mathrm{c}\mathrm{h}(H|p|)}\frac{\partial\overline{H_{1}}}{\partial t}$ (3.5)

and
$\tilde{\Phi}_{z}|_{z=0}=|p|\tanh(H|p|)\tilde{\varphi}+\frac{1}{\mathrm{c}\mathrm{h}H|p|}\frac{\partial\overline{H_{1}}}{\partial t}$ (3.6)

Thus the equations $((3.2))-((3.3))$ take the form

$\frac{\partial\tilde{\eta}}{\partial t}-|p|\tanh(H|p|)\tilde{\varphi}-\frac{1}{\mathrm{c}\mathrm{h}(H|p|)}\frac{\partial\overline{H_{1}}}{\partial t}=0$

$\frac{\partial\overline{\varphi}}{\partial t}+g\overline{\eta}=0$ (3.7)

Where $\overline{\varphi}=\tilde{\Phi}_{t}|_{z=0}$, and we have the initial conditions $t=0$

$\tilde{\varphi}|_{t=0}=0$, $\overline{\varphi}_{t}|_{t=0}=0\Leftrightarrow\overline{\eta}|_{t=0}=0$ . (3.8)

These conditions define the so called Cauchy-Poisson problem for the system (3.7).
They are compatible with the perturbation of the bottom only if we suppose that the
$\mathrm{e}$ rthquake starts at a time different from zero. So we assume that the bottom has an
“mstantaneous” movement at a small time $t=\epsilon$ :

$H_{1}(x,t)=\theta(t-\epsilon)V(x)$ , (3.9)

then we send $\epsilon$ to zero at the end of the calculation; the smooth function $V(x)$ decays
rapidly at infinity.

Differentiating the first equation in (3.7) with respect to $t$ and substituting $\not\in^{\partial^{-}}$ with
$-g\tilde{\eta}$ we get the equation for $\tilde{\eta}$ :

$\tilde{\eta}_{\mathrm{t}t}+\mathcal{L}\overline{\eta}-\frac{1}{\mathrm{i}(H|p|)}\frac{\partial^{2}\overline{H_{1}}}{\partial t^{2}}=0$, $\mathcal{L}=g|p|\tanh(H|p|)$ . (3.10)
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Differentiating the second equation of the system (3.7) with respect to $t$ and sub-
stituting the derivative $\eta_{t}$ with the expression of the first equation and consider-
ing the condition that the source is active at the moment $t=\epsilon>0$ , we get
$\varphi_{u}|_{t=0}=-g|p|\tanh(H|p|)\overline{\varphi}|_{t=0}=0$ and the initial condition for (3.10)

$\eta_{t=0}=0$ $\eta_{t}|_{t=0}=0$ . (3.11)

It is easy to find the solution $\tilde{G}$ of the homogeneous equation associated with (3.10):

$\tilde{G}_{tt}+\mathcal{L}(p, H)\tilde{G}=0$, $\tilde{G}|_{t=\tau}=0$ , $\tilde{G}_{t}|_{t=\tau}=1$ ,

$\tilde{G}(t,\tau,p)=\frac{e^{1\sqrt{L}(t-\tau)}-e^{-i\sqrt{L}(t-\tau)}}{2i\sqrt{\mathcal{L}}}=\frac{\sin\sqrt{\mathcal{L}}(t-\tau)}{\sqrt{\mathcal{L}}}$.

In this way the solution of the non homogeneous equation (3.10) is

$\overline{\eta}=\int_{0}^{t}\tilde{G}(t, \tau,p)\frac{1}{\cosh(H|p|)}\frac{\partial^{2}\tilde{H}_{1}(\tau,p)}{\partial t^{2}}d\tau$.

The inverse Fourier transform of the function $\tilde{\eta}$ gives the elevation of the hae surface.
Under our assumption of instantaneous motion at time $\epsilon$ we have $\frac{\partial^{2}\overline{H}_{1}(\tau,p)}{\partial t^{2}}=\delta’(t-\epsilon)\tilde{V}$

and so:

$\overline{\eta}=\int_{0}^{t}\tilde{G}(t,\tau,p)\frac{1}{\cosh(H|p|)}\frac{\partial^{2}\tilde{H}_{1}(\tau,p)}{\partial t^{2}}d\tau=\frac{\tilde{V}}{\cosh H|p|}\int_{0}^{t}\frac{\sin\sqrt{\mathcal{L}}(t-\tau)}{\sqrt{\mathcal{L}}}\delta’(\tau-\epsilon)d\tau=$

$- \frac{\tilde{V}}{\cosh H|p|}\frac{\partial}{\partial\tau}(\frac{\sin\sqrt{L}(t-\tau)}{\sqrt{\mathcal{L}}})|_{\tau=e}=\frac{\tilde{V}}{\cosh H|p|}\cos\sqrt{\mathcal{L}}(t-\epsilon)$.

We send now $\epsilon$ to zero so we get the function $\overline{\eta}=\frac{\overline{V}}{\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{h}(H|p|)}\cos\sqrt{\mathcal{L}}t$ . It is evident that
$\overline{\eta}$ is the solution of the equation (3.10) with the following Cauchy conditions

$\overline{\eta}|_{t=0}\equiv\frac{\tilde{V}}{\cosh(H|p|)}$, $\overline{\eta}’|_{t=0}=0$ . (3.12)

We shall discuss the relevance of such initial conditions for the function $\eta$ in the
next section.

3.2 The solution of the Cauchy problem for constant
bottom and instantaneous source
Let us study the solution $\eta$ corresponding to (3.12). It is not restrictive to assume that
the center of the source is located in the origin of the coordinates $x_{0}=0$ and that
the perturbation decays rapidly with the distance from the origin and that it has a
maximum in a small neighborhood of the origin. We use also dimensionless variables:

$V=V( \frac{x}{l})$ ,

where $l$ is the size of the shifted region and

$\overline{V}=\frac{1}{2\pi}\int V(_{l}^{\xi})e^{-ip\cdot\xi}d\xi=\frac{l}{2\pi}\int V(y)e^{-il<p,y>}dy=l\overline{V}(pl)$ ,
$\tilde{\eta}\mathrm{o}(p)=\frac{l}{\mathrm{c}\mathrm{o}\mathrm{e}\mathrm{h}(|p|H)}\overline{V}(pl)$,
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where we made the substitution $\xi=yl$ and $\overline{V}(p)$ is the usual Fourier transform of
the function $V(y)$ . We assume that $V(y)$ is a smooth function rapidly decaying as
$|y|arrow\infty$ .

Then we can make the inverse Fourier transform:

$\eta=\frac{l}{4\pi}\sum_{\pm}\int e^{\pm it\sqrt{L(_{\zeta}H)}+i<\mathrm{p},x>}$
”

$\overline{\eta}_{0}(p)dp=\frac{l}{4\pi}\Sigma_{\pm}\int e^{\pm it\sqrt{L(pH)}+i<p,x>}\frac{1}{\cosh(|p|H)}\overline{V}(pl)dp$.

Changing the variables $p=p’/l$ , we get

$\eta=\frac{1}{4\pi}\Sigma_{\pm}\int 6^{\pm i\sqrt{\oplus\tanh(|p|_{\mathrm{T}}^{H})}+i^{\underline{<n_{i^{x>}\frac{1}{\cosh(|p|_{\mathrm{T}}^{H})}\tilde{V}(p)dp}}}}$ .

In this way the problem is reduced to the computation of the asymptotic behavior of
the integral.

We will study the asymptotic values for $|x|$ $>>$ $l$ . We change
variables inside the integral and pass to polar coordinates $(\rho, \varphi)$ ,
where $\varphi$ is defined as the angle among $p$ and $x$ –

$x_{0}$ . Thus
$p=\rho\Theta(\varphi)_{\Pi x}^{x}$ , where $\Theta(\varphi)$ is the two dimensional matrix defining the rotation
of an angle $\varphi$ .

$\Theta(\varphi)=$

Then the last integral has the form

$\eta=\frac{1}{4\pi}\Sigma_{\pm}\int_{0}^{\infty}\rho d\rho\int_{0}^{2\pi}d\varphi\exp$ $( \pm it\sqrt{\frac{g\rho}{l}\tanh(\rho\frac{H}{l}}))\exp(i\frac{\rho|x|}{l}\cos\varphi)\frac{1}{\cosh(\rho_{\mathrm{T}}^{H})}\overline{V}(\rho\Theta\frac{x}{|x|})$.

The inter$n$al integral can be computed using the method of stationary phase. The
phase has the form: $\Phi=e\mu_{\cos\varphi}^{x}$ , the equation $\delta^{\frac{\Phi}{\varphi}}\partial=0$ gives $\varphi=0,$ $\varphi=\pi$ ; however
it is not possible to apply the method of the stationary phase in the point $\rho=0$ .
One can reduce the interval of integration to a sufficiently small neighborhood of the
saddle points of the variable $\varphi$ and show that, [12, 13, 14], the error is smaller than
the contribution of the terms that have been neglected. The result is:

$\eta\approx\frac{1}{2\sqrt{2\pi}}\sqrt{\frac{l}{|x|}}\Sigma_{\pm}\int_{0}^{\infty}d\rho\frac{\sqrt{\rho}}{\cosh(\rho\frac{H}{l})}$

$\exp(\pm it\sqrt{\frac{g\rho}{l}\tanh(\rho\frac{H}{l})})\Sigma_{\pm}(e^{\mp i\pi/4}e^{\frac{\pm\cdot\rho|x|}{\iota}}\overline{V}(\pm\rho\frac{x}{|x|}))$ .

Let us consider the last integral. Its global phases are:

$\Phi_{\pm,\pm}/l=\pm(t\sqrt{gl\rho\tanh(\rho\frac{H}{l})}\pm\rho|x|)/l$.

For $t>0,$ $\rho>0$ the derivative $\frac{\partial \mathrm{g}_{\pm.+}}{\partial\rho}$ is strictly positive, this implies the absence
of critical points for the functions $\Phi\pm,+\cdot$ It follows that these terms give, for $t>0$ , a
contribution to the wave field which is asymptotically small with respect to the other
contributions and so it can be dropped. IFUrthermore since $V$ is a real function then
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$\mathrm{t}\mathrm{h}\mathrm{e}\tilde{V}(\rho^{x}[_{\mathrm{o}\mathrm{r}\mathrm{m}}^{x1^{)\mathrm{a}\mathrm{n}\mathrm{d}}}\overline{V}(-\rho_{\Pi x}^{x})$

are complex conjugates so the last integral may be written in

$\eta\approx\frac{1}{\sqrt{2\pi}}\sqrt{\frac{l}{|x|}}\cross$

${\rm Re} \int_{0}^{\infty}\mathrm{d}\rho\frac{\sqrt{\rho}}{\cosh(\rho_{\mathrm{T}}^{\mathrm{H}})}\tilde{\mathrm{V}}(\rho\frac{\mathrm{X}}{|\mathrm{x}|})\mathrm{e}^{-\mathrm{i}\pi/4}\exp(\frac{\mathrm{i}}{1}(\rho|\mathrm{x}|-\mathrm{t}\rho\sqrt{\mathrm{g}\mathrm{H}}\sqrt{\frac{1}{\rho \mathrm{H}}\tanh(\frac{\rho \mathrm{H}}{1})})$ .

coming from the small values of $\rho$ . Then we get that the functions $\frac{1}{\cosh(\rho_{\mathrm{T}}^{H})}$ and

$t\rho\sqrt{gH}\sqrt{\rho T^{\tanh(*^{H})}\iota}$ can be expanded in Taylor series. If we substitute the first
function with 1 we neglect a term of the order of $O( \frac{H}{l})^{2}$ . The second function can
be approximated by the first two non zero terms of its expansion $t \rho\sqrt{gH}(\frac{1}{l}-\frac{1}{6}(\not\simeq)^{2})$

making an error of the order of $t\sqrt{gH}(_{\mathrm{T}}^{H})^{4}$ . It is clear from the previous estimates that
these terms are small and so we obtain

$\eta\approx\frac{1}{\sqrt{2\pi}}\sqrt{\frac{l}{|x|}}{\rm Re}\int_{0}^{\infty}\mathrm{d}\rho r\rho\tilde{\mathrm{V}}(\rho\frac{\mathrm{x}}{|\mathrm{x}|})\mathrm{e}^{-\mathrm{i}\pi/4}\exp(\frac{\mathrm{i}}{1}(\rho|\mathrm{x}|-\mathrm{t}\rho\sqrt{\mathrm{g}\mathrm{H}}(1-\frac{\rho^{2}}{6}(\frac{\mathrm{H}}{1})^{2})))$.

It will be explained below that the integral gets its larger values in the neighborhood
of the front, i.e. near the curve (circle) $|x|=\sqrt{gH}t$ . In this way the dispersion effects
can influence the asymptotic values in the far wave field under the condition that the
coefficient of $\rho^{3}$ in the exponent is larger or equal to one. Thus we obtain different
behaviors, putting $\sqrt{gH}t$ equal to $|x|$ in this coefficient, according to the possible
relations among $|x|,$ $H,$ $l$ (compare $[3]-[8],[14]$ ):

a) For $|x|>> \frac{l^{3}}{H}\mathrm{z}$ the dispersion has an important influence in the neighborhood
of the front, and the asymptotic can be expressed by means of a function similar to
the Airy function. In this case the behavior of the function $V$ is not important for the
definition of the profile of the hont.

b) For $|x| \sim\frac{\iota}{H}73$ the weak dispersion and the function $\overline{V}$ influences the formation
of the wave profile;

c) For $|x|<< \frac{\iota}{H}\mathrm{v}3$ the dispersion is not important and the function $\tilde{V}$ is important
for determining the profile. If the term with $\rho^{3}$ , is dropped from the phase of the
integral an error of the order of $|x|H^{2}/l^{3}$ is done.

Let us consider the example where $H=4km,$ $l=40km$, thus $l^{3}/H^{2}=4000$km.
Thus a (weak) effect of the dispersion starts at 4000km. If the size of the source
increases twice this distance increases 8 times and becomes 32000 km, a distance larger
than any $\mathit{0}$cean. Thus we will start analyzing the point $\mathrm{c}$ (it possible to neglect the
effect of the dispersion).

3.3 Asymptotic behavior of the wave field with very small
dispersion in the case of constant depth
Thus, assuming that the inequality $|x|<<l^{3}/H^{2}$ is satisfied, we have

$\eta\approx\frac{1}{\sqrt{2\pi}}\sqrt{\frac{l}{|x|}}{\rm Re}\int_{0}^{\infty}\mathrm{d}\rho\sqrt{\rho}\tilde{\mathrm{V}}(\rho\frac{\mathrm{X}}{|\mathrm{x}|})\mathrm{e}^{-\mathrm{i}\pi/4}\exp(\frac{\mathrm{i}}{1}(\rho|\mathrm{x}|-\mathrm{t}\rho\sqrt{\mathrm{g}\mathrm{H}})=$
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$= \frac{l^{1/2}}{\sqrt{|x|}}{\rm Re}(\mathrm{e}^{-\mathrm{i}\pi/4}\mathrm{F}(\frac{\Phi(\mathrm{x},\mathrm{t})}{1}, \frac{\mathrm{x}}{|\mathrm{x}|}))$ , $\Phi(\mathrm{x}, \mathrm{t})=|\mathrm{x}|-\mathrm{t}\sqrt{\mathrm{g}\mathrm{H}}$ , (3.13)

where
$F(z, \mathrm{n})=\frac{1}{\sqrt{2\pi}}\int_{0}^{\infty}e^{iz\rho}\sqrt{\rho}\tilde{V}(\rho \mathrm{n})d\rho$ . (3.14)

Here $\mathrm{n}$ is the unit vector parallel to the vector $x$

$\mathrm{n}=\mathrm{n}(\psi)=$ . (3.15)

The angle $\psi$ is chosen in such a way that $\psi=0$ corraepondsand to change in final
asymptotic formulas $\mu$ by $l$ .

to the axis $x_{1}$ . Hence the function $\tilde{V}(\rho, \mathrm{n}(\psi))$ depends on $(\rho, \psi)$ and the function
$F(z, \mathrm{n}(\psi))$ depends on $(z, \psi)$ . For avoiding complicate notations we use the same
symbols $\tilde{V}$ and $F$ for them an$\mathrm{d}$ sometimes write $\overline{V}(\rho, \psi)$ and $F(z, \psi)$ instead $\tilde{V}(\rho, \mathrm{n}(\psi))$

and $F(z, \mathrm{n}(\psi))$ respectively.
We note, that the function $F(z, \mathrm{n})$ decreases for $|z|arrow\infty$ as an inverse power.

