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A Path Integral Preliminary Approach to the FKG Inequality
for Yukawa; Quantum Field Theory*
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1. By the method used in our previous paper [I1], we construct a countably additive
path space measure for the 2-D Euclidean Dirac equation in the polar coordinates to
give a path integral representation to its Green’s function (For a brief survey, see [12]).
This is a report of trying a preliminary approach with use of the result to give an

alternative proof of the FKG inequality for Yukawas quantum field theory obtained by
Battle-Rosen [BR], though not yet incomplete.

G.A.Battle and L.Rosen used Vekua—Bers theory of generalized analytic functions to
show the FKG inequality for Y2 QFT. The Y, measure is formally given by

v:= ! e (9) H doé(z)

z€R2

N|

W(z) = —;—(qﬁ, (~A+md)g) + Tr K — % TYK*K : +Trln(1 - K)K,

with Z is a normalized constant, where

K(z,y) : = S(z,y)¢(y)xa(y), ¢: Boson field (mass : my),
XA : indicator function of a square A C R?,

and

S(z,y) : = (=B0z + myg) T, B8 = Bobo + B161,z = (z0,71),
Bo = ((1) é) =01, fr:= ((1) _(_)1) = 03,

with my > 0 the Fermi mass. They considered the two models

a) .= ((]5 (1)) =1 (scalar Y2)’ b) .= (2 _(—)1) = —i09 (pseudo—scala.r yg).
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2
Then FKG enequality (like (fg) > (f)(g)) holds: W ] >0,z#uy.

dp(x)do(y

By some heuristic arguments, this is equivalent to showing
trS'(z,y)8'(y,2) <0, z#y.

where §’ := (1 — K)71§ is the Green’s function (vanishing at co) for 2D- Euclidean
Dirac equation

[L7Y(—=B0s + mys) — d(z)xa(2)]S' (2, ¥) = b(z — y).

Battle and Rosen proved the above inequality for ms > 0 in the case a) and for my =0
in the case b).

So, the first thing to do is to construct this Green’s function.

In [I1], we constructed a countably additive path space measure to give a path integral
representent for the Green’s function for 3D-Dirac equation in the radial coordinate.

The aim of this talk is to give a preliminary approach to ask whether this method
can apply to get the Green’s function for the above 2D-Euclidean Dirac equation to
show the desired inequality.

Put the 2D-Euclidian operator L?(R?)? = L?(R?) ® C? as:
Ty : =T7H(~p0; + mys) = V(z), V(z):=¢(z)xa(z),
0 o
_p1f__ 9 9 _ _ 2
-T [ 0150 ~ T35 mf] V(z), z=(z0,71)€R?,
ﬁ = (ﬁﬂyﬁl)a IBO =01, ﬂl = 03.

They considered the two models: a) scalar Y2 model: I' = (1 0) = I

b) pseudoscalar Y model: T' = ((11 —0 1)

In this note let us consider only a) the scalar Y2 model.

. 10
2. Since ' = 01

r<oo, 0<6<2n),

), we have by the polar coordinates zqg = rcosf, z1 = rsinf (0 <

& 1.0
Tr = ~C(6) 5 — > D(0) 55 +ms -V,

where

C(0) :=0g1co80 + 0o3s8inf = (Sing cos § ),

cosf —sinf
cosf —sine)

D(6) ;= —(oy8in0 — 03cosfd = (-sin9 —cosf
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We write Ry = (0,00) and Ry = [0, 00).
Making the unitary tansformation

: 6
U6 = 1 Vitsind 2ol
V2 —7% VI+sind

we have

somwor= [ (3 )2k (2 0)-2( 1) 8] sm v

in L?(R?)? = L2(Ry x [0,27); rdrdf)>.
We make one more unitary transformation W of the rdr-measure space to the dr-
measure space:

W : LE(R)? = L*(R; x [0,27); rdrdf)? > f > r/2f € L*([R5 x [0, 27) ; drdf)?

to get
i [_ (1 08 _1(0 1)39
WU (0)TrU(6) W —[ (0 _1)3,. ,.(1 o)aa]+mf v

Then we multiply r1/2 from the left and the right and then multiply the factor i to
put
Hoo(rV) = ir WU (8)TrU (6) "W ~1r1/2

(1 0 8 (0 1)\ @
=["’(o —1)r1/25"1/2"<1 0) 69]“("‘" v)r.

Since the operator —i%; a% is a selfadjoint operator in L2([0,2); df) havmg as the

spectrum consisting of only the eigenvalues {k}xez with eigenfunctions {T}kez’ our
L? space L?(R; x [0,27); drdd)? admits the direct sum decomposition:

AR5 x [0,2n); drd6)* = Y o(L*Ry; dr)* @ [e*'k@ ])
| kez V2r

Then we have

Hoo(rV) =) @H,c(k),
keZ

{1 O 0 01 .
Hsc(k):=[—z<0 _1)r1/25;r1/2+k(1 0>]+z(mf—-V)'r.

