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1 Introduction
The set of strange attractor for some two-dimensional system of or-

dinary differential equations seems to be connected but not arcwisely
connected [Fig.3, p.124,5]. In this note we shall consider the nonlinear
Mathieu equation :

$\ddot{x}+k\dot{x}+a(t)x+x^{3}=0$ , (1)

where $k$ is a positive constant and $a(t)$ is continuous and $\pi$-periodic for
$t$ , which is equivalent to

th $=y$ , $\dot{y}=-ky-a(t)x-x^{3}$ , (2)

[2], [p.22, 5]. Solutions of (1), and hence of (2) are uniformly ultimately
bounded [3], and therefore Poincare’s mapping of (2), say $T$ , has an
attracting set $M$ , which is a maximal invariant, compact and connected
set. Furthermore we shall assume that the trivial solution of (2) is
directly unstable, namely one of the characteristic exponents is negative
and another one is positive. Therefore, first of all, by the application of
index of $T$ , there exists a nontrivial $\pi$-periodic solutions of (2), which
implies the existence of nontrivial fixed poins of $T$ , and secondly, by
[Theorem 4.1, 4.2, 1], $T$ has a unstable, 1-dimensional analytic manifold
around origin, which has the tangent. Cleary $M$ contains any fixed point
and any unstable manifold. Our result is the following.
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Theorem 1
$M$ is not arcwisely connected.

Remark. In the case where $a(t)=1+\epsilon\cos 2t,$ $k=\epsilon\lambda$ for constant
$\lambda,$ $0<$ A $< \frac{1}{2},$ $\epsilon>0$ and $\epsilon$ is sufficiently small, the trivial solution is
directly unstable.

2 Proof of Theorem 1
First of all, we shall consider the linear part of (2)

$\dot{x}=y$ , $\dot{y}=-ky-a(t)x$ , (3)

and represent this system by polar coordinate system : $x=r\cos\theta$ ,
$y=r\sin\theta$ in the following

$\frac{d\theta}{dt}=h(t, \theta):=-\sin^{2}\theta-k\sin\theta\cos\theta-a(t)\cos^{2}\theta$ , (4)

We shall set $X(t)$ to be the fundamental matrix of (3), and hence since
the trivial solution of (3) is directly unstable, $X(\pi)$ has two real inde-
pendent eigenvectors. Therefore we can see that (4) has two second kind
of periodic solutions $\theta_{1}(t)$ and $\theta_{2}(t)$ such that $\theta_{1}(t+\pi)=\theta_{1}(t)+n\pi$ and
$\theta_{2}(t+\pi)=\theta_{2}(t)+n\pi$ for integer $n$ . Similarly we shall represent (2) by
polar coordinate system in the following

$\frac{d\theta}{dt}=h(t, \theta)-3r^{2}\cos 4\theta$ , (5)

where $r^{2}(t)=x^{2}(t)+\dot{x}^{2}(t)$ and $x(t)$ is a nontrivial $\pi$-periodic solution.
The existence of this periodic solution implies that (5) has a second kind
of periodic solution $\theta(t)$ such that $\theta(t+\pi)=\theta(t)+m\pi$ for integer $m$ .
In the following we shall show that

$n\neq m$ . (6)

To the contrary, suppose that $n=m$ , which implies that $\theta_{1}(t)-\theta(t)$ and
$\theta_{2}(t)-\theta(t)$ are $\pi$-periodic for $t$ . Therefore, we may see that $\cos(2\theta(t)+$

$2s(\theta_{i}(t)-\theta(t))$ and $\sin(2\theta(t)+2s(\theta_{i}(t)-\theta(t))$ are $\pi$-periodic for $t$ , where
$i=1,2$ and $s$ is a number. Thus, setting

$A(t)= \int_{0}^{1}\frac{\partial h}{\partial\theta}(t, \theta(t)+s(\theta_{\mathfrak{i}}(t)-\theta(t))ds$, (7)
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where $i=1,2$ and $T\theta(\partial ht, \theta)=-k\cos 2\theta+(a(t)-1)\sin 2\theta$, we may see
that $A(t)$ is $\pi$-periodic for $t$ . We can assume that either $\theta_{1}(0)\geq\theta(0)$

or $\theta_{2}(0)\geq\theta(0)$ . Here we shall take the former case where $\theta_{1}(0)\geq$

$\theta(0)$ , because the latter case where $\theta_{2}(0)\geq\theta(0)$ can be exactly treated
similarly. Setting $\xi(t)=\theta_{1}(t)-\theta(t)$ , we can get