Indeed, let us change variable in the last integral $\rho=L^{2}2$ ; then

$F(z, \mathrm{n})=\frac{1}{\sqrt{2\pi}}{\rm Re}\{\mathrm{e}^{-\frac{\mathrm{i}\pi}{4}}\int_{0}^{\infty}\mathrm{y}^{2}\mathrm{e}2\tilde{\mathrm{V}}(\frac{\mathrm{y}^{2}}{2}\mathrm{n})\mathrm{d}\mathrm{y}\}\underline{\mathrm{i}-}\mathrm{z}_{-}^{2}$ .

Using the method of the stationary phaae we get, because of the proeence of
the factor $y^{2}$ under the integral, $F(z,\omega)$ $\sim$ $\frac{1}{z^{3/2}}$ , if $\tilde{V}(0)$ $\neq$ $0$ . Thus for
$||x|-\sqrt{gH}t|>>l$ and $|x|>>l$ , we have that $\eta\sim W^{\tilde{V}(0)}xl^{3}$ .

Example 1. Let us give some example of the function $F(z,\omega)$ . We choose for the
function $V$ , defining the source, the function

$V(y)=\overline{V}\cos(a_{1}\mathrm{Y}_{1}+a_{2}\mathrm{Y}_{2}+\delta)e^{-b_{1}Y_{1}^{2}-b_{2}Y_{2}^{2}},$ $\mathrm{Y}=\Theta(\theta)y$ , (3.16)

$\ominus(\theta)=$ ,

where $\overline{V},$

$a_{1},$ $a_{2},$ $b_{1},$ $b_{2}>0,$ $\theta,$
$\chi$ are pammeters. In this case the fimction $F(z,\psi)$ can

be $e\varphi ressed$ in terms ofpambolic cylinder functions $D_{-3/2}$ or confluent $hyperyeometr\dot{\tau}c$

functions $1F_{1}$

$\tilde{V}(\rho, \psi)$ $=$ $\frac{\overline{V}\sqrt{\rho}}{2\sqrt{b_{1}b_{2}}}e^{-\alpha-\beta\rho^{2}}\cosh(i\delta+\gamma\rho)$ , (3.17)

$F(z, \psi)$ $=$ $\frac{\overline{V}\sqrt{b_{1}b_{2}}e^{-\delta}}{2\sqrt{2\pi}}{\rm Re}(\mathrm{e}^{-\frac{\mathrm{i}\pi}{4}}\int_{0}^{\infty}\sqrt{\rho}(\mathrm{e}^{-L_{\frac{2_{\beta}}{2}+\gamma\rho+\mathrm{i}\rho \mathrm{z}}}e^{\mathrm{i}\theta}+\mathrm{e}^{-L^{2}g_{-\gamma\rho+\mathrm{i}\mu}}2\mathrm{e}^{-\mathrm{i}\theta})\mathrm{d}\rho)$

$\equiv$ $\frac{\overline{V}\sqrt{b_{1}b_{2}}}{4e^{\delta}\beta^{3/4}}{\rm Re}(\exp(\frac{(\gamma+i\mathrm{z})^{2}}{4\beta})\mathrm{D}_{-3/2}(-\frac{\gamma+\mathrm{i}\mathrm{z}}{\sqrt{\beta}})\mathrm{e}^{\mathrm{i}\theta}$

$+ \exp(\frac{(-\gamma+iz)^{2}}{4\beta})D_{-3/2}(-\frac{-\gamma+iz}{\sqrt{\beta}})e^{-l\theta})$

$\equiv$ $\overline{V}\sqrt{\frac{1}{32\pi b_{1}b_{2}}}Re[(Q_{+}+Q_{-})]$ ,

$Q_{\pm}( \Phi,\psi)=\frac{e^{-i\frac{\pi}{4}-\sigma\pm i\chi}}{8\beta^{5/4}}(-\sqrt{\beta}\Gamma(-\frac{1}{4})1F_{1}(\frac{3}{4}, \frac{1}{2}, \frac{w_{\pm}^{2}}{4\beta})+w\pm\Gamma(\frac{1}{4})1F1(\frac{5}{4}, \frac{3}{2}, \frac{w_{\pm}^{2}}{4\beta}))$ ,
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Figure 1: Source function $F$ for Gaussian perturbation.
The form of the source is determined by (3.16) where $\overline{V}=10\mathrm{m},$ $a_{1}=0,$ $a_{2}=0,$ $b_{1}=$

$0.01\mathrm{k}\mathrm{m}^{-2},$ $b_{2}=0.005\mathrm{k}\mathrm{m}^{-2}$ , th $=0,$ $\delta=0$

where $\sigma=(b_{1}\alpha_{2}^{2}+b_{2}\alpha_{1}^{2})/(4b_{1}b_{2}),$ $\beta=(b_{1}\sin^{2}(\psi-\theta)+b_{2}\mathrm{c}o\mathrm{s}^{2}(\psi-\theta))/(4b_{1}b_{2}),$ $\gamma=$

$(b_{1}\alpha_{2}\sin(\psi-\theta)+b_{2}\alpha_{1}\cos(\psi-\theta))/(2b_{1}b_{2}),$ $w\pm=\pm\gamma+i\Phi,$ $1F_{1}($ . $)$ is hypergeometn$c$

Kummer function, $\Gamma$ is a gamma function (see Fig.1, Fig. 2).

Main conclusion: the phase in the neighborhood of the hont defines completely
a one parameter family of trajectories which generate the front. Further we remark
that, since the function $F$ decreases, we can expand in the formula (3.13) $|x|$ in a
neighborhood of the front, keeping in the expansion only the zero order term, and that
we can substitute the factor vla (the amplitude of the wave) with the term $\frac{1}{\sqrt\sqrt{gH}t}$ .
We want to find analogous formulas for the wave field in the case of negligible small
dispersion and for variable bottom.

4 Localized solutions to the wave equation
and asymptotic behavior of the wave field over
nonuniform bottom for very small dispersion

4.1 The wave equation, rays and wave fronts
In this section we start the analysis of the behavior of the amplitude of the wave when
the bottom is not constant. We use here well known objects and their characteris-
tics which one can find in books connected with the semiclassical asymptotic and ray
method, geometrical optics and wave fronts, Hamiltonian mechanics, catastrophe the-
ory etc. We try to collect here all necessary concepts and give their description in
elementary form. More complete presentations and details one can find in $[16]-[25]$ .
It is clear that in practice we have studied the solution of the wave equation in the
previous section. In order to construct a meaningful asymptotic theory we introduced
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Figure 2: Source function $F$ for “modulated” Gaussian perturbation.
The form of the source is determined by (3.16) where $\overline{V}=10\mathrm{m},$ $a_{1}=0,$ $a_{2}=0.1\mathrm{k}\mathrm{m}^{-1}$ ,
$b_{1}=0.01\mathrm{k}\mathrm{m}^{-2},$ $b_{2}=0.005\mathrm{k}\mathrm{m}^{-2},$ $\psi=0,$ $\delta=\pi/4$

there the small parameter
$\mu=\frac{l}{L}$ (4.1)

expressing the relationship among the characteristic size of the source and the char-
acteristic size of the basin. We begin introducing non dimensional variables in the
equations and scale using the characteristic depth of the basin $H_{0}$ . After we make
the change of variables $x’=x/L,$ $t’=t\sqrt{gH_{0}}/L,$ $H=H_{0}H’(x’)$ our equations and
initial data will take the form (1.2). Our asymptotic expansions will be done in term
of this parameter under the assumption $\mu<<1$ . To come back to original variables it
is enough to use the original variables $x,$ $t$ to change in final asymptotic formulas $\mu$ by
$l$ and in $(\mathit{4}\cdot \mathit{2})C(x)=\sqrt{H(x)}$ by $C(x)=\sqrt{gH(x)}$.

We assume that the source of the perturbation is localized in $x=0$ . It is easy to see
that finding the field far from the source, $|x|\gg l$ , is similar to find the asymptotic values
for $\muarrow 0$ in the problem (1.1). The problem now is to study the wave equation with
variable coefficient. The asymptotic values of the wave amplitude $\eta$ can be expressed by
means of the wave front formed by rays. It is a known fact that instead of the straight
rays one has to introduce curved rays and characteristics given by the one dimensional
family of trajectories $P(\psi, t),$ $X(\psi,t)$ of an appropriate Hamiltonian system. The ends
of the rays form the wavehont, a complicated closed curve probably with cusps and
self intersection points. In the considered situation these rays and characteristics are
determined in the following way.

We introduce the function $C(x)=\sqrt{H(x)}$ and, as before, let $\mathrm{n}$ be the unit vector
(3.15) directed as the external normal to the unit circle. Then the Hamilton system is:

$\dot{x}=\frac{p}{|p|}C(x)$ , $\dot{p}=-|p|\frac{\partial C}{\partial x}$ , $x|_{t=0}=0$ , $p|_{t=0}=\mathrm{n}(\psi)$ , (4.2)
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i.e. the family of trajectories $P(\psi, t),$ $X(\psi, t)$ going out from the point $x=0$ with unit
impulse $p=\mathrm{n}(\psi)$ . Let us indicate $C(\mathrm{O})=C_{0}$ . The Hamiltonian corresponding to (4.2)
is $\mathcal{H}=C(X)|p|$ . From the conservation of the Hamiltonian on the trajectories we have
the important equation

$|P|C(X)=C_{0}$ . (4.3)

The projections $x=X(\psi,t)$ of the trajectories on the plane $\mathbb{R}_{x}^{2}$ are called the rays.
Recall that the front in the plane $\mathbb{R}_{x}^{2}$ at the time $t>0$ is the curve $\gamma_{t}=\{x\in \mathbb{R}^{2}|x=$

$X(\psi,t)\},$ $[25,16]$ . The points on this curve are parameterized by the angle $\psi\in(0,2\pi]$ .
If in each point $x$ of the front $\gamma_{t}$

$T\psi\partial X_{-}\neq 0$ , then the front is a smooth curve. The points
where $T\psi\partial X=0$ are named focals, in these points the front looses its smoothness. In the
situation in which the focal points appear, (they are very interesting from the point of
view of tsunami), it is reasonable to introduce the concept of the hont in the phase space
$\mathbb{R}_{p,x}^{4}$ at the moment $t>0$ , i.e. the curve $\Gamma_{t}=\{p=P(\psi,t),x=X(\psi,t),\psi\in[0,2\pi]\}$ .
We note that at least one of the component of the vector $P_{\psi},X_{\Psi}$ is different from zero
and also the rays $x=X(t, \psi)$ are orthogonal to the front $\gamma_{t}:\langle\dot{X}, X_{\psi}\rangle=0$ see Lemma
3.

4.2 The wave field before critical times.
It is not difficult to check that a (possibly sufficiently small) $t_{1}$ exists such that, for any
$t,$ $t_{1}\geq t>\delta>0$ , there are no focal points in $\gamma_{t}$ . The first instant of time $t_{c\mathrm{r}}$ , in which
focal points are formed is called $c$ritical. Let us first write the solution before critical
times, larger than 6, when the front is already defined. In this case the asymptotic
solution is defined in the following way. We define a neighborhood of the hont for
sufficiently small (but independent of $\mu$) coordinates Cb, $y$ , where $|y|$ is the distance
among the point $x$ belonging to a neighborhood of the ffont and the front. For this aim
we will take $y\geq 0$ for the external subset of the front and $y\leq 0$ and for the internal
subset of the front. Then a point $x$ of the neighborhood of the hont is characterized
by two coordinates: $\psi(t, x)$ and $y(t, x)$ , where $\psi(t, x)$ is defined by the condition that
the vector $y=x-X(\psi,t)$ is orthogonal to the vector tangent to the hont in the point
$X(\psi,t)$ . Thus we have the condition $\langle y, X_{\psi}(\psi,t)\rangle=0$. Let us find the phase

$S(t, x)= \langle P(\psi(t,x),t), x-X(\psi(t, x), t)\rangle=\frac{C(0)}{C(X(\psi(t,x),t))}y=\sqrt{\frac{H(0)}{H(X(\psi(t,x),t))}}y$

The second equality is a consequence of the equation (4.3).
Now we state the first important theorem of this paper connecting the wave ampli-

tude with the initial perturbation $V(x)$ and the profile of the bottom and the integration
over the characteristics.

Theorem 1. For $t_{\mathrm{c}t}>t>\mathit{6}>0$ , in some neighborhood of the ffont $\gamma_{t}$ , not depending
on $\mu,$ $\eta$ , the asymptotic elevation of the flee surface, has the form:

$\eta==^{\sqrt{\mu}}|X_{\psi}(\psi, t)|\sqrt[4]{\frac{H(0)}{H(X(\psi,t))}}{\rm Re}[e^{-\frac{:\pi}{4}}F(\frac{S(t,x)}{\mu}, \mathrm{n}(\psi))]|_{\psi=\psi(t,x)}+O(\mu^{3/2})$ (4.4)

Outside this oegion $\eta=O(\mu^{3/2})$ . The function $F(z, \mathrm{n})$ is defined in (3.14).

In this way till the critical time the asymptotic elevation of the free surface is
completely defined by means of the trajectory, which forms the front of the wave, and
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of the function $V$ , corresponding to the source of the perturbation. Despite of the
simple and natural form of the asymptotic of $\eta$ , the proof of the formula (4.4) is not
trivial at all; the main step is the computation of the function $V$ , more exactly the proof
of the fact that the formula is the sam$e$ as in the case of constant bottom, if the right
choice of the rays is made. We will give below the necessary tools for a constructive
approach of the proof of this formula, in the meantime we now show some elementary
consequence of the equation (4.4). Since the phase $S(x, t)$ is equal to zero on the front
and $S(x, t)/\mu$ gets large going out from the front, then $\eta$ , as one could expect, decreases
enough quickly and the maximum of $|\eta|$ is attained in a neighborhood of the front. As
a consequence, $\eta$ can have some oscillations depending on the form of the source. The
second factor in (4.4) is the two dimensional analogue of the Green rule, well known in
the theory of water waves in the channels: the amplitude $\eta$ increases when the depth
decreases as the inverse of the fourth root of the depth $1/\sqrt{C(x)}=1/\sqrt[4]{H(x)}$ ; the
factor $1/\sqrt{|X_{\psi}|}$ is $\mathrm{c}\mathrm{o}n$nected to the divergence of the rays, in other words if a smaller
number of rays goes through a neighborhood of the point $X(\psi, t)$ , the smaller will be

$\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{p}\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{a},\mathrm{a}1\mathrm{s}\mathrm{o}\mathrm{w}\mathrm{e}11\mathrm{t}\mathrm{h}\mathrm{e}$
“

$\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$
”

$\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{w}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{u}\mathrm{d}\mathrm{e}\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{w}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{l}\mathrm{d}.\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\frac{C\mathrm{o}}{C(X(\psi(t,x),t,\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{n},\mathrm{o}i)}\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{e}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}1\mathrm{a}\mathrm{o}\mathrm{f}$

profile and the increase of its amplitude as the depth decreases. In fact the amplitude
increases because of the factor in hont of the function $V$ but also the phase $S(x, t)$

increases and this makes the wave profile narrower. This result explains the well know
fact that the wave length of the tsunami decreases when the wave approaches the coast
and that its amplitude increases. The same profile (i.e. a section of $\eta(x, t)$ for fixed $t$

and $\psi$ ) can depend on the way the trajectory (ray) intersects the initial perturbation
of the bottom at $t=0$. It is just this fact to give the dependence of the diagram of the
directions on two factors: the shape of the source and the angle of its intersection with
the ray passing through a given point of the front. For this reason, depending on the
form of the bottom, two rays going out with two very different angles, can arrive near
the same point of the front and contribute to the profile with very different amplitudes.
These effects can be well seen in Fig.3, Fig.4.

4.3 The structure and metamorphosis of wave profiles af-
ter critical time.
4.3.1 The Maslov index and metamorphosis of the wave proflle.

