Hyperbolicity of positively expansive C^r maps on compact smooth manifolds which are C^r structurally stable

> 愛媛大学・理学部 平出 耕一 (Koichi Hiraide) Department of Mathematics Faculty of Science, Ehime University

Let X be a metric space with metric d, and let $f: X \to X$ be a continuous map. We say that f is positively expansive if there is a constant e > 0, called a expansive constant, such that for $x, y \in X$ if $d(f^n(x), f^n(y)) \le e$ for all $n \ge 0$ then x = y. If X is compact, the property that $f: X \to X$ is positively expansive does not depend on the choice of metrics for X compatible with the topology of X, although so is not the expansive constant. Also, for continuous maps of compact metric spaces, positive expansiveness is preserved under topological conjugacy.

Reddy [20] proved that if X is compact and $f: X \to X$ is positively expansive then $f: X \to X$ is topologically expanding, i.e. there are constants $\lambda > 1$ and $\delta > 0$ and a metric D for X, called the hyperbolic metric, compatible with the topology of X such that for $x, y \in X$ if $D(x, y) < \delta$ then $D(f(x), f(y)) \ge \lambda D(x, y)$. As an application of this result, it is easily obtained that if a compact metric space X admits a positively expansive homeomorphism then X must be a finite set (for example, see [1, Theorem 2.2.12]).

If a positively expansive map $f: X \to X$ is an open map, obviously f is a local homeomorphism. Let X be compact. Then, using the hyperbolic metric, we can show that a positively expansive map $f: X \to X$ is an open map if and only if f has the shadowing property (for example, see [1, Theorem 2.3.10]). From this fact it follows that if a positively expansive map $f: X \to X$ is an open map then the dynamics of fbehaves like Axiom A differentiable dynamics in topological viewpoint and, especially, Xhas Markov partitions. For details the readers can refer to [1].

Let M be a compact connected manifold. If M admits a positively expansive map then the boundary ∂M must be empty ([11]). Hence, every positively expansive map $f: M \to M$ is an open map, by Brouwer's theorem on invariance of domain, and it is a self-covering map with the covering degree greater than one. After the studies of expanding differetiable maps by Shub [21], Franks [5] and so on (see below for the definition), Coven-Reddy [3] showed that if $f: M \to M$ is positively expansive then the set $\operatorname{Fix}(f)$ of all fixed points is not empty, the set $\operatorname{Per}(f)$ of all periodic points is dense in M, the universal covering space of M is homeomorphic to the Euclidean space, and if another positively expansive $g: M \to M$ is homotopic to f then f and g are topologically conjugate. The author [9] proved that M admits a positively expansive map then the fundamental group $\pi_1(M)$ has polynomial growth. Combining these facts with results of Franks [5] and Gromov [7], we have that a positively expansive map $f: M \to M$ is topologically conjugate to an expanding infra-nilmanifold endomorphism, in the same way as expanding differetiable maps. See also [10]. Thus, the dynamics of positively expansive maps on compact manifolds is well-understood in topological viewpoint. The purpose of this paper is to study the dynamics of positively expansive map form differentiable viewpoint.

Let M be a closed Riemannian smooth $(= C^{\infty})$ manifold, and let $f: M \to M$ be a C^1 map. We recall that f is *expanding* if there are constants C > 0 and $\lambda > 1$ such that the derivative $Df: TM \to TM$ has the following property; for all $v \in TM$ and $n \ge 0$

$$\|Df^n(v)\| \ge C\lambda^n \|v\|,$$

where $\|\cdot\|$ is the Riemannian metric. It is not difficult to check that an expanding C^1 map $f: M \to M$ is positively expansive.

Let $1 \le r \le \infty$, and denote by $C^r(M, M)$ the space of all C^r maps of M with the C^r topology. We let

 $PE^{r}(M) = \{f \in C^{r}(M, M) \mid f \text{ is positively expansive } \},\$

and denote by $\operatorname{int} PE^{r}(M)$ the interior of $PE^{r}(M)$ in $C^{r}(M, M)$ with respect to the C^{r} topology.

Theorem 1. Let $f: M \to M$ be a C^r map, $1 \le r \le \infty$. Then

$$f \in \operatorname{int} PE^r(M) \iff f: M \to M$$
 is expanding.