We want to find a path integral representation for the Green’s function for this operator
having a singularity at r = 0.



For each fixed k € Z, put the free part of Hy:(k) to be equal to

g 1 0 1/22 1/2 01
Hy(k) := Z(O _1)7' o +k{ 0)

which is an operator in L2(Ky ; dr)2. We can show that Ho(k) is essentially selfadjoint
on C°(R4)?, which is a non-trivial result. Therefore the Cauchy problem for it :

2 p(r,t) = ~iHo(R)Y(r, 1), tER,
¥(r,0)=g(r), t=0,
is L? well-posed. In other words, we can solve it in the space L%(Ry ; dr)?.

Crucial is that this Cauchy problem is even L* well-posed. Namely, we have the
following lemma.

Lemma. There exists a unique solution 1(r, t) = (e~*Ho(*) g)(r) which satisfies
(s t)lloo = le™*Ho®)g]lo < eMUFIF1/D g5

By the method in [I1] based on this lemma, we can construct a 2 X 2-matrix-
distribution-valued countably additive path space measure ,uf,o on the space C([0,t] —

R;) of the continuous paths R : [0,t] — R which represents the solution of the above
Cauchy problem: for every pair of f and g in C§°(R4)?,

(90 1) = /0 " T e ) g) (r) dr = / " / " (e it (1, p)g(p) drdp

L TR, (R (RO eV BEDRE,
C([0,t]-R4)

Hence, supposing that we can get the inverse of the operator H,(k) as Hye(k)™! =
i 57 e itHee(k) gt by the Laplace transform, we have the following path integral repre-
sentation for its Green’s function, which is a little formally expressed, suppressing the
use of test funtions: '

Hyo(K) X (r, p)

_ i/m i / r1/2p1/2ef0‘(m,—-V(R(s))R(s)dsdﬂfo(R).
0 C([0,t}—R),R(0)=p,R(t)=r" '

3. We have
Tt = ir' PWU(8) Hoo(rV) U (6) W 1r ™12,

Here, if we use the polar coordinates for x = (o, 1), ¥ = (¥o0,y1) € R?

zg=rcosf, z;=rsinf (0<r<oo, 0<0<2m),
yo=rcos@, yy =7'sin® (0 <7 < o0, 0<6 < 2n),
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we may write the integral kernel of the operator Hy.(rV)~! as

Hsc(rV)'l('r 6; 7, 9')

Zﬂsc k)™t "o-0)

kGZ
= ..1_ Z e—ik(&—o’)i f r1/2rrl/26fo°° (mf—V(R(s)))R(a)dsd#%) (R)
o et R(0)=r", R(t)=r

Then
tr [T{l(r,ﬂ; v, )T (', 6 ; 7, 8)
= —tr [r‘1/2WU(0)Hsc(rV)_1(r,9; v, 8\ U(8) 1w 1p=1/2
X T VPWU(8) HaelrV) (7, 8 7, O)U(6) W 1y~ 3/7]
= —tr [rr' wo(rV) X, 0; ¥, 0 Hyo(rV) (', 0 5 r 0)]

. [(ZHsc(k) U, r') e )(ZHac 0=, r) e—it(® 0))]

keZ LeZ

e—ik(6-6")

2 )gtr l: Z Hac k) ’f', T’)Hsc(f)_l(’r‘l,r)e_i(k_e)(a"o')]
ktczZ

= —— tr Z akee—z(k 6(6-6')
2
(277) keZ

Here we seem to have

ke :=z'/ e tHoe (k) (') dt (— z)/ ”‘H”(z)(r r)du
/ dt / du

/ i ms=V (B NR (s g k(R
C([o, t]—»R.). ),R1(0)=r',Ry(t)=r

x / e2ms =V (Ra()Ra()s gt (Ry)
O([0,u]—~Ky),Ra(0)=r", Ra (u)=r

o0 o0
= ] dt / du / / .
0 0 C([0,5]—=R3),R1 (0)=r',R1 (£)=r J C([0,u] K7 ), R2 (0)=r',Ra (u)=r

x efo‘(mf—V(Rl(s))Rl(a)ds—fg‘(m,-—V(Rz(a))Rz(s)dsdﬂfo(Rl)dtui o(RZ),

where tuﬁ,o is the transposed of the 2 x 2-matrix-distribution valued-measure ug,u.

Then the problem is to show in the case a) that

it 3 apeemik-06-9) > 0,
k.teZ
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But our the argument is stopped here, and will be discussed elsewhere.
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