For $t>t_{\mathrm{c}\mathrm{r}}$ when the focal points appear, as it is well known in the wave theory,
the hont can have “angles” and sometimes the hont lines can have self intersection
points. The ends of the arcs corresponding to these angles are the focal points (or
backtracking or turning points). For $t>t_{\mathrm{c}\mathrm{r}}$ the front divides in some arcs $\sqrt{t}$ , indexed
by the number $j$ , separated by focal points. The internal points of these arcs are the
ends of the trajectories $P(\psi,t),$ $X(\psi, t)$ with the same topological structure. Namely
these equivalent trajectories cross the same numbers of focal points at times $t^{F}$ before
$t,$ $t^{F}<t$ . They are characterized, from the topological point of view, by the Maslov
index, an integer number m$(\psi, t)$ depending on th, $t$ . The Maslov index $m$ can be defined
on the regular points of the hont in different ways, we give below a more practical
definition of this important concept by means of a simple definition of its increments

in these points. Thus moving along the front $\gamma_{t}$ or along the trajectory $(P, X)$ after
crossing the focal point, the Jacobian can change its sign. Actually the Maslov index
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Figure 3: Tsunami spreading over bottom with bank-like mountain.
Amplitudes maxima are given in meters.
The depth of the bottom in [km] is $H(x_{1},x_{2})=4.5-4\exp[-(x_{1}/1\infty)^{2}-(x_{2}/1\infty-2)^{2}]$ .
The form of the source is determined by (3.16) where $\overline{V}=10\mathrm{m},$ $a_{1}=0,$ $a_{2}=0.1\mathrm{k}\mathrm{m}^{-1}$ , $b_{1}=$

$0.01\mathrm{k}\mathrm{m}^{-2},$ $b_{2}=0.\mathrm{N}5\mathrm{k}\mathrm{m}^{-2},$ $\psi=0,$ $\delta=\pi/4$

Figure 4: Tsunami spreading over the well with ridge.
Amplitudes maxima are given in meters.
The depth of the bottom in km] is $H(x_{1},x_{2})=1+d_{1}(x_{1}+50,x_{2}-1\mathrm{m})d_{2}(x_{1}+50,x_{2}-1w)$ ,
$d_{1}(x_{1}, x_{2})=1.3\mathrm{i}\mathrm{f}|x_{1}|<1\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{d}d_{1}(x_{1}, x_{2})=1.3-\mathrm{c}\mathrm{o}\mathrm{e}^{2}(\pi x_{1}/2W)\mathrm{i}\mathrm{f}|x_{1}|\geq 1\mathrm{m}$.
$d_{2}(x_{1}, x_{2})=2\cos^{2}(\pi(x_{1}^{2}+x_{2}^{2})^{1/2}/900)$ if $(x_{1}^{2}+x_{2}^{2})^{1/2}<450$ and $d_{2}(x_{1}, x_{2})=0$ otherwise. The form
of the source is determined by (3.16) where $\overline{V}=10\mathrm{m},$ $a_{1}=0,$ $a_{2}=0.1\mathrm{k}\mathrm{m}^{-1}$ , $b_{1}=0.01\mathrm{k}\mathrm{m}^{-2}$ ,
$b_{2}=0.\infty 5\mathrm{k}\mathrm{m}^{-2},$ $\psi=0,\mathit{6}=\pi/4$
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prescribes a receipt for assigning the correct sign to the square root of $J$ and it can be
defined in a way independent from the trajectories. But if we move along a trajectory
there is, in this problem, the nice and useful fact that the $\mathrm{M}\mathrm{a}s$lov index coincides with
the simpler Morse index. So, considering the trajectories arriving to $\sqrt{t}$ , we have that
the Morse index $m(\psi, t)$ of the point $x=X(\psi, t)\in \mathbb{R}_{x}^{2}$ is equal to the number of focal
points on the $tmjecto\eta p=P(\psi, \tau),$ $x=X(\psi,\tau),\tau\in(0, t)a7\gamma\dot{\eta}ving$ to $x=X(\psi, t)$ .
Note also that, as the time $t$ changes, the ends of the arcs $\sqrt{t}$ produce the entire set
of focal points. It is also a well known fact that these sets constitute the (space-time)
caustics which are the singularities of the projections of some Lagrangian manifold (we
denote it $M^{2}$ ) from the phase space $\mathbb{R}_{\mathrm{p},x}^{4}$ to the plane (configuration space) $\mathbb{R}_{x}^{2}$ .

Example 2.
Let us illustrate the concepts $e\varphi lained$ above by the example (considered in [$\mathit{9}J$ for

the scattering $pmblems$)$about$ the waves on an axially symmetrical bank described by
the depth function (see Fig. $S$)

$H=H(\rho),$ $\rho=\sqrt{x_{1}^{2}+x_{2}^{2}}$. (4.5)

In this case an additional integral enists

$p_{\varphi}=x_{1}p_{2}-x_{2}p_{1}$ (4.6)

and the Hamiltonian system $(\mathit{4}\cdot \mathit{5})$ is completely integrable.
We assume that the source is located in a neighborhood of the point $x_{1}=0,$ $x_{2}=$

$-\rho_{0}$ .
For each fixed time $t$ the front $\gamma_{t}$ is separated into two arcs: the first, a long one,

is $\gamma_{t}^{1}$ wzth self-intersection points, and the second, a short one, is $\gamma_{t}^{2}$ , located between
the angles on the frvnts. The union of the ends of the arc $\gamma_{t}^{2}$ for different times $t$ gives
a caustic. The arc $\gamma_{t}^{1}$ consists of the ends of trajectories (rays) utthout focal points on
them (except $t=0$). Thus the Jacobian $J(\psi,t)=\det(\dot{\mathrm{X}},\mathrm{X}_{\psi})(\psi,\tau)>0$ for fixed th and
for each $\tau\in(0,t]$ ; hence the Morse index $m(x\in\gamma_{t}^{1})=0$ . On the contrary the arc $\gamma_{t}^{2}$

consists of the final points of the trajectories (rays) which crvss one focal point at the
time $t=t_{F}(\psi),0<t_{F}(\psi)<t$ when they touch the caustic. In this $\omega se$ before $t_{F}(\psi)$

$J>0,$ $J(\psi,t_{F}(\psi))=0$ , and $J<0$ for $t>t_{F}(\psi)$ . Hence $m(x\in\gamma_{t}^{2})=1$ .
Now let us fix the time $t$ and move along the &ont $\gamma\iota$ . Then after the passage through

the focal points the $\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}-\pi/4$ in formula (4.4) increases by a $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{y}-\pi/4\pm\pi/2$,
$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\pm 1$ is the jump of the Maslov index. Finally after passing through several focal
points instead of the factor $e^{-\frac{i\pi}{4}}$ one has the factor $e^{-\frac{1l}{4}-\frac{1\# m(\psi,l\}}{2}}$ . The number $m$ is
defined mod4. The appearance of this new factor produces crucial changes of the form
of the wave prvfile in the formula (4.7) i.e. in the function $\mathrm{R}\epsilon(\mathrm{e}^{-\mathrm{g}_{-i}}‘\yen \mathrm{F})$. This fact
is analogous to the well known metamorphosis of the discontinuity in the theory of
hyperbolic systems (see e.g. [10, 17, 21]), and the formula (4.7) describes explicitly the
appearance of the same fact in the case of localized initial perturbations.

Let us present the formula for the wave amplitude in a neighborhood of the front
but outside of some neighborhood of the focal points. As we have just seen in the
previous example, points of self-intersection can appear for $t>t_{\mathrm{c}\mathrm{r}}$ . The amplitude of
the wave in a point $x$ belonging to a neighborhood of these points now is the sum of
the contributions coming from different $\psi_{j}(x, t),$ $y_{j}(x, t)$ , and $S_{j}(x,t)$ with index $j$ , and
with the Maslov index $m(\psi_{j}(x, t),t)$ (see Fig.3, Fig.4).
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Theorem 2. In a neighborhood of the front but outside of some neighborhood of the
focal points the wave field is the sum of the fields

$\eta=\sum_{j}\{=^{\sqrt{\mu}}|X_{\psi}(\psi, t)|\sqrt[4]{\frac{H(0)}{H(X(\psi,t))}}{\rm Re}[e^{-\frac{i\pi}{4}-\frac{i\pi m}{2}}F(\frac{S_{j}(x,t)}{\mu}, n(\psi))]\}|_{\psi=\psi_{j}(x,t)}+O(\mu^{3/2})$.

(4.7)

Outside this neighborhood of the front $\gamma_{t}$ $\eta(x, t)=O(\mu^{3/2})$ . Again the function
$F(z, \mathrm{n}(\psi))$ is determined in (3.14).

Let us emphasize that the number $m$ has a pure topological and geometrical char-
acter and can be calculated without any relation with the asymptotic formulas for the
wave field. Firom the theorem 2 it follows that, in order to construct the wave field at
some time $t$ in a point $x$ , one has to know only the initial values $\eta|_{t=0}$ and $\eta_{t}|_{t=0}$ and
has not to know the wave field $\eta$ for all previous time between $0$ and $t$ . The trajectories
and the Maslov (Morse) index take into account all metamorphosis of the wave field
during the evolution $\mathrm{h}\mathrm{o}\mathrm{m}$ time zero until time $t$ .

4.4 Wave field asymptotic in a neighborhood of focal
point
4.4.1 Completely non degenerate focal points and coordinate system
Now we consider the situation when for some $t$ the point $(P^{F}, X^{F})$ $=$

$(P(\psi^{F}(t), t),X(\psi^{F}(t), t))$ corresponding to the angle $\psi^{F}(t)$ is a focal one. In this point
$X_{\psi}=0$ and one has to use another asymptotic representation for the solution. Roughly
speaking the neighborhood of the point $X(\psi^{F}(t), t)$ on the plane $\mathbb{R}_{x}^{2}$ can include several
arcs of $\gamma_{t}$ with the angles $\psi$ different from $\psi^{F}(t)$ . This means that one has to take into
account the contribution of all of these arcs in the final formulas for $\eta$ in the neighbor-
hood of the point $x=X(\psi^{F}(t), t)$ . The influence of nonsingular points are defined by
formula (4.7) and the influence of the points from the neighborhood of the focal points
are described by formulas (4.14) given below. Thus it is necessary to enumerate the
focal points with nearby projections and write $P(\psi_{j}^{F}(t), t),$ $X(\psi_{j}^{F}(t), t)$ . These points
have the same position $X^{F}=X(\psi_{j}^{F}(t), t)$ , but different momentum $P^{F}=P(\psi_{j}^{F}(t), t)$ .
To simplify the notations we discuss here the influence on $\eta$ of only one focal point
omitting the subindex $j$ but keeping $P^{F}$ .

We present the corresponding formula under the assumption that some derivative

$X_{\psi}^{(n)F}= \frac{\partial^{n}X}{\partial\psi^{n}}(\psi^{F}(t),t)\neq 0$ , (4.8)

and the derivatives $X_{\psi}^{(k)F}=0$ for $1\leq k<n$ . It means that this focal point is not
completely degenerate. For future convenience we introduce the “mixed” Jacobian

$\overline{J}=\det(\dot{X}, P_{\psi})(\psi, t)=\frac{C^{2}(X)\det(P,P_{\psi})}{C_{0}}(\psi, t)$ (4.9)

and some characteristics of the focal point $(P^{F}, X^{F})$ :

$C_{F}=C(X^{F}), \dot{X}^{F}=\dot{X}(\psi^{F}(t),t)=\frac{P^{F}C_{F}^{2}}{C_{0}},$ $P_{\psi}^{F}=P\psi(\psi^{F}(t),t)$ ,

$\overline{J}_{F}=\det(\dot{X}^{F}, P_{\psi}^{F})=\frac{C_{F}^{2}\det(P,P_{\psi})}{C_{0}},$ $J_{F}^{(n)}=\det(\dot{X}^{F}, X_{\psi}^{(n)F})$ . (4.10)
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Again the topological characteristic appears, i.e. the Maslov index of this focal
point or its neighborhood (it is the same), but now it depends on the choice of the
coordinates in the neighborhood of $(P^{F}, X^{F})$ . It is natural to choose the new coordi-
nates $(x_{1}’, x_{2}’)$ associated with the nonzero vector $\dot{X}^{F}=\dot{X}(\psi^{F}(t), t)$ ; namely we assume
that the direction of the new vertical axis $x_{2}’$ coincides with the vector $X^{F}$ . We put
$\mathrm{k}_{2}={}^{t}(k_{21}, k_{22})=\dot{X}^{F}/|\dot{X}^{F}|=\dot{X}^{F}/C_{F}=P^{F}C_{F}/C_{0},$ $\mathrm{k}_{1}={}^{t}(k_{11}, k_{12})=(k_{22}, -k_{21})$ and
introduce the new coordinates $p’,$ $x’$ in the neighborhood of $(P^{F}, X^{F})$ in the phase
space $\mathbb{R}_{p,x}^{4}$ by the formulas:

$x_{1}’= \langle \mathrm{k}_{1}, x-X^{F}\rangle=-\frac{\det(\dot{X}^{F},x-X^{F})}{C_{F}}=-\frac{C_{F}}{C_{0}}\det(P^{F}, x-X^{F})$ ,

$x_{2}’= \langle \mathrm{k}_{2}, x-X^{F}\rangle=\frac{\langle\dot{X}^{F},x-X^{F}\rangle}{C_{F}}=\frac{C_{F}}{C_{0}}\langle P^{F}, x-X^{F}\rangle$ ,

$p_{1}’=\langle \mathrm{k}_{1,p}\rangle,$ $p_{2}^{j}=\langle \mathrm{k}_{2,p}\rangle$ . (4.11)

It is easy to see that

$\det(_{x_{2}^{1}}^{P}:’,$ $X_{2\psi}P_{1\psi)}’,=\overline{J}_{F}$ . (4.12)

4.4.2 The Maslov index of a focal point.

Since the determinant $\overline{J}\neq 0$ in the $\mathrm{f}\mathrm{o}\mathrm{c}\mathrm{a}1_{-}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}(P^{F}, X^{F})$ , the same inequality takes
place in some of its neighborhood, thus $J$ has a constant sign. On the contrary the
Jacobian $J$ changes sign in this neighborhood. We define the Maslov index $\mathrm{m}(P^{F}, X^{F})$

of the non (completely) degenerate focal point $(P^{F}, X^{F})=(P, X)(\psi^{F}(t), t)$ as the index
$m(\overline{P},\overline{X})(\psi,t)$ of a regular point $(\overline{P},\tilde{X})=(P,X)(\overline{\psi},\overline{t})-$ in the neighborhood of $(P^{F},X^{F})$

such that the signs of the determinants $J(\psi,\overline{t})$ and $\tilde{J}(\overline{\psi},\overline{t})$ coincide. For instance one
can choose $\overline{\psi}=\psi^{F}(t),\overline{t}=t\pm\delta$, where delta is small enough. This means that we
compare the sign of $J$ with the sign of $\overline{J}$ on the trajectory $(P, X)$ crossing the curve
$\Gamma_{t}$ in the focal point $(P^{F}, X^{F})$ before and after this crossing.

4.4.3 The model functions and the wave profile in a neighborhood of
the focal point.

Now we present the formulas for the wave field in the neighborhood of a focal point
$x=X^{F}$ . Let us put $\sigma=\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(\tilde{J}_{F}J_{F}^{(n)})$ and introduce the function (or more precisely
the linear operator acting to the source function $V(y_{1}, y_{2}))$

$g_{n}^{\sigma}(z_{1}, z_{2}, \psi)=\int_{-\infty}^{\infty}d\xi\int_{0}^{\infty}\rho d\rho\overline{V}(\rho \mathrm{n}(\psi))\exp\{i\rho(z_{2}-\xi z_{1}-\sigma\frac{\xi^{n+1}}{(n+1)!})\}$

$=$ $\int_{-\infty}^{\infty}d\xi\int_{0}^{\infty}\sqrt{\rho}d\rho\tilde{f}(\rho \mathrm{n}(\psi))\exp\{i\rho(z_{2}-\xi z_{1}-\sigma\frac{\xi^{n+1}}{(n+1)!})\}$ . (4.13)

We put

$z_{1}^{F}$ $=$
$\frac{x_{1}’}{\mu^{\frac{n}{n+1}}}\frac{\tilde{J}_{F}}{|\tilde{J}_{F}J_{F}^{(n)}|^{\frac{1}{n+1}}C^{\frac{n}{Fn-1}}}\equiv-\frac{\det(P^{F},x-X^{F})}{C_{0}C^{\frac{1}{Fn-1}}\mu^{\frac{n}{n+1}}}\frac{\overline{J}_{F}}{|\overline{J}_{F}J_{F}^{(n)}|^{\frac{1}{n+1}}}$ ,

$z_{2}^{F}$ $=$ $\frac{x_{2}’}{\mu}\frac{C_{0}}{C_{F}}\equiv\frac{\langle P^{F},x-X^{F}\rangle}{\mu}$
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Theorem 3. In a neighborhood of the front $\gamma_{t}$ each focal point $(P^{F}, X^{F})$ gives the
following contnbution to the asymptotic values of the solution $\eta$

$\eta^{F}=\mu^{\frac{1}{n+1}}\{\frac{\sqrt{C_{0}|\overline{J}_{F}|^{\frac{n-1}{n+1}}}}{|J_{F}^{(n)}|^{\frac{1}{n+1}c_{F}}}{\rm Re}[\mathrm{e}^{-\mathrm{i}\frac{\pi}{2}\mathrm{m}(\mathrm{P}^{\mathrm{F}},\mathrm{X}^{\mathrm{F}})}\mathrm{g}_{\mathrm{n}}^{\sigma}(\mathrm{z}_{1}^{\mathrm{F}}, \mathrm{z}_{2}^{\mathrm{F}}, \psi^{\mathrm{F}})]+\mathrm{O}(\mu)\}$ . (4.14)

If several arcs of $\gamma_{t}$ belong to the neighborhood of the point $x$ , then one needs to sum
over all the cortesponding functions (4.14) and (4.7).