$\dot{\xi}=A(t)\xi+r^{2}\cos^{4}\theta$ (8)

where $A(t)$ is the function of (7) for $i=1$ , and hence

$\xi(t)=\xi(0)e^{p(t)}+\int_{0}^{t}(e^{p(t)-p(\epsilon)})r^{2}(s)\cos^{4}\theta(s)ds$ , (9)

where $p(t)= \int_{0}^{t}A(s)ds$ . Since $\xi(0)\geq 0$ , the first term of the right hand
side is nonnegative and the second one is positive for $t>0$ . If $\xi(0)=0$ ,
then (9) is reduced to

$\xi(t)=\int_{0}^{t}(e^{p(t)-p(s)})r^{2}(s)\cos^{4}\theta(\mathit{8})ds$ , (10)

which implies that $\xi(\pi)>0$, and hence this is a contradiction to that
$\xi(\pi)=\xi(0)=0$ . Thus we must have the case where $\xi(0)>0$ . In this
case, if the mean value is nonzero, that is, if $p(\pi)\neq 0$ , then $p(t)arrow+\infty$

as either $tarrow+\infty$ or $tarrow-\infty$ , and hence it follows from (9) that $\xi(t)$ is
unbounded, which is a contradiction to the periodicity of $\xi(t)$ . Therefore
we must have that $p(\pi)=0$ , and hence by (9),

$\xi(\pi)=\xi(0)+\int_{0}^{\pi}e^{-\mathrm{p}(\epsilon)}r^{2}(s)\cos^{4}\theta(s)ds$ . (11)

Thus we obtain that $\xi(\pi)>\xi(0)$ , which is also a contradiction to that
$\xi(\pi)=\xi(0)$ , and hence (6) is proved.
Now we shall show that $M$ is not arcwisely connected. Let $O$ denote the
origin and $P_{0}$ the point of initial vaIues of a nontrivial periodic solutions
of (3). Since $O$ is directly unstable, there exists an invariant unstable
manifold around $O$ , say $l$ , such that $l$ is an analytic curve through $O$

and has a tangent. Taking an arbitrary point $Q$ of $l$ , we shall show that
$Q$ is not arcwisely connected to $P_{0}$ in $\Omega$ . To the contrary suppose that
$Q$ is arcwisely connected to $P_{0}$ in $\Omega$ . Then we can take a Jordan curve
$C’$ in $\Omega$ joining $Q$ and $P_{0}$ , and hence the Jordan curve $C$ in $\Omega$ joining $O$

and $P_{0}$ , which is identical with $l$ in a neighbourhood of $O$ (see Figure 1
$)$ .
Denoting by $P$ the variable point from $O$ to $P_{0}$ along $C$ and by $\theta(P)$
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the angle measured from the $x$-axis, which is continuous for $P\neq O$ ,
we can see that $\theta(P)$ has a limit value as $P$ approaches $O$ . Therefore
$\theta(P)$ is bounded,on $C$ , and hence $B(C):= \sup\{|\theta(P)|;P\in C\}$ is finite.
Moreover, setting $C_{j}=T^{j}C$ for integer $j$ , we can see that $C_{j}$ is contained
in $M$ , and because of (6), that $|\theta_{1}(j\pi)-\theta(j\pi)|=|(n - m)j|arrow\infty$ as
$jarrow\infty$ . Thus we obtain that $B(C_{j})>B(C)$ for large $j$ , which implies
that $C_{j}$ is not identical with $C$ for large $j$ . Since both $C_{j}$ and $C$ joins
$O$ and $P_{0}$ , we can take parts of $C_{j}$ and $C$ as a simple closed curve, say
$\Gamma_{1}$ , which is contained in $M$ and whose inside domain is denoted by $D_{1}$ .
Furthermore we shall take a simple closed curve $\Gamma_{2}$ , which contains $M$

in its inside domain, say $D_{2}$ . Since $T^{j}\Gamma_{2}$ never intersects $M$ for $j\geq 1$ ,
it follOws that $T^{j}D_{2}\supset D_{1}$ for $j$ , which implies that $|T^{j}D_{2}|>|D_{1}|$

for $j\geq 1$ , where $|D|$ denotes the area of domain $D$ . On the other
hand, because $k>0$ , it is known that $|T^{j}D_{2}|arrow 0$ as $jarrow\infty$ . This
contradiction completes the proof.

$v$

Figure 1
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