5 The geometric base of the asymptotic theory:
Lagrangian manifolds, the Maslov and Morse in-
dices.
The aim of the next section is the discussion of the geometrical objects appearing in
Theorems 1-3. Let us first recall the geometrical concepts and the important properties
of the Hamiltonian system (4.2), in order to give an asymptotic solution to problem
(4.2) including the behavior in a neighborhood of the focal points, initial moment of
time, calculation of the Maslov and Morse indices etc. The majority of these con-
structions and properties are well known, we present them in the most simple form
and collect them in our paper for giving a self-contained treatment. An exhaustive de-
scription of the wave fronts and the focal points, their connection with the ray method
and the semiclassical asymptotic, can be found for instance in [25, 20, 16, 18]. There
exist different equivalent definitions of the Maslov index; one of the aims of the next
subsection is to recall the definition $\mathrm{h}\mathrm{o}\mathrm{m}[26,17,28]$ which, in our opinion, is more
suitable for concrete calculations.

5.1 Lagrangian manifolds $(” \mathrm{b}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{s}")$ and their properties.
As we have already said, taki$n\mathrm{g}$ into account the fact that after the appearance of
the focal points the front line can intersect itself, it is convenient to add to the point
$x=X(\psi, t)$ the corresponding momentum component $p=P(\psi, t)$ , and consider the
point $\mathrm{r}=\mathrm{r}(\psi,t)=(P(\psi, t),X(\psi,t))$ in the 4 dimensional phase space $\mathbb{R}_{p,x}^{4}$ . Each
point $\mathrm{r}(\psi,t)$ is completely defined by its coordinates, which are the angle Cb (defined
mod $2\pi$) and the “proper time” $t$ .

Fixing the angle th we obtain the trajectories ( $\mathrm{b}\mathrm{i}$-characteristics) of the Hamiltonian
system (4.2) in the phase space $\mathbb{R}_{\mathrm{p}_{1}x}^{4}$ , and, fixing the time $t$ , we obtain the front $\Gamma_{t}$ in
the phase space $\mathbb{R}_{\mathrm{p},x}^{4}$ . The projections of the trajectories from $\mathbb{R}_{p,x}^{4}$ to the configuration
space (plane) $\mathbb{R}_{x}^{2}$ are the rays. The projection of the curve $\Gamma_{t}$ from $\mathbb{R}_{\mathrm{p},x}^{4}$ to the config-
uration space (plane) $\mathbb{R}_{x}^{2}$ are the fronts $\gamma_{t}$ . Different points $\mathrm{r}(\psi_{j}, t)$ on $\Gamma_{t}$ can have the
same projection $x=X(\psi_{j},t)$ on $\gamma_{t}$ , but now we distinguish them by different angles
$\psi_{j}$ .

Let us fix some small number 6, independent of $\mu$ . According to [18] changing
both the angle th and the time $\tau\in(t-\delta,t+\delta)$ on the cylinder $\mathrm{S}\mathrm{x}(t-\mathit{6},t+\delta)$ we
obtain the 2-D Lagrangian manifold (with the boundary) $M_{1}^{2}=\{p=P(\psi,\tau),x=$

$X(\psi, \tau)|\psi\in \mathrm{S},\tau\in(t-\delta,t+\delta)\}$ ; the angle $\psi$ from the unit circle $\mathrm{S}$ and the time $t$

from $(t-\delta,t+\delta)\in \mathbb{R}$ are the coordinates on $M_{t}^{2}$ , sometimes we shall use the notation
$\alpha=\tau-t$ instead of the time $t$ . Actually the manifold $M_{t}^{2}$ has the structure of a
cylindrical “band” (or closed strip) with the width 26, thus we call it a Lagrangian
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band; of course it depends on $\delta$ , we omit this dependence to simplify the notation.
The family of Lagrangian bands $M_{t}^{2}$ is invariant with respect to the phase flow $g_{\mathcal{H}}^{t}$

$\mathrm{g}e$nerated by the system (4.2). This means that the point $\mathrm{r}(\psi_{j}, \tau)$ from $M_{t_{0}}^{2}$ shifted
by the action of the flow $g_{\mathcal{H}}^{t}$ gives again the point $\mathrm{r}(\psi_{j}, \tau+t)$ on $M_{t\mathrm{o}+t}^{2}$ but with the
shifted time $\tau+t$ . Due to definition the coordinate $\alpha$ does not change. That is why the
coordinate $\tau$ (corresponding to $t$ ) is called the proper time. Sometimes it is possible
to choose $\delta$ arbitrary large, even infinity (e.g. in the case $C=$ const). But in many
situation the set $\{p=P(\psi, \tau), x=X(\psi,\tau)|\psi\in \mathrm{S},\tau\in-\infty\}$ has the intersection points
(e.g. if the trajectories $P(\psi,$ $\tau),$ $x=X(\psi,$ $\tau)$ belong to the Liouville tori), and this set
is not even a manifold. But for our purpose it is enough to work with the “Lagrangian
band” $M_{t}^{2}$ only. Along with the general properties of Lagrangian manifolds, the band
$M_{t}^{2}$ has very useful additional ones. Let us present all of them for completeness.

Let us introduce the matrices

$B= \frac{\partial P}{\partial(t,\psi)}\equiv(\dot{P}, P\psi)$ , $C= \frac{\partial X}{\partial(t,\psi)}\equiv(\dot{X}, X_{\psi})$ .

Each column-vector $(_{X}^{P}:),$

$\delta\dot{x}=\mathcal{H}ffl\delta p+\mathcal{H}_{px}\delta x$ , $\dot{\delta}p=-(\mathcal{H}_{x\mathrm{p}}\delta p+\mathcal{H}_{xx}\delta x)$ (5.1)

It is easy to check that these vectors are linearly independent and obviously that the
first two vectors are tangent to $M_{t}^{2}$ .
Lemma 1. (see $e.g.[\mathit{1}7,\mathit{1}\mathit{8}J$) The following $prope\hslash ies$ are true:

$l)the$ rank of the matrix

$M_{t}^{2}$ is 2.
$\mathit{2})^{t}BC={}^{t}CB$ which means that $M^{2}$ is Lagrangian,
$\mathit{3})for$ any positive $\epsilon$ the matrix $C-i\epsilon B$ is not degenerate.

PROOF. The first two propositions follow from the properties of the variational
system. They hold for $t=0$ because $B=(-\nabla C(\mathrm{O}), \mathrm{n}_{1}),C=(C(\mathrm{O})\mathrm{n},0)$ where
$\mathrm{n}\perp={}^{t}(-\sin\psi, \cos\psi)$ . In this argument we use the definition of the trajectories $(P, X)$ ,
namely the property $P|_{t=0}=\mathrm{n}(\psi),$ $X|_{t=0}=0,$ $\mathrm{n}=$ ($\cos$ Cb, $\sin\psi$). Thus according to

the variational system (5.1) the vector columns $(_{X}^{P}:)$ an$\mathrm{d}$ are linearly indepen-

dent for each $t$ which gives 1). 2) Follows from a direct calculation: $(^{t}BC-{}^{t}CB)_{ii}=0$

for $i=1,2$ an$\mathrm{d}$

$(^{t}BC-{}^{t}C \mathcal{B})_{12}=(^{t}BC-{}^{t}CB)_{21}=-|p|\frac{\partial C}{\partial\psi}-C\frac{\partial|p|}{\partial\psi}=-\frac{\partial|p|C}{\partial\psi}=0$

since $|p|C(x)$ is the Hamiltonian. To prove 3) assume that $C-i\epsilon B$ is degenerate, then
there exists a 2-D vector $\xi\neq 0$ such that $C\xi=i\epsilon B\xi$ . Consider the (complex) scalar
product

$0$ $=$ $<\xi,$ $(^{t}BC-{}^{t}CB)\xi>_{\mathrm{C}}=<B\xi,C\xi>_{c}-<C\xi,$ $B\xi>_{\mathrm{C}}$

$=$ $i( \epsilon<C\xi,C\xi>_{c}+\frac{1}{\epsilon}<B\xi, B\xi>_{c})=0$.

From this equation it follows that both $B\xi=0,C\xi=0$ which contradicts 1). $\square$

The same considerations allow one to obtain a similar result.
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Lemma 2. The propositions of the previous Lemma concerning the matrices $B,C$ are
true if one changes the mat$7\dot{\mathrm{v}}x\mathcal{B}$ by the matrix

$\tilde{B}=(\dot{P}-\lambda P, P_{\psi})$ ,

where $\lambda=\langle C_{x}(0), \mathrm{n}(\psi)\rangle$ .
Let us recall that the points $x=X(\psi^{F},t)=X^{F}$ on $M_{t}^{2}$ where the Jacobian

$J\equiv\det C\equiv\det(\dot{\mathrm{X}},\mathrm{X}_{\psi})=0$

are the focal points 1. Since the manifold $M_{t}^{2}$ is generated by the curves $\Gamma_{t}$ as well
as by the trajectories $(P,X)$ each focal point of one of these objects simultaneously is
a focal point for the other ones. Later we shall show that this definition of the focal
points coincides with the definition, based on the equality $X\psi=0$ , used in the previous
sections.

Let us fix a time $t$ and consider the smooth curve $\Gamma_{t}=\{p=P(\psi, t), x=X(\psi,t)\}$

on $M_{t}^{2}\in \mathbb{R}_{p,x}^{4}$ (the “time cut” of $M_{t}^{2}$ ). Then obviously the front $\gamma_{t}=\{x=X(\psi,t)\}$

is nothing but the projection of $\Gamma_{t}$ to $\mathbb{R}_{x}^{2}$ . Hence the focal points on the front are also
the focal points of the manifold $M_{t}^{2}$ , and $\mathrm{h}\mathrm{o}\mathrm{m}$ this point of view the caustics of $M_{t}^{2}$

are called space-time ones.

Lemma 3. The vector-functions $\dot{X}$ and $X\psi$ as well as vector-functions $P$ and $X\psi$ are
orthogonal: $\langle\dot{X},X_{\psi}\rangle=\langle P,X\psi\rangle=0$.

PROOF. According to system (4.2) the vectors $P$ and $\dot{X}$ are parallel and it is enough
to prove the second equality. Let us differentiate $\langle P, X_{\psi}\rangle$ along the trajectories of the
system (4.2). We have

$\frac{d}{dt}\langle P, X_{\psi}\rangle$ $=$ $\langle\dot{P}, X_{\psi}\rangle+\langle P,\dot{X}_{\psi}\rangle$

$=$ $-|P| \langle C_{x}, X_{\psi}\rangle+\frac{C^{2}}{C_{0}}\langle P, P_{\psi}\rangle+\frac{\partial C^{2}}{\partial\psi}\frac{1}{C_{0}}\langle P, P\rangle$ (using 4.3)

$-|P| \frac{\partial C}{\partial\psi}+\frac{1}{2C_{0}}\frac{\partial(C^{2}P^{2})}{\partial\psi}+\frac{C|P|}{C_{0}}|P|\frac{\partial C}{\partial\psi}$

$-|P| \frac{\partial C}{\partial\psi}+\frac{1}{2C_{0}}\frac{\partial(C_{0}^{2})}{\partial\psi}+|P|\frac{\partial C}{\partial\psi}=0$ .

But $X|_{t=0}=0$ , thus $\langle P,X_{\psi}\rangle|_{t=0}=0$ and Lemma is proved. $\square$

Corollary. 1) The following equality is true $J=\det(\dot{\mathrm{X}},\mathrm{X}_{\psi})=\pm|\dot{\mathrm{X}}||\mathrm{X}_{\psi}|$ . $\mathit{2}$) The point
$x=X(\psi,t)$ on the frvnt $\gamma_{t}$ , or the point $\mathrm{r}=(p=P(\psi, t),$ $x=X(\psi, t))$ on $\Gamma_{t}\in M_{t}^{2}$ is
a focal one if and only if $J=\det(\dot{\mathrm{X}}, \mathrm{X}_{\psi})=0$ .

According to the equality $|\dot{X}|=C(X)J=\det(\dot{\mathrm{X}}, \mathrm{X}_{\psi})$ as well as the Jacobian in
some neighborhood of $\gamma_{t}$ can be equal to zero if and only if $X_{\psi}=0$ . Thus the last
equation $\mathrm{r}e$ally determines the focal points from the point of view of the Lagrangian
manifold also.

Lemma 4. In the focal point $x=x^{F}=X(\psi^{F}, t)\mathit{1})\langle P^{F}, P_{\psi}^{F}\rangle=0$ , but 2) $P_{\psi}^{F}\neq 0,\mathit{3}$)
$\underline{\tau_{t}-=\neq djc_{\mathrm{O}}^{2}\det(\dot{\mathrm{X}}^{\mathrm{F}},\mathrm{P}_{\psi}^{\mathrm{F}}),}$where as it was before $C_{0}=C(0)$ and $C_{F}=C(X^{F})$ .

1Note that using $\mathrm{t}$.he Hamiltonian system we can change $\dot{X}$ by $P$ in last formula as well as in many
formulas containing $X$ .
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PROOF. According to the conservation law (4.3) $\langle P, P_{\psi}\rangle(\psi^{F}, t)$ $=$

$\langle\nabla(c^{C^{2}}*_{x}), X_{\psi}\rangle(\psi^{F}, t)=0$ . To prove the second inequality one can mention that
the vector-function $(P_{\psi}, X_{\psi})^{T}$ satisfies the linear (variational) system with non-zero
initial condition. Thus both components of the solution cannot be $e$qual to zero.
To prove 3) we write $\frac{dJ}{dt}|_{\psi=\psi^{F}}=[\det(\dot{\mathrm{X}},\dot{\mathrm{X}}_{\psi})+\det(\ddot{\mathrm{X}}, \mathrm{X}_{\psi})]_{\psi=\psi^{\mathrm{F}}}=$ using $4.3=$

$\det(\dot{\mathrm{X}}, \mathrm{P}<\nabla\frac{\mathrm{C}^{2}(\mathrm{X})}{\mathrm{c}_{0}}, \mathrm{X}\psi>)|_{\psi=\psi^{\mathrm{F}}}+\det(\dot{\mathrm{X}}, (\frac{\mathrm{P}_{\psi}\mathrm{C}^{2}(\mathrm{X})}{\mathrm{c}_{0}}))|_{\psi=\psi^{\mathrm{F}}}=\frac{\mathrm{C}_{\mathrm{F}}^{2}(\mathrm{X})}{\mathrm{c}_{0}}\mathrm{d}e\mathrm{t}(\dot{\mathrm{X}}, \mathrm{P}_{\psi})|_{\psi=\psi^{\mathrm{F}}}$ . $\square$

$\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{o}11\mathrm{a}\mathrm{r}\mathrm{y}.Inthefocalpoint\mathit{1})\frac{c}{}c_{0}L^{2}\mathit{2})duringthepassagethroughthe^{\frac{dJ}{f_{\mathit{0}}^{dt}}=\mathrm{d}e\mathrm{t}(\dot{\mathrm{X}},\mathrm{P}_{\psi})=\pm|\frac{\mathrm{C}^{2}(\mathrm{X}^{\mathrm{F}}}{ch^{0}\mathrm{c}}\dot{\mathrm{X}}||\mathrm{P}_{\psi}|(\psi^{\mathrm{F}},\mathrm{t})\neq 0_{f}}calpointtheJacobianJangesitssignfrom-$

.
to

$+if\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})|_{\psi=\psi^{\mathrm{F}}}>0$ and from $+to$ - if $\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})|_{\psi=\psi^{\mathrm{F}}}<0_{i}$ 3) There eaists
$t_{cr}$ such that $J(\psi,t)>0$ for $0<t<t_{cr}$ .

PROOF. To prove 3) it is enough to note that $\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})|_{\mathrm{t}=0}$ $=$

$\mathrm{C}(0)\det(\mathrm{n}(\psi), \mathrm{n}(\psi)_{\perp})=\mathrm{C}(0)$. $\square$

5.2 The Maslov and Morse indices.
As we said before the front $\gamma_{t}$ as well as the curve $\Gamma_{t}$ is partitioned into arcs with
the focal points at their ends and it is formed by the ends of trajectories having the
same topological structure. This means that they have similar crossing (on $M_{t}^{2}$ ) with
the focal points and the same topological characteristic, i.e. the Maslov index. But
the Maslov index coincides with the Morse index for the considered situation (see
subsection (4.3.1) $)$ . Let us prove this proposition.

Let us remind some necessary definitions and constructions. It is needless to
say that there exist several definitions of the Maslov index. The original definition
[16] is based on calculation of inertia indices of the matrices $\frac{\partial(x_{1},p_{2})}{\partial(x_{1},x_{2})}|_{M_{t}^{2}},$ $\frac{\partial(p_{1},x_{2})}{\partial(x_{1},x_{2})}|_{M_{t}^{2}}$ ,
$\frac{\partial(p_{1},x_{2})}{\partial(x_{1},p_{2})}|_{M_{t}^{2}}$ etc. It is not very convenient in practical calculation. Thus we want to
present below a definition[17, 26, 28] which, from our point of view, is more pragmatic
for computer calculations. We already pointed out that the $\mathrm{M}\mathrm{a}s$lov index of the points
on $x\in\gamma\iota$ is the index of the nonsingular point $\mathrm{r}(\psi, t)=(P(\psi, t),$ $X(\psi, t))$ on the
Lagrangian band $M_{t}^{2}$ . According to the procedure from [18, 26, 28] one needs to fix
the ind$e\mathrm{x}m^{0}$ in some marked nonsingular point $p=P(\psi_{0}, \zeta),$ $x=X(\psi_{0}, \zeta)$ on $M_{0}^{2}$

and then to find the change of the argument of the determinant of the $2\cross 2$ matrix
$\mathrm{c}_{\epsilon}^{(1,2)}=(C-i\epsilon B)\equiv(\dot{X}-i\epsilon\dot{P}, X_{\psi}-i\epsilon P_{\psi})$ alo$n\mathrm{g}$ one of the paths described below
joining the marked point $p=P(\psi_{0}, \zeta)$ , $x=X(\psi_{0}, \zeta)$ with the given nonsingular
point $p=P(\psi,t),$ $x=X(\psi, t)$ , more precisely

$m(\psi, t)=m(\psi_{0},t_{0})+\Delta m$ , $\Delta m=\frac{1}{\pi}\lim_{\epsilonarrow+0}$ Arg det $(\dot{\mathrm{X}}-\mathrm{i}\epsilon\dot{\mathrm{P}},\mathrm{X}\psi-\mathrm{i}\epsilon \mathrm{P}_{\psi})(\psi,\mathrm{t})|_{\psi 0,\mathrm{t}_{0}}^{\psi,\mathrm{t}}$.
(5.2)

IFMrom the definition (5.2) it follows the fact that we used before: the index can change
(jump.) only crossing a focal point. In fact, if the point $(\psi,t_{\psi})$ is a regular point then
$det(X, X_{\psi})$ is different from zero so the increment of the argument of the determinant
goes to zero when $\epsilon$ goes to zero, otherwise, if the determinant of $(\dot{X}, X_{\psi})=0$ , as it
happens in a focal point, then the increment of the determinant in (5.2) is different
from zero when $\epsilon$ goes to zero. We know (see Corollary from Lemma 4) that the
Jacobian $J=\det C(\psi, \zeta)>0$ for small enough positive $\zeta$ . Thus all the points $on$ the
front $\gamma_{\zeta}$ are nonsingular. So we choose one of the point $(P(\psi_{0}, \zeta),$ $X(\psi_{0}, \zeta))$ and put
the Maslov index $m(\psi_{0}, \zeta)=0$ . It is possible (and natural) to use one of the following

137



paths. 1) To move first along the trajectory $P(\psi 0, \tau),$ $X(\psi 0, \tau)$ starting from $\tau=\zeta$

until $\tau=t$ , then to move from the point $P(\psi_{0}, t),$ $X(\psi_{0}, t)$ along the curve $\Gamma_{t}$ to the
point $P(\psi, t),$ $X(\psi, t)$ changing the angle $\psi$ . As we will see below this choice is not
very convenient from the point of view of computer realization. The choice 2) is to
move first from the point with the angle $\psi_{0}$ to the point with the angle $\psi$ along the
curve $\Gamma_{\zeta}$ , and then to move along the trajectory with the angle $\psi$ , changing time ffom
$\zeta$ to $t$ .

It could happen that during the motion along some closed path on $M_{t}^{2}$ one can
get nontrivial increments of the argument of the determinant of the matrix $\mathbb{C}_{\epsilon}^{(1,2)}=$

$(C-i\epsilon \mathcal{B})\equiv(\dot{X}-i\epsilon\dot{P}, X_{\psi}-i\epsilon P_{\psi})$ and nontrivial Maslov index of this closed path.
The following lemma shows that it is not so.

Lemma 5. The increment of argument of the determinant of the matrix $\mathbb{C}_{\epsilon}^{(1,2)}=$

$(C-i\epsilon B)\equiv(\dot{X}-i\epsilon\dot{P}, X_{\psi}-i\epsilon P_{\psi})$ along any closed path on $M_{t}^{2}$ is equal to zero. Thus
the Maslov index of any closed path on $M_{t}^{2}$ is also equal to zero.

PROOF First let us show that Lemma is true for $t=0$ . Obviously all closed paths
on $M_{0}^{2}$ are homotopic one to another. Let us choose as a path the curve $\Gamma_{\zeta},$ $\delta>\zeta>0$ .
According to Corollary from Lemma 4 the Jacobian $J=\det C(\psi, \zeta)>0$ for $\zeta$ small
enough. Thus the increment of the argument of the determinant of the matrix $C-i\epsilon B$

over $\Gamma_{\zeta}$ is zero and Maslov index of this path is also zero. Hence, according to the
topological property of Maslov index, it is equal to zero for any other closed path on
$M_{0}^{2}$ . Any path on $M_{t}^{2}$ can be obtained from some path from $M_{0}^{2}$ by means of the
canonical transformation (the flow) $g_{\mathcal{H}}^{t}$ . But this transformation preserves the Maslov
index of a closed path. $\square$

Taking into account this Lemma, choosing the second way for the calculation of the
Maslov index and putting $m(\psi_{0}, \zeta)=0$ for some small positive $\zeta<\mathit{6}$ and some fixed
fixed $\psi_{0}$ , (and hence for any $\psi$ ) we can write for the index $m(\psi, t)$ :

$m(\psi,t)=\Delta m$ , $\Delta m=\frac{1}{\pi}\lim_{\epsilonarrow+0}\mathrm{A}\mathrm{r}\mathrm{g}\det(\dot{\mathrm{X}}-\mathrm{i}\epsilon\dot{\mathrm{P}}, \mathrm{X}_{\psi}-\mathrm{i}\epsilon \mathrm{P}_{\psi})(\psi,\mathrm{t})|_{\psi,\zeta}^{\psi,\mathrm{t}}$ . (5.3)

The Corollary of Lemma 3 allows us (in the considered problem) to simplify the defi-
nitio$n(5.2)$ . Let us analyze the determinant

$\det(\dot{\mathrm{X}}-i\epsilon\dot{\mathrm{P}},\mathrm{X}\psi-\mathrm{i}\epsilon \mathrm{P}\psi)(\mathrm{t}, \psi)$

$=$ $\det(\dot{\mathrm{X}},\mathrm{X}\psi)-\mathrm{i}\epsilon\det(\dot{\mathrm{X}}, \mathrm{P}\psi)$ -iedet $(\dot{\mathrm{P}},\mathrm{X}_{\psi})-\epsilon^{2}\det(\dot{\mathrm{P}}, \mathrm{P}_{\psi})$ . (5.4)

Since $\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})$ is not equal to zero and the term $\det(\dot{\mathrm{P}}, \mathrm{X}_{\psi})=0$ in the focal
point, then the third term of equation (5.4) can be omitted. Similarly taking into
account the fact that the jump of the index is $an$ integer number it easy to show that
the term $\epsilon^{2}\det(\dot{\mathrm{P}}, \mathrm{P}_{\psi})$ does not play any role in the calculation of $\Delta m$ and also can
be omitted. Thus instead of the determinant $\det(\dot{\mathrm{X}}-\mathrm{i}\epsilon\dot{\mathrm{P}}, \mathrm{X}_{\psi}-\mathrm{i}\epsilon \mathrm{P}_{\psi})(\mathrm{t}, \psi)$ we can use
the determinant $\det(\dot{\mathrm{X}},\mathrm{X}_{\psi}-\mathrm{i}\epsilon \mathrm{P}_{\psi})(\psi,\mathrm{t})$ .

Thus one needs to found the jumps of $m$ during the crossing of the focal points and
find

$\Delta m=\frac{1}{\pi}\lim_{\epsilonarrow+0}\mathrm{A}\mathrm{r}\mathrm{g}\det(\dot{\mathrm{X}},\mathrm{X}_{\psi}-\mathrm{i}\epsilon \mathrm{P}_{\psi})(\psi,\tau)|_{\tau=\mathrm{t}\psi-\Delta \mathrm{t}}^{\tau=\mathrm{t}\psi+\Delta \mathrm{t}}$, (5.5)

where $\Delta t>0$ is small enough, and $t\psi$ is the time at which the trajectory crosses the
focal point (with coordinates th, $t_{\psi}$ ) $\mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h}$ the angle $\psi$ . There may exist several such $t_{\psi}$ ,
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but all of them, according to the point 1 of the Corollary of Lemma 3, are isolated
with respect to $t$ . In fact the derivative of the Jacobian is different from $0$ in a focal
point so the Jacobian has an isolated zero and so those zeros cannot accumulate in one
point. Now we use again this Corollary. Obviously we can change $\tau$ with $t^{F}$ in the
right $\mathrm{h}\mathrm{a}n\mathrm{d}$ side of (5.5). But the term $\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})(\psi^{\mathrm{F}}, \mathrm{t}^{\mathrm{F}})$ characterizes the increasing
or decreasing of the first term. Hence if $\det(\dot{\mathrm{X}}, \mathrm{P}\psi)(\psi^{\mathrm{F}}, \mathrm{t}^{\mathrm{F}})<0$, then the argument of
the complex vector in (5.5) changes $on$ the upper half plane from $O(\epsilon:)$ to $\pi+O(\epsilon)$ and
$\Delta m=1$ . If $\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})(\psi^{\mathrm{F}}, \mathrm{t}^{\mathrm{F}})>0$ then the argument of the vector in (5.5) changes
from $\pi+O(\epsilon)$ to $2\pi+O(\epsilon)$ and again $\Delta m=1$ . Thus we obtain the following important
result.

Lemma 6. The Maslov index $m(\psi, t)$ of any nonsingular point $(p=P(\psi, t),$ $x=$
$X(\psi, t))\in\Gamma_{t}$ with the projection $x=X(\psi, t)$ on the flont is equal to number of focal
points lying on the trajectory $P(\psi, \zeta),X(\psi, \zeta)$ , $( \in(+0, t),$ $i.e$ . it coincides with the
Morse index of this trajectory.

5.3 The behavior of the front near the focal points.
For the future developments it is useful to have the description of the wave front $\gamma_{t}$ in
$a$ $n$eighborhood of the focal points. The focal points which are ends of arcs $\not\simeq_{t}$ of the
wavefront belong to the caustics, a well known concept in geometrical optics and in
the space-time wave theory. It is an important fact that in our problem the caustics
do not depend on the time because the family of manifolds (bands) $M_{t}^{2}$ is invariant
with respect to the phase shift $g_{\mathcal{H}}^{t}$ . One may distinguish two types of sets organized
by the focal points with stable and unstable structures with respect to small changes
of the Lagrangian manifold $M_{t}^{2}$ (or of the functions $X(\psi,$ $t),$ $P(\psi,$ $t)$ ). The first type is
under the so-called “general position”, there exist only a finite numbers of them and
in the considered 2-D situation namely there are only two types: the so-called fold and
cusp[25]. Sometimes there exist also different focal sets with unstable structure. For
instance the circle $\Gamma_{0}=p=\mathrm{n}(\psi),$ $x=0$ on $M_{0}^{2}$ , has the point $x=0$ as the projection
$\Gamma_{0}$ from $M_{T}^{2}$ (or $\mathbb{R}_{p,x}^{4}$ ) to $\mathbb{R}_{x}^{2}$ . Rotating a little the coordinate system in $\mathbb{R}_{p,x}^{4}$ one can
obtain a small ellipse on $\mathbb{R}_{x}^{2}$ instead of the point $x=0$. We show below that namely
this “unstable singular” circle determines the localized functions in the asymptotic
constructions.

Taking into account the smoothness of the vector-functions $X(\psi, t)$ one can easily
describe the behavior of the wavefront near the focal points. Namely let us fix the
time $t$ and let $\psi^{F}=\psi^{F}(t)$ define the angle (coordinate on $\Gamma_{t}$ ) of the focal point
$X^{F}=X(\psi^{F}, t)$ . We put $y=\triangle\psi=\psi-\psi^{F}$ . Let $n\geq \mathit{2}$ be the minimum degree of
the Taylor expansion of the function $X$ around th with increment $y$ . We say that the
focal point $X^{F}$ is not complet$e1\mathrm{y}$ degenerate if $n\neq\infty$ . From the point of view of this
definition the point $p=P_{0}\equiv \mathrm{n}(\psi),$ $x=X_{0}=0$ is a complete degenerate one.

Shifting the origin into the focal point and rotating the coordinates we can “kill”
the second component of the $n$-th derivative vector $X_{\psi}^{(n)}(\psi^{F}(t), t)$ and write $x_{1}’=$

$ay^{n}+O(y^{n+1}),$ $x_{2}’=by^{k}+O(y^{k+1})$ . Here $a\neq 0,$ $b\neq 0$ are Taylor coefficients, the
integer $k>n$ and the prime indicates the new coordinates; actually $a$ and $b$ depend
on the time $t$ , but now for us it is not important. It is clear that the previous Lemmas
are true also in the new coordinates.

Lemma 7. In the non degenerate case only one opportunity is possible: $k=n+1$ .
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PROOF. In new coordinates

$X’=(_{by^{k}+O(y^{k+1})}^{ay^{n}+O(y^{n+1}))})$ , $X_{\psi}’=(_{bky^{k-1}+O(y^{k})}^{any^{n-1}+O(y^{n})})$ ,

Since the vector $P’$ is orthogonal to $X_{\psi}’$ everywhere, and, according to the conservation
of the Hamiltonian $\mathcal{H},$ $P’\neq 0$ , then we can write

$P’=q$and $P_{\psi}’=q$ ,

where the factor $q(t)\neq 0,$ $q\tilde{a}(t)$ is proportional to the Taylor coefficient just after $qa(t)$ .
Taking into account the point 1) of Lemma 4 we immediately find $\overline{a}(t)=0$ . But from
this it follows that if $n,$ $k\neq\infty$ and $k>n+1$ then in the focal point $P_{\psi}’=0$ which
contradicts the point 2) of Lemma 4. $\square$ .
Corollary. Let $n\neq\infty$ then in the neighborhood of the focal point $x=X^{F}$ in new
coordinates

$X’=(_{by^{n+1}+O(y^{n+2})}^{ay^{n}+O(y^{n+1}))})$ , $X_{\psi}’=(_{b(n+1)y^{n}+O(y^{n+1})}any^{n-1}+O(y^{n}))$ ,

$P’=q(^{-b(n+1)y+O(y^{2}))}an+O(y^{2}))$ , $P_{\psi}’=q$ , (5.6)

and

$\det(\dot{\mathrm{X}},\mathrm{X}\psi)=-\frac{\mathrm{q}\mathrm{a}\mathrm{n}}{|\mathrm{q}|}\mathrm{C}(\mathrm{X}^{\mathrm{F}})\mathrm{y}^{\mathrm{n}-1}+\mathrm{O}(\mathrm{y}^{\mathrm{n}})$ , $\det(\dot{\mathrm{X}}, \mathrm{P}\psi)=|\mathrm{q}|\mathrm{b}(\mathrm{n}+1)\mathrm{C}_{\mathrm{F}}+\mathrm{O}(\mathrm{y}),$ $(5.7)$

where it was before $C_{F}=C(X^{F})$ . The last two equalities do not depend on the choice
of the coordinates.

Thus in agreement with the Lemma 3 the determinant $\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})$ does not change
its sign in a neighborhood of a non degenerate focal point.

Finally in the non completely degenerate case, in a neighborhood of the focal point,
we have $X_{1}’=ay^{n}+O(y^{n+1}),$ $X_{2}’=by^{n+1}+O(y^{n+2}),$ $P_{1}’=-qb(n+1)y+O(y^{2}),$ $P_{2}’=$

$qan+O(y^{2})$ .
Omitting the higher corrections we find the equation for the part of the front $\gamma_{t}$ in

a neighborhood of the focal point $x^{F}:x_{1}’=ay^{n},$ $x_{2}’=by^{n+1}$ . The sign of $ab$ for odd $n$

and the sign of $a$ for even $n$ defines the direction of the passage from higher to lower
leaves for odd $n$ and $\mathrm{h}\mathrm{o}\mathrm{m}$ left to right leaves for even $n$ . Let us note also that in the
general case $n$ is equal to 2 $0.\mathrm{r}3$ only [25].

It is convenient to express the coefficients $a,$ $b,q$ via $P,X$ and their derivatives in
the focal point $\psi^{F}(t)$ . Putting in formulas (5.6) $y=0$ we find

$P_{1}’=0$ , $P_{2}’=qan$ , $P_{1\psi}’=-bq(n+1)$ , for $\psi=\psi^{F}(t)$ ,
and

$a= \frac{X_{1}^{\prime(n)}}{n!}\equiv\frac{1}{n!}\frac{\partial^{n}X_{1}’}{\partial\psi^{n}},$ $b=- \frac{P_{1\psi}’X_{1}^{J(n)}}{(n-1)!(n+1)P_{2}’},$
$q= \frac{P_{2}’(n-1)!}{X_{1}^{(n)}}$, for Cb $=\psi^{F}(t)$ .

The directions of the vectors $P$ and $\dot{X}$ coincide in the focal points. Thus we see that
the coordinates with index “prime” could be chosen to be the coordinates introduced
in (4.11). This gives: $P_{2}’=|P^{F}|\equiv\neq^{c_{F}}$ , $P_{1}’=\langle \mathrm{k}_{1}, P_{\psi}^{F}\rangle\equiv-\det(\dot{X}^{F},, P_{\psi}^{F})/C_{F}\equiv$

$-\overline{J}_{F}/C_{F}$ , $X_{1}^{\prime(n)}=\langle \mathrm{k}_{1}, X^{(n)F}\rangle\equiv-\det(\dot{X}^{F},X^{(n)F})/C_{F}\equiv-J_{F}^{(n)}/C_{F}$ and

$a=- \frac{J_{F}^{(n)}}{n!C_{F}},$ $b=- \frac{n\overline{J}_{F}J_{F}^{(n)}}{(n+1)!C_{F}C_{0}},$
$q=- \frac{C_{0}(n-1)!}{J_{F}^{(n)}}$ . (5.8)
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5.4 The jumps of the Maslov index along the front.
Let us find the jumps $\Delta m$ of the Maslov index during the passage through the focal
poi$n\mathrm{t}\mathrm{s}$ along the front. We fix the time $t>0$ and consider the path to cross non
degenerat$e$ focal poi$n\mathrm{t}\mathrm{s}$ (studied above) starting from the angle $\psi_{0}-\delta$ and ending at
the angle $\psi_{0^{-\ulcorner}}|\delta$.

Lemma 8. The following equal\’ities are true : for odd $n\triangle m=0$ , for even $n$ and
$\mathrm{s}\mathrm{i}_{1}(\overline{\mathrm{J}}_{\mathrm{F}}\mathrm{J}_{\mathrm{F}}^{(\mathrm{n})})=\pm 1\Delta \mathrm{m}=\pm 1$ .

PROOF. Similarly to the proof of Lemma 4, taking into account the inequality
$\det(\dot{\mathrm{X}},\mathrm{P}_{\psi})\neq 0$ instead of (5.2) we can write:

$\Delta m=\frac{1}{\pi}\lim_{\epsilonarrow+0}\mathrm{A}\mathrm{r}\mathrm{g}\det(\dot{\mathrm{X}},\mathrm{X}\psi-\mathrm{i}\epsilon \mathrm{P}\psi)(\psi, \mathrm{t})|_{\psi 0-\delta,\mathrm{t}}^{\psi 0+\delta,\mathrm{t}}=$ (5.9)

$\frac{1}{\pi}\lim_{\epsilonarrow+0}\mathrm{A}\mathrm{r}\mathrm{g}[-\mathrm{q}an\mathrm{C}(\mathrm{X}^{\mathrm{F}})\mathrm{y}^{\mathrm{n}-1}+\mathrm{O}(\mathrm{y}^{\mathrm{n}})-\mathrm{i}\epsilon(\mathrm{q}^{2}\mathrm{C}(\mathrm{X}^{\mathrm{F}})\mathrm{b}(\mathrm{n}+1)+\mathrm{O}(\mathrm{y}))]|_{\mathrm{y}=-\delta}^{\mathrm{y}=\delta}=$ (5.10)

$\frac{1}{\pi}\lim_{\epsilonarrow+0}\mathrm{A}\mathrm{r}\mathrm{g}[-\mathrm{y}^{\mathrm{n}-1}-\mathrm{i}\epsilon(\frac{\mathrm{q}\mathrm{b}(\mathrm{n}+1)}{\mathrm{a}\mathrm{n}})]|_{\mathrm{y}=-\delta}^{\mathrm{y}=\delta}$ . (5.11)

We see now that the complex vector-function-y $-i \epsilon(\frac{qb(n+1)}{a})$ lies in one half plane
for even values of $n$ for each $y$ and in one quadrant for odd values of $\mathrm{n}$ . So for $n$ even
one has $\Delta m=-1$ if $qab>0$ and $\Delta m=1$ if $qab<0$ while for $n$ odd $\Delta m=0$ . To
finish the proof it is enough to take into account formulas (5.8). $\square$

Coming back to the original variables we can make the following conclusion.

Lemma 9. During the motion along the ffont $\gamma_{t}$

1) the Maslov index does not change if the path does not cross the focal points or
if the Jacobian $J=\det(\dot{\mathrm{X}}, \mathrm{X}_{\psi})$ does not change the sign after the passage through the
focal point;

$\mathit{2})let$ the Jacobian $J=\det(\dot{\mathrm{X}},\mathrm{X}_{\psi})$ change sign after the passage through the focal
point then $\Delta m=1$ if the signs of $J=\det(\mathrm{X}, \mathrm{X}_{\psi})$ and $\tilde{J}=\det(\dot{\mathrm{X}}, \mathrm{P}_{-}\psi)$ coincide in the
end of the path and $\Delta m=-1$ if the signs of $J=\det$ $(\dot{\mathrm{X}}, \mathrm{X}_{\psi})$ and $J=\det(\dot{\mathrm{X}}, \mathrm{P}_{\psi})$ are
different.

5.5 Canonical planes in the phase space, nonsingular and
singular maps.
To construct the asymptotic solution of problem (1.1), (1.2) in the neighborhood of
the focal points we need some additional constructions, related with the fronts, maps
covering Lagrangian bands $M_{t}^{2}$ , indices of these maps etc. Let us describe also them
briefly, using the notations introduced in [28].

The 2-D planes with the focal coordinates $x^{(1,2)}=(x_{1}, x_{2}),$ $x^{(1,0)}=(x_{1},p_{2}),$ $x^{(0,2)}=$

$(p_{1}, x_{2}),$ $x^{(0,0)}=(p_{1},p_{2})$ in the phase space $\mathbb{R}_{p,x}^{4}$ are called symplectic canonical planes.
It is convenient to introduce the multi-indices $I=(1,2)$ corresponding to the canonical
plane $(x_{1}, x_{2}),$ $I=(1,0)$ to $(x_{1},p_{2}),$ $I=(\mathrm{O}, 2)$ to $(p_{1},x_{2}),$ $I=(\mathrm{O},0)$ to $(p_{1},p_{2})$ . $2$ We
denote also $p^{(1,2)}=(p_{1},p_{2}),$ $p^{(1,0)}=(p_{1}, -x_{2}),$ $p^{(0,2)}=(-x_{1},p_{2}),$ $p^{(0,0)}=(-x_{1}, -x_{2})$ .
We call $I$ the index of singularity. It is convenient to mark the canonical plane by the
corresponding index $I$ and write $\mathcal{R}_{I}^{2}$ .

2These multi-indices indicate the replacement of the coordinate $x_{j}$ corresponding to the zero entry of the
pair $(a_{1}, a_{2})$ by the momentum $p_{j}$ (vrith the same number $j$ ).
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According to a general property of Lagrangian manifolds one can cover $M_{t}^{2}$ by the
maps $\Omega_{j}^{I_{j}}$ with the numb$e\mathrm{r}\mathrm{s}j$ such that there exists a one-to-one map from $\Omega_{j}^{I_{j}}$ to
its projection to the canonical plane $\mathbb{R}_{I_{j}}^{2}$ . This means the following. Along with the
matrices $B^{(1,2)}=B,$ $C^{(1,2)}=C$ it is convenient to introduce the matrices

$B^{(0,2)}(\psi, \tau)=(^{-}\partial^{*}\ovalbox{\tt\small REJECT}^{P}\partial X$ $-_{T\psi^{\perp} ,\neq_{\psi}^{\partial P)}}^{\partial X},$ $C^{(0,2)}(\psi, \tau)=(^{\partial}\partial\ovalbox{\tt\small REJECT}^{P_{\mathrm{L}}}\neq_{t}X$ $\neq_{\psi}^{\partial}\#\partial\ovalbox{\tt\small REJECT})P$ ,

$B^{(1,0)}(\psi, \tau)=(^{\partial}-\partial X\ovalbox{\tt\small REJECT}*^{P}$ $-\partial\# X\psi\theta^{\partial P}),$ $C^{(1,0)}(\psi, \tau)=(_{\ovalbox{\tt\small REJECT}^{P}}^{\underline{\partial}X}\partial^{*}$ $\neq_{\psi}^{\partial \mathrm{p}}\#^{\partial X}.)$ (5.12)

$B^{(0,0)}(\psi, \tau)=-C=(=_{\partial X}^{\partial X}\ovalbox{\tt\small REJECT}\not\in$ $=_{\partial}^{\partial}T^{X}\ovalbox{\tt\small REJECT}^{\perp})\#\psi’ C^{(0,0)}(\psi,\tau)=\mathcal{B}=(^{\partial}\partial\ovalbox{\tt\small REJECT}^{P}\not\in P$ $\phi^{\partial P)}\neq^{\partial P}$

. (5.13)

The matrices $C^{I}$ give the Jacobians $J^{I}(\psi,\tau)=\det C^{I}$ . Then in each map $\Omega_{j}^{I_{j}}(\tau)J^{I_{j}}\neq$

$0$ . The maps with the indices $I_{j}=(1,2)$ are nonsingular ones, all others are singular
ones with the focal coordinates $x^{I_{j}}$ . Note that for practical applications sometimes it
is useful to choose some rotated coordinates $(x_{1}’, x_{2}’)$ and $(p_{1}’,p_{2}’)$ in some maps $\Omega_{j}^{I}‘$ . It
is important to remember, that the Jacobians $J=J^{(1,2)}$ and $J^{(0,0)}$ are invariant with
respect to rotations, but the Jacobians $J^{(0,2)},$ $J^{(1,0)}$ are not. Actually in the considered
problem the maps with index $I=(\mathrm{O}, 0)$ are not needed.

Lemma 10. For any time $t$ there exists a finite covering of the neighborhood of $\Gamma_{t}$ fiom
Lagrangian manifold $M_{t}^{2}$ by the maps $\Omega_{j}^{I_{j}}$ with the indices $I_{j}=(1,2),$ $I_{j}=(1,0),$ $I_{j}=$

$(0,2)$ .
PROOF. It is enough to prove that at least one of the Jacobians $J^{(0,2)}$ or $J^{(1,0)}$ is

not equal to zero in $\mathrm{e}a\mathrm{c}\mathrm{h}$ focal point. Assume that both $J^{(0,2)}=0$ and $J^{(1,0)}=0$ in the
point $\psi^{F},$ $t^{F}$ . Since $X_{\psi}=0$ in the focal point, this means that $\dot{X}_{1}P_{2}\psi=\dot{X}_{2}P_{1\psi}=0$

and $\mathrm{d}e\mathrm{t}(\dot{X}, P_{\psi})=0$ . But according to Lemmas 2,3 the vector $P_{\psi}\neq 0$ in the focal point
and $P_{\psi}$ is orthogonal to $\dot{X}$ , which is nonzero everywhere. This contradiction proves
this lemma. $\square$

5.6 The Maslov index of a singular map.
The last object we need is the Maslov index of chains of maps $\{\Omega_{j}^{I_{j}}(t)\}$ . To find it one
has to fix some nonsingular point $\mathrm{r}(\tilde{\psi},\tilde{\tau})$ in the corresponding map $\Omega_{j}^{I_{\mathrm{j}}}$ and construct
one of the following matrices $\mathbb{C}_{\epsilon}^{(1,0)},\mathbb{C}_{\epsilon}^{(0,2)}$ with the elements of the matrices $B,$ $C$ defined
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in (5.1):

$\mathbb{C}_{\epsilon}^{(1,2)}=C-i\epsilon B=(_{C_{21}}^{C_{11}}=_{i\epsilon \mathcal{B}_{21}}^{i\epsilon B_{11}}$ $C_{22}=i\epsilon B_{22}C_{12}i\epsilon \mathcal{B}_{12)}$

$\mathbb{C}_{\epsilon}^{(1,0)}=$

$\mathbb{C}_{\epsilon}^{(0,2)}=$

$\mathbb{C}_{e}^{(0,0)}=$

( $=_{i\epsilon \mathcal{B}_{21})\cos\eta+(B_{21}+i\epsilon C_{21})\sin\eta}^{i\epsilon B_{11})\cos\eta+(B_{11}+i\epsilon C_{11})\sin\eta}$ $(C_{22}=i\epsilon \mathcal{B}_{22})\cos\eta+(B_{22}+i\epsilon C_{22})\sin\eta(C_{12}i\epsilon B_{12})\cos\eta+(\mathcal{B}_{12}+i\epsilon C_{12})\sin\eta$).
These matrices are not degenerate, for any $\eta\in[0, \pi/\mathit{2}]$ and for any positive $\epsilon$ , in the
maps with indexes $(1, 0)$ , $(0,2)$ and $(0,0)$ respectively 3. Obviously $\mathbb{C}_{e}^{I}|_{\eta=0}=\mathbb{C}_{\epsilon}^{(1,2)}\equiv$

$C-i\epsilon B$ and $\mathbb{C}_{\epsilon}^{I}|_{\eta=0}=C^{I}-i\epsilon B^{I}$ . These matrices determine a continuous non degenerate
transition ffom the matrix $\mathbb{C}_{\epsilon}^{(1,2)}$ to the matrix $C^{(1,2)}-i\epsilon B^{(1,2)}$ . The corresponding
determinants $\mathrm{J}_{\mathcal{E}}^{(1,0)}=\det \mathbb{C}_{\epsilon}^{(1,0)}$ or $\mathrm{J}_{6}^{(0,1)}=\det \mathbb{C}_{\epsilon}^{(0,2)}$ are not equal to zero. Let $m(\tilde{\psi},\tilde{\tau})$

be the Maslov index of the point $\mathrm{r}(\overline{\psi},\overline{\tau})$ . Then the index $\mathrm{m}(\Omega_{j}^{I_{j}})$ of the map $\Omega_{j}^{I_{j}}$ is

$\mathrm{m}(\Omega_{j}^{I_{j}})=m(\overline{\psi},\tilde{\tau})+\frac{1}{\pi}\lim_{\epsilonarrow+0}\mathrm{A}\mathrm{r}\mathrm{g}\mathrm{J}_{\epsilon}^{\mathrm{I}}|_{\eta=0}^{\eta=\pi/2}$ . (5.14)

This definition does not depend mod 4 on the choice of the point $(\tilde{\psi},\tilde{\tau})$ in a given
map. The calculation of the index $\mathrm{m}(\Omega_{j}^{I_{\mathrm{j}}})$ could be technically complicated even in
quite simple situations. But taking into account the fact that we can restrict ourselves
to maps with $I=(1,0)$ and $I=(0,2)$ it is possible to simplify the application of this
formula.

Lemma 11. One can always find a nonsingular point $\mathrm{r}(\overline{\psi},\overline{\tau})$ in the map $\Omega_{j}^{I_{j}}$ with
$I_{j}=(1,0)$ or $(0,2)$ such that the sign of the Jacobian $J(\tilde{\psi},\overline{\tau})$ coincides with the sign
of the Jacobian $J^{I_{j}}(\psi, \tau)$ in this map. Then the second term in (5.14) is equal to zero
and

$\mathrm{m}(\Omega_{j}^{I_{\dot{f}}})=m(\overline{\psi},\overline{\tau})$ .
Since the sign of the Jacobian $J^{I_{j}}$ does not depend on the point in the $\Omega_{j}^{I_{j}}$ , then one
can evaluate it in any point, for instance in a focal one.

PROOF. It is obvious that the second term in (5.14) can be equal to $0,1$ or $-1$

only. Consider for $\epsilon$ the Jacobian $\mathrm{J}_{0}^{I}$ . A simple calculation gives $\mathrm{J}_{0}^{I}=J\cos\eta+J^{I}\sin\eta$ .
In the interval $[0, \pi/2]$ this function has no zero if $J$ and $J^{I}$ have the same signs and
one zero in the opposite situation. Hence including the parameter $\epsilon$ gives only the
rule of bypass of the zero point on the complex plane. It is not necessary to use this
rule in the case when $JJ^{I}>0$ . Thus one obtains $\lim_{\epsilonarrow+0}\mathrm{A}\mathrm{r}\mathrm{g}\mathrm{J}_{\epsilon}^{\mathrm{I}}|_{\eta=0}^{\eta=\pi/2}=0$ if a point
$\mathrm{r}(\tilde{\psi},\overline{\tau})$ is chosen in the way prescribed in the Lemma. From the other side, according
to Lemma 3 and its Corollary, the existence of the focal point in any focal map neans

3The objects with singular index $(0,0)$ are not needed in the considered problem we present $\mathbb{C}_{e}^{(0,0)}$ for
completeness.
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the existence of nonsingular points with positive and negative signs of the Jacobian $J$ .
$\square$

Corollary. The index $\mathrm{m}(\Omega_{j}^{I_{j}}(t))$ of the singular map $\Omega_{j}^{I_{j}}$ coincides with the index of
any nonsingular point $m(\psi, t)$ on the front $\Gamma_{t}$ where the Jacobians $J$ and $J^{I_{j}}$ have the
same sign.

5.7 Germs of Lagrangian manifolds and their properties.
One can meet in many asymptotical problems having fast oscillating solution the ge-
ometrical objects described above. We see that the solution of the problem under
consideration decays quite rapidly outside of some neighborhood of the front $\gamma_{t}$ . This
gives the opportunity to use the ideas of the boundary layer expansions [31] and the
“complex germ theory” [19]. Their geometrical realizations can be accomplished in
strip (germ) by linearizing the Lagrangian manifold $M_{t}^{2}$ near the curve $\Gamma_{t}$ .
Definition 1. For each fixed $t$ we call the linear $ge7m$ corresponding to the manifold
$M_{T}^{2}$ a vector fiber bundle in the phase space with base coinciding. with the front $\Gamma_{t}=$

$(x=X(\psi, t),p=P(\psi, t))$ and fibers generated $b\dot{y}$ the vectors $\dot{X},$ $P$ .

Denote $\alpha\in \mathbb{R}$ the coordinate on the bundle (which is the linear analogue of the
proper time $\tau$), then we can define a family of manifolds $\Lambda_{t}^{2}$ as a strip in a neighborhood
of the front $\Gamma_{t}$ in the phase space $\mathbb{R}_{p,x}^{4}$

$\Lambda_{t}^{2}=\{p=\mathrm{P}(\psi,t, \alpha)\equiv P(\psi, t)+\dot{P}(\psi, t)\alpha, x=\mathrm{X}(\psi, t, \alpha)\equiv X(\psi,t)+\dot{X}(\psi, t)\alpha\}$ ,
(5.15)

where th $\in S^{1}=[0,\mathit{2}\pi]$ , $|\alpha|<\alpha_{0}$ are the coordinates in $\Lambda_{t}^{2}$ . $M_{t}^{2}$ can be approximated
by $\Lambda_{t}^{2}$ , the parameter $\alpha$ is used for linearizing the functions $X(\psi, t+\alpha),$ $P(\psi, t+\alpha)$ . $\alpha$

defines a shift of the time near the front $\Gamma_{t}$ . Taking into account these facts it is easy
to prove the following proposition.

Lemma 12. 1) With an $e7\mathrm{v}\mathfrak{v}r$ of the order $O(\alpha^{2})$ the manifold $\Lambda_{t}^{2}$ is obtained from
$\Lambda_{0}^{2}$ by means of a shift of time $t$ along the trajectories of the phase flow with the
Hamiltonian $\mathcal{H}=H|p|C(x)$ . 2) For the matrices $\mathrm{B}(\psi, t, \alpha)=\frac{\partial \mathrm{P}}{\partial(\alpha,\psi)}$ , $\mathrm{C}(\psi, t, \alpha)=$

$\frac{\partial \mathrm{X}}{\partial(\alpha,\psi)}$ the following equalities are true $\mathrm{B}=\mathcal{B}+O(\alpha),$ $\mathrm{C}=C+O(\alpha)_{i}{}^{t}\mathrm{C}\mathrm{B}={}^{t}\mathrm{B}\mathrm{C}+O(\alpha)$ ,
where as before $B= \frac{\partial P}{\partial(t,\psi)}$ , $C= \frac{\partial X}{\partial(t,\psi)}$ . The last equality means that the manifold
(band) $\Lambda_{t}^{2}$ is (almost) Lagrangian mod $O(\alpha)$ , the statement 1) means that it is (almost)
invariant mod $O(\alpha)$ .

PROOF. Consider the Hamilton equations dr $=\mathcal{H}_{p},\dot{p}=-\mathcal{H}_{x}$ . We expand the
derivatives of the Hamiltonian $\mathcal{H}$ around the point $X(\psi,t),$ $P(\psi, t)$ and use the varia-
tional system for the evolution of $(x,p)$ . This gives

$\dot{X}+\alpha\ddot{X}-(\mathcal{H}_{p}(X(\psi, t),$ $P(\psi, t))+\mathcal{H}_{p\mathrm{p}}\alpha\dot{P}+\mathcal{H}_{px}\alpha\dot{X})=O(\alpha^{2})$

$\dot{P}+\alpha\ddot{P}+\mathcal{H}_{x}(X(\psi, t),$ $P(\psi, t))+\mathcal{H}_{xp}\alpha\dot{P}+\mathcal{H}_{xx}\alpha\dot{X}=O(\alpha^{2})$

and we get the result. $\square$

Since the germ $\Lambda_{t}^{2}$ is an approximation of $M_{t}^{2}$ , almost all the previous propositions,
geometrical definitions and constructions (like Maslov and Morse index) related to the
band $M_{t}^{2}$ are true for the band (germ) $\Lambda_{t}^{2}$ . Rom the other side obviously one does not
need any addition$a1$ objects besides the family of curves (fronts in the phase space)
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$\Gamma_{t}$ to construct both the Lagrangian bands $M_{t}^{2}$ and their germs $\Lambda_{t}^{2}$ . It also follows
from formulas (4.4),(4.7),(4.14) that the leading term of the solution $\eta$ is based only on
these objects. Nevertheless the proof of (4.4),(4.7),(4.14) needs something more, and
it seems that sometimes, for technical reasons, instead of the germ $\Lambda_{t}^{2}$ , it is convenient
to consider also another germ (fiberbundle) namely

$\tilde{\Lambda}_{t}^{2}=\{p=\tilde{\mathrm{P}}(\psi, t, \alpha)\equiv P(\psi, t)+(\dot{P}(\psi, t)-\lambda(\psi)P)\alpha, x=\tilde{\mathrm{X}}(\psi, t, \alpha)\equiv X(\psi, t)+\dot{X}(\psi,t)\alpha\}$

(5.16)
where (see Lemma 2) $\lambda=\langle_{Tx}^{\partial C_{-}}(0), \mathrm{n}(\psi)\rangle$ . This germ is also associated to the matrices
$\tilde{\mathrm{B}}(\psi,t, \alpha)=\frac{\partial \mathrm{P}}{\partial(\alpha,\psi)},\tilde{\mathrm{C}}(\psi,t, \alpha)=\mathrm{C}(\psi, t, \alpha)=\frac{\partial \mathrm{X}}{\partial(\alpha,\psi)}$ . But now $\tilde{\mathrm{B}}=\tilde{B}+O(\alpha)$ , where
$\tilde{B}=(\dot{P}-\lambda P, P_{\psi})$ . After these considerations it is possible to prove the following
statement.

Lemma 13. All $\underline{pr}evious$ prvposition conceming the germ $\Lambda_{t}^{2}$ and matrices $\mathcal{B},C$ are
true for the germ $\Lambda_{t}^{2}$ and matrices $\tilde{B},C\sim$.

6 Geometrical asymptotic solution and the
Maslov canonical ope.rator.
The central mathematical result of our paper is the observation that the asymptotic
solution of the problem (1.1) can be represented as an integral over $d\rho$ of the canonic$a1$

Maslov operator $K_{\Lambda_{t}^{2}}^{h}$ with “semiclassical” parameter $h=\mu/\rho$ , defined $on$ the appro-
priate family of Lagrangian manifolds $\Lambda_{t}^{2}$ , and acting on the function $V(3.16)$ defining
the initial localized perturbation. In some neighborhood of the front line $\gamma_{t}$ the final
formula has the form:

$\eta={\rm Re}\{(\sqrt{\frac{\mu \mathrm{C}_{0}}{2\pi \mathrm{i}}}\int_{0}^{\infty}\mathrm{K}_{\Lambda_{\mathrm{t}}^{2}}^{\mu/\rho}(\sqrt\rho\tilde{\mathrm{W}}(\rho \mathrm{n}(\psi))\mathrm{d}\rho\}+\mathrm{o}(\mu)$, (6.1)

and $\eta=o(\mu)$ outside of this neighborhood. The initial data (3.16), the representation
of the asymptotic solution (4.4),(4.7) out of the neighborhood of the focal points as
well as the future representation of the solution in a neighborhood of the focal points
is only a realization of (6.1) in the corresponding domain of $\mathbb{R}_{x}^{2}$ . As we said before
the integral over parameter $\rho$ in (6.1) plays a very important role: it implies the
decay of the function $\eta$ outside a neighborhood of the front and in turn allows one to
simplify the objects and formulas appearing in the construction of the Maslov canonical
operator. This simplification is based on the mentioned ideas of the “complex germ
theory” $[17, 19]$ , but in a simpler “boundary layer” version. As we said before from
the geometrical point of view it means that we can use the germs $\Lambda_{t}^{2}$ or $\tilde{\Lambda}_{t}^{2}$ instead of
the Lagrangian band $M_{t}^{2}$ in (6.1). In next subsections we shall describe the functions
and other objects determining the operator $K_{\Lambda_{t}^{2}}^{\mu}$ .

6.1 The functions on Lagrangian bands $M_{t}^{2}$ .
a.The action-function. The Lagrangian property allows one to define on the family
$M_{t}^{2}$ , a function $s(\psi, t, \alpha)$ satisfying the equation $ds=\langle P, dX\rangle|_{M^{2}}‘$ .

Lemma 14. The phase $s(\psi, \tau)$ on $M_{t}^{2}$ is equal to $C_{0}\alpha$ .

145



PROOF. First let us find $s$ on $M_{0}^{2}$ . Then the coordinate $\alpha$ is the proper time: $\tau=\alpha$ .
But in this case we have

$\int_{(0,0)}^{(\psi,\tau)}\langle P, dX\rangle=\int_{(0,0)}^{(0_{)}\tau)}\langle P,\dot{X}\rangle dt+\int_{(0,\tau)}^{(\psi,\tau)}\langle P, X_{\psi}\rangle d\psi$.

The second term in the last expression is equal to zero according to Lemma 3. Changing
$\dot{X}$ by the right hand side $\mathrm{h}\mathrm{o}\mathrm{m}$ system (4.2) and using the integral of motion (4.3),
we find (using the proper time $\tau$ ) $s(\psi,\tau)=C_{0^{\mathcal{T}}}=\mathit{0}_{0\alpha}$. According to [16, 18, 28]
to construct the action on the band $M_{t}^{2}$ one has to add $\int_{0}^{t}\mathcal{L}dt$ to $c_{0\alpha}$ , where the
Lagrangian $\mathcal{L}=\langle p,\mathcal{H}\rangle-\mathcal{H}$ . But for the wave equation $\mathcal{L}=0$ , which gives the
Lemma. $\square$

The phase $s$ is used for defining the phases associated with the projection in the
singular maps $\Omega_{j}^{I}$ :

$s^{(1,0)}(\psi,\tau)=C0\tau-P_{2}(\psi,\tau)X_{2}(\psi, \tau),$ $s^{(0,2)}(\psi,\tau)=C0\tau-P_{1}(\psi,\tau)X_{1}(\psi,\tau)$ .

b.The projection of the source function on the Lagrangian bands. The
initial source function $V(y)$ defines on $M_{t}^{2}$ the function (more precisely the family of
functions depending on parameter $\rho\in(0, \infty))$

$f$ ( $\rho$ , Cb) $=\sqrt{\rho}\overline{V}(\rho \mathrm{n}(\psi))$ . (6.2)

We need also the smooth cut off function $\mathrm{e}_{0}(\alpha),$ $\mathrm{e}_{0}(\alpha)=1$ for $|\alpha|<\alpha_{0}$ , and
$\mathrm{e}_{0}(\alpha)=0$ for $|\alpha|>\mathit{2}\alpha_{0}$ where $\alpha_{0}$ is some small enough positive number. The product
$f(\rho, \psi)\mathrm{e}_{0}(\alpha)$ defines a finite function on the band $M_{0}^{2}$ . We continue it on all the family
$M_{t}^{2}$ assuming that it does not depend on time $t$ .

$\mathrm{c}$ . Functions in the maps $\Omega_{j}^{I}$ . In each map $\Omega_{j}^{I}$ the Jacobians $J^{I}$ are not equal to
zero. This means that one can construct the smooth solutions $(\psi_{j}^{I}(x^{I}), \tau_{j}^{I}(x^{I}))\in\Omega^{I_{\mathrm{j}}}$

of the system of equations
$X^{I}(\psi, \tau)=x^{I}$ . (6.3)

Let us emphasize that there could exist several angles $\psi_{j}^{I}(x^{I})$ corresponding to one
vector $x^{I}$ . Although the manifold $M_{t}^{2}$ is invariant with respect to the shift $g_{\mathcal{H}}^{t}$ it does
not mean that there is no dynamics on $M_{t}^{2}$ . It only means that turning on the time
dependence we transform the objects related to $M_{t}^{2}$ in a special way. Namely let us
use from the beginning the coordinate $\alpha$ instead of the proper time $\tau$ . We have alre$a\mathrm{d}\mathrm{y}$

mentio$n\mathrm{e}\mathrm{d}$ that the points $\mathrm{r}(\psi, \alpha)\in M_{T}^{2}$ after the action of the transformation $g_{\mathcal{H}}^{t}$ pass
to the points $\mathrm{r}(\psi, \alpha)\in M_{t}^{2}$ with shifted coordinate $\tau=\alpha+t$ , but with the same angle
$\psi$ . Thus the equations (6.3) are changed by the equations

$X^{I}(\psi, \alpha+t)=x^{I}$ ; (6.4)

The following trivial proposition is very useful.

Lemma 15. Let $\psi_{j}(x^{I}),$ $\tau_{j}(x^{I})$ be the solution of the equations (6.3) in the map $\Omega_{j}^{I_{j}}(t)$

and let the point $\mathrm{r}(\psi, \alpha+t)\in M_{t}^{2}$ with coordinates th, $\alpha+t$ belong to the same map
$\Omega_{j}^{I_{\dot{f}}}$ . Then the angle component $\psi_{j}$ of the solution of the equation (6.4) does not depend
on $t:\psi_{j}=\psi_{j}(x^{I_{j}})$ and $\alpha_{j}=\alpha_{j}(x^{I_{j}},t)$ is

$\psi_{j}(x^{I_{j}}, t)=\psi_{j}(x^{I_{j}})$ , $\alpha_{j}(x^{I_{g}}’, t)=\tau_{j}(x^{I_{j}})-t$, (6.5)
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PROOF is obvious $\square$ .
Using (6.4) and (6.5) we can rewrite the action-functions and the Jacobians in the

coordinates $x^{I}$ . The action functions on $M_{t}^{2}$ have different behavior with resp$e\mathrm{c}\mathrm{t}$ to the
shift $g_{\mathcal{H}}^{t}$ . Namely the function $s=\alpha$ , and the functions $f,\mathrm{e}$ are constant, this means
that for each $t$ in the coordinates th, $\alpha$ they have the same form. On the contrary the
functions $s^{I}$ and all the Jacobians 4 $J^{I}$ take the forms:

$s^{(1,0)}(\psi, \alpha,t)=C0\alpha-P_{2}(\psi, \alpha+t)X_{2}(\psi, \alpha+t)$ ,
$s^{(0,2)}(\psi, \alpha+t)=C_{0}\alpha-P_{1}(\psi, \alpha+t)X_{1}(\psi, \alpha+t)$ , (6.6)

$J^{I}=J^{I}(\psi, \alpha+t)$ . (6.7)

Now in the maps $\{\Omega_{j}^{I_{j}}(t)\}$ we want to pass from the coordinates th, $\alpha$ to the coordinates
$x^{I_{j}}$ . This gives us the actions, Jacobians etc. in the coordinates $x^{I_{j}}$ :

$S_{j}^{(1,2)}(x_{1}, x_{2})=\tau_{j}(x_{1}, x_{2})-C_{0}t$ ,
$S_{j}^{(1,0)}(x_{1},p_{2})=\tau_{j}(x_{1},p_{2})-p_{2}X_{2}(\psi_{j}(x_{1},p_{2}),$ $\tau_{j}(x_{1},p_{2}))-C_{0}t$ ,
$S_{j}^{(0,2)}(p_{1}, x_{2})=\tau_{j}(p_{1}, x_{2})-p_{1}X_{1}(\psi_{j}(p_{1}, x_{2}),$ $\tau_{j}(p_{1}, x_{2}))-C_{0}t$,

$J_{j}^{I_{j}}(x^{I_{j}})=J^{I_{j}}(\psi_{j}(x^{I_{j}}), \tau_{j}(x^{I_{J}}))$ ,
$\mathrm{e}^{t}=\mathrm{e}(\tau_{j}(x^{I_{j}})-t)$ . (6.8)

Let us emphasize that the complicated notations only reflect the situation: each map
$\mathrm{h}$as it own number $j$ and index of singularity $I_{j}$ .

Finally we need to introduce the partition of unity with the maps $\Omega_{j}^{I_{j}}(t)$ covering $\Gamma_{t}$ :

the set of smooth functions $\mathrm{e}_{j}(\psi, t)$ associated with the covering $\{\Omega_{j}^{I_{j}}(t)\}:\sup\infty \mathrm{j}(\psi)\in$

$\Omega_{\mathrm{j}}^{\mathrm{I}_{\mathrm{j}}}(\mathrm{t}),$

$\sum_{j}\mathrm{e}_{j}(\psi)=1$ .

6.2 The generalized time-dependent Maslov canonical
operator on the manifold $M_{t}^{2}$ .

Now everything is ready to determine the Maslov canonical operator $K_{M_{t}^{2}}^{h}$ , acting
on the function $f(\rho, \psi)\mathrm{e}(\alpha)$ , which is constant on the trajectories of the system (4.2)
and depending on the parameter $h>0$ . It means that this function is the same in
all points $P(\psi, t+\alpha),$ $X(\psi, t+\alpha)$ . Let $\{\Omega_{j}^{(I_{j})}\}$ be a covering of the curve $\Gamma_{t}$ . Let us
divide the set of indices $\{j\}$ into three parts $\{\mathrm{j}(1,2),\mathrm{j}(1,0),\mathrm{j}(0,2)\}$ corresponding to

4To simplify notation we do not introduce a new symbol for time-shift\’e Jacobian.
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the maps with indices of singularity $(1, 2)$ , $(1,0)$ and $(0,2)$ respectively. We put

$\Psi(\rho, x_{1}, x_{2}, t)=K_{M_{t}^{2}}^{h}(f\mathrm{e})$

$\equiv$ $\sum_{j\in \mathrm{j}(1,2)}e^{-\frac{t\pi}{2}m(\psi_{j}(x_{1},x_{2}))}\frac{\exp\frac{iS_{j}^{(1,2)}(x_{1},x_{2},t)}{h}}{\sqrt{|J_{j}^{(1,2)}(x_{1},x_{2})|}}f(\rho, \psi)$

$\mathrm{x}\mathrm{e}_{j}(\psi)|_{\psi=\psi_{j}(x_{1},x_{2})}\mathrm{e}(\tau_{j}(x_{1}, x_{2}, t)-t)$

$+ \sum_{j\in \mathrm{j}(1,0)}e^{-\frac{\pi}{2}\mathrm{m}(\Omega_{j}^{(1,0)})}.\frac{i}{\sqrt{\mathit{2}\pi h}}\int_{-\infty}^{+\infty}\frac{\exp\frac{i(S_{\mathrm{j}}^{(1,0)}(x_{1},p_{2},t)+x_{2}p_{2})}{h}}{\sqrt{|J_{j}^{(1,0)}(x_{1},p_{2})|}}f(\rho,\psi)$

$\cross e_{j}(\psi)|_{\psi=\psi_{j}(x_{1},p_{2})}\mathrm{e}(\tau_{j}(x_{1},p_{2},t)-t)dp_{2}$

$+ \sum_{j\in \mathrm{j}(0,2)}e^{-\frac{:\pi}{2}\mathrm{m}(\Omega_{j}^{(0,2)})}\frac{i}{\sqrt{\mathit{2}\pi h}}\int_{-\infty}^{+\infty}\frac{\exp\frac{i(S_{\mathrm{j}}^{(0,2)}(p_{1},x_{2},t)+x_{1}\mathrm{p}_{1})}{h}}{\sqrt{|J_{j}^{(0,2)}(p_{1},x_{2})|}}f(\rho, \psi)$

$\cross \mathrm{e}_{j}(\psi)|_{\psi=\psi_{\mathrm{j}}(p_{1},x_{2})}\mathrm{e}(\tau_{j}(p_{1}, x_{2},t)-t)d\mathrm{p}_{1}$ (6.9)

where $S_{j}^{I}$ and $J_{j}^{I}$ are defined in (6.8). Now we can construct the asymptotic solution
$\eta$ to the problem (1.1). We put in the last formula $h=\mu/\rho$ .
Theorem 4. 1) For any $T$ independent of $\mu=l/L$ , the solution $\eta$ to the problem (1.1)
in the interval $t\in[0, T]$ has the form:

$\eta=\eta_{88}+o(\mu)$ , $\eta_{\mathrm{a}\mathrm{s}}=\sqrt{\frac{\mu C_{0}}{2\pi}}{\rm Re}(\mathrm{e}^{-\llcorner\pi}4\int_{0}^{\infty}\Psi(\rho,\mathrm{x}_{1},\mathrm{x}_{2}))\mathrm{d}\rho$. (6.10)

This asymptotic, apart from terms of the order $O(\mu)$ , does not depend on the choice of
the covering $\{\Omega_{j}^{I_{j}}\}$ , and functions $\mathrm{e}_{\mathrm{j}}^{\mathrm{t}},$ $\mathrm{e}$ .

2) For each time $t\in[O, T]$ the function $\eta$ is localized in a neighborhood of the front:
the function $\eta$ is equal $o(\mu)$ outside some neighborhood of the frvnt $\gamma_{t}$ .

SKETCH OF PROOF. Using the results [16, 17, 28, 15] one can show that the
function (6.9) is a leading term of some asymptotic solution $\Psi^{k}\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{O}(\mathrm{h}^{\mathrm{k}})$ to the
original equation (1.1), where $k$ is an arbitrary large but fixed integer number. We
introduce the smooth cut off function $\mathrm{g}(y):\mathrm{g}(y)=0$ for $y\leq 1/2$ and $\mathrm{g}(y)=1$ for
$y\geq 1$ . Multiplying $\Psi^{k}$ by $\mathrm{g}(\rho/\mu)$ and integrating the product by $d\rho$ we obtai$n$ that the
result is an asymptotic solution of (1.1) modO $(\mu^{2})$ . Then as in [15] we show that the
contribution of the term $\int_{0}^{1}(1-\mathrm{g}(\rho/\mu))\Psi^{k}|_{t=0}d\rho$ to the solution (1.1) is $o(\mu)$ , and hence
the function $\eta_{as}$ from (6.10) is aleading term of some asymptotic solution of (1.1). Now
we need to check the conditions (1.2). But it is better to do after a simplification of
the function (6.10) and we shall do it in the next subsection.

6.3 The germ $\Lambda_{t}^{2}$ of the manifold $M_{t}^{2}$ and the simplification
of the asymptotic.

$\mathrm{S}\mathrm{i}n$ce the function 6.10 decays quite rapidly when the point $x$ goes away from the
ffont, it is possible to change the functions $S^{I_{j}},$ $|J_{j}^{I_{j}}$ in a neighborhood of the front by
their Taylor expansions. The nice fact is that one does not change the accuracy $O(\mu)$

in formula 6.10 using only the zero order , first order terms and sometimes second
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order terms of the Taylor expansions of the phases, and zero order terms in the other
functions. All these expansions are expressed via the vector functions $(P(\psi, t),$ $X(\psi, t))$

and matrices $B(\psi, t),C(\psi, t)$ .
We need the Taylor expansion in the following form. Let the equations $(y_{1}, y_{2})=$

$(Y_{1}(\psi), \mathrm{Y}_{1}(\psi))$ determine a smooth curve $l$ in some domain in $R_{y}^{2}$ and $\Phi(y_{1}, y_{2})$ be
a smooth function in some neighborhood $D$ of T. Let $q(\psi)$ be the smooth family of
nonzero vectors with components $(q_{1}, q_{2})$ transversal to the curve T.

This means that the vectors $q(\psi)$ and $\mathrm{Y}_{\psi}(\psi)$ are not parallel. The parameter $\psi$ on
$\prime \mathrm{r}$ and the family of vectors $q(\psi)$ define the curvilinear system in some neighborhood of
$\prime \mathrm{r}$ : each point $y$ in this neighborhood can be characterized by two values: $\psi(y)$ and the
length (with the sign) $z=\langle y-\mathrm{Y}(\psi(y)), q(\psi(y))\rangle/(q(\psi(y)))^{2}$ of the vector $y-\mathrm{Y}(\psi(y))$ .
To find the value of $\psi(y)$ one has to solve the equation

$\langle y-\mathrm{Y}(\psi), q_{1}(\psi)\rangle\equiv(y_{1}-\mathrm{Y}_{1}(\psi))q_{2}(\psi)-(y_{2}-\mathrm{Y}_{2}(\psi))q_{1}(\psi)=0$. (6.11)

Lemma 16. The following expansion is valid:

$\Phi(y)=\Phi(Y)+\langle\frac{\partial\Phi}{\partial y}(Y), (y-\mathrm{Y})\rangle+\frac{1}{2}\langle.(y-\mathrm{Y}), \frac{\partial^{2}\Phi}{\partial y^{2}}(\mathrm{Y})(y-\mathrm{Y})\rangle|_{Y=Y(\psi(y))}+O((y-\mathrm{Y}(\psi(y)))^{3})$

(6.12)

PROOF follows from the 1-D Taylor expansion of the function $\Phi(\mathrm{Y}+qz)$ with respect
to variable $z\square$ .

Now we want to apply this lemma to the phases $S_{j}^{I_{j}}$ and Jacobians $J_{j}^{I_{j}}$ in (6.8) and
(6.10). The variable $y$ are $x^{I}$ , the curve $\mathrm{r}=\{x^{I}=X^{I}(\psi, t)\}$ , thus the solution $\psi$ will
depend also on time $\mathrm{t}$ . We need the first and second derivatives of $S^{I}$ in the points
$x^{I}=X^{I}(\psi,t)$ . From the general theory of Hamilton-Jacobi equation $[16, 18]$ it follows

$\frac{\partial S^{I}}{\partial x^{I}}=P^{I}(\psi,t)$ , $\frac{\partial^{2}S^{I}}{\partial(x^{I})^{2}}=\frac{\partial P^{I}}{\partial x^{I}}(\psi,t)\equiv B^{I}(\psi, t)(C^{I}(\psi, t))^{-1}$,

where the matrices $\mathcal{B}^{I},$ $C^{I}$ are defined in (.5.13). Now let us choose the vector $q$ as
following. In the case $I=(1,\mathit{2})$ $q=X(\psi, t)=(X_{\psi})_{\perp}$ , then equation (6.11) is
equation. (6.4). In the case $I=(\mathrm{O}, 2)q={}^{t}(0,1)$ , then equation (6.11) is

$P_{1}(\psi,t)=p_{1}$ . (6.13)

In the case $I=(1,0)q={}^{t}(1,0)$ , then Eq.(6.11) is

$P_{2}(\psi,t)=\mathrm{p}_{2}$ . (6.14)

We denote $\psi^{j}(x^{I_{j}}, t)$ the solution of these equations in the map with the number $j$ . $5$

Then after some algebra we obtain the following formulas in the maps with numbers $j$

$S_{j}^{I_{j}}(x^{I},t)=\{S_{j}^{I_{j}}(\psi,t)+O(x^{I_{j}}-X^{I_{j}}(\psi, t))^{3}\}|_{\psi=\psi^{\mathrm{j}}(x,t)}$ ,
$J_{j}^{I_{j}}(x^{I_{j}},t)=\{J_{j}^{I_{j}}(\psi,t)+O(x^{I_{j}}-X^{I_{j}}(\psi,t))\}|_{\psi=\psi^{j}(x,t)}$ , (6.15)

5These solutions are different from the solutions $\psi_{\mathrm{J}}(x^{I_{j}})$ of equation (6.5), we use almost the same symbol
to simplify the notation.
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here

$S_{j}^{(1,2)}(\psi, t)$ $=$ $\langle P(\psi, t), (x-X(\psi, t)\rangle-\frac{1}{2}\langle P(\psi, t)), C_{x}(X(\psi, t))\rangle(x-X(\psi, t)^{2}$,

$J_{j}^{(1,2)}$ $=$ $\det(\dot{X}, X_{\psi})(\psi, t)$ (6.16)
$S_{j}^{(0,2)}(\psi, t)$ $=$ $-P_{1}(\psi, t)X_{1}(\psi, t)+P_{2}(\psi, t)(x_{2}-X_{2}(\psi, t))$

$+ \frac{1}{\mathit{2}}(x_{2}-\cdot X_{2}(\psi, t))^{2}\frac{\dot{P}_{1}P_{2\psi}\dot{P}_{2}P_{1\psi}}{\dot{P}_{1}X_{2\psi}\dot{X}_{2}P_{1\psi}}=$,

$J^{(0,2)}(\psi, t)$ $=$ $\det C^{(0,2)}(\psi, t)=(\dot{P}_{1}X_{2\psi}-\dot{X}_{2}P_{1\psi})(\psi, t)$ (6.17)
$S^{(1,0)}(\psi, t)$ $=$ $-P_{2}(\psi, t)X_{2}(\psi, t)+P_{1}(\psi, t)(x_{1} -- X_{1}(\psi, t))$

$+ \frac{1}{2}(x_{1}-X_{1}(\psi, t))^{2}\frac{\dot{P}_{1}P_{2\psi}P_{2}P_{1\psi}}{\dot{X}_{1}P_{2\psi}P_{2}X_{1\psi}}=$:
$I^{(1,0)}(\psi, t)$ $=$ $\det C^{(1,0)}(\psi, t)=(\dot{X}_{1}P_{2\psi}-\dot{P}_{2}X_{1\psi})(\psi, t),$ $t)$ (6.18)

Remark 1. It is important that the last formulas do not depend on the choice of the
vector $q$ with the same accuracy they are valid.

Theorem 5. The proposition of Theorem 1 is valid if one changes in the formu-
las (6.9),(6.10) $S_{j}^{I_{j}}$ by $S_{j}^{I_{j}},$ $J_{j}^{I_{j}}$ , by $J_{j}^{I_{j}},$ $\psi_{j}(x^{I_{j}})$ by $\psi^{j}(x^{I_{j}}, t),$ $\mathrm{e}(\tau_{j}(x^{I_{j}}, t)-t)$ by
$\mathrm{e}(|x^{I_{j}}-X^{I_{j}}(\psi^{j}(x^{I_{j}}, t)|)$ . 2) In the singular maps in formulas (6.9) one can change
the integration over $p_{j}\in(-\infty, \infty)$ by the integration over the angle $\psi\in\Omega_{j}^{I_{j}}$ , putting
$p_{j}=P_{j}(\psi, t)$ and $dp_{j}=\neq_{\psi}^{\partial P}(\psi, t)d\psi$ adjusting the limits in the integral with these
change.

THE IDEA OF PROOF. The proof in regular maps is no more but the Taylor
expansion of regular components in (6.9), (6.10) with respect to distance from $\gamma_{t}$ . The
proof in the foc$a1$ maps is based on the Taylor expansions but also on the estimate of
some rapidly oscillating integrals.

Theorems 1-3 and the examination of the initial data are no more but the realization
of the last theorem in different maps. We have no space to explain all details (similar
to $[15, 30])\mathrm{a}\mathrm{n}\mathrm{d}$ we will present them in another paper.
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