The implication \Leftarrow in Theorem 1 is clear because the set of all expanding C^1 maps on M is an open subset of $C^1(M, M)$ with respect the C^1 topology (see [21], and also Lemma 3.1). The case of r = 1 for the implication \Longrightarrow in Theorem 1 can be shown in the same method as the proof given by Mañé [16] whose result says that the interior $\operatorname{int} E^1(M)$ of the set $E^1(M)$ of all expansive C^1 diffeomorphisms in the space $\operatorname{Diff}^1(M)$ of all C^1 diffeomorphisms endowed with the C^1 topology is consistent with the set of all Axiom A C^1 diffeomorphisms satisfying the condition that $T_x W^s(x) \cap T_x W^u(x) = \{0\}$ for all $x \in M$, where $W^s(x)$ and $W^u(x)$ are stable and unstable manifolds of x. However, our proof of the implication \Longrightarrow in Theorem 1 will be different from the one given by Mañé, because we handle the C^r cases, $1 \leq r \leq \infty$, and can not use well-known methods such as Pugh's closing lemmma ([19]), Franks' lemma ([6]) and Hayashi's connecting lemma ([8]) which work only for the C^1 case.

From Theorem 1 the following corollary is obtained immediately.

Corollary 2. Let $1 \le r \le \infty$. Then

$$\operatorname{int} PE^r(M) = \operatorname{int} PE^1(M) \cap C^r(M,M).$$

We say that a $C^r \mod f : M \to M$ is C^r structurally stable if there is a neighborhood \mathcal{N} of f in $C^r(M, M)$ such that any $g \in \mathcal{N}$ is topologically conjugate to f. Since positive expansiveness is preserved under topological conjugacy, we also obtain the following corollary.

Corollary 3. Let $1 \le r \le \infty$. If a C^r map $f: M \to M$ is positively expansive and C^r structurally stable, then $f: M \to M$ is expanding.

For $f \in C^{r}(M, M)$ we denote by Sing(f) the set of all singularities of f, i.e.

 $\operatorname{Sing}(f) = \{x \in M \mid D_x f : T_x M \to T_{f(x)} M \text{ is not an isomorphism } \}.$

If $\operatorname{Sing}(f) = \emptyset$, then $f : M \to M$ is called *regular*, which is a self-covering map. It is evident that any expanding C^1 map is regular.

We say that $p \in Per(f)$ is *repelling* if the absolute value of any eigenvalue of Df^n : $T_pM \to T_pM$ is greater than one, where n is the period of p. Using our idea of the proof of Theorem 1, we will also obtain the following theorem.

Theorem 4. Let $f: S^1 \to S^1$ be a C^r map of the circle, $1 \le r \le \infty$. Suppose that $f: S^1 \to S^1$ is positively expansive. Then f belongs to $PE^r(S^1) \setminus int PE^r(S^1)$ if and only if $Sing(f) \ne \emptyset$ or there exists a periodic point of f which is not repelling.

Corollary 5. Suppose that a C^1 map $f: S^1 \to S^1$ of the circle is positively expansive and regular. If all periodic points of f are repelling, then $f: S^1 \to S^1$ is expanding.

We remark that the C^2 version of Corollary 5 is obtained from a result of Mañé [18, Theorem A].

It remains a problem of whether or not there is $f \in PE^{r}(M) \setminus \operatorname{int} PE^{r}(M)$, in the case where $\dim(M) \geq 2$, such that f is regular and all periodic points of f are repelling, where $1 \leq r \leq \infty$. Compare with a result of Bonatti-Diaz-Vuillemin [2] which says that there are expansive C^{3} diffeomorphisms on the two-dimensional torus T^{2} with the property that all periodic points are hyperbolic but the diffeomorphisms do not belong to the interior $\operatorname{int} E^{3}(T^{2})$ of the set $E^{3}(M)$ of all expansive C^{3} diffeomorphisms in the space $\operatorname{Diff}^{3}(T^{2})$ of all C^{3} diffeomorphisms with the C^{3} topology. See also Enrich [4].

§1 Positively expansive C^r maps with singularities

In this section we first show the following Lemma 1.1.

Lemma 1.1. Let $f: M \to M$ be a C^r map, $1 \le r \le \infty$. If $f: M \to M$ is a self-covering map and there is a neighborhood \mathcal{N} of f in $C^r(M, M)$ with respect to the C^r topology such that any $g: M \to M$ belonging to \mathcal{N} is a self-covering map, then $f: M \to M$ is regular.

Proof. Let $\{(U_i, \varphi_i)\}_{i=1}^k$ be an atlas of M with a finite number of charts such that each chart $\varphi_i : U_i \to D$ is a C^{∞} diffeomorphism, where D is the unit open disc in \mathbb{R}^n , $n = \dim(M)$. Since $f : M \to M$ is a C^r covering map and each U_i is an open disc in M, it follows that U_i is evenly covered by f, i.e. $f^{-1}(U_i)$ is expressed as a finite disjoint union $f^{-1}(U_i) = \bigcup_j^d V_j^i$ of open discs in M, where d is the covering degree of f, such that each restriction $f : V_j^i \to U_i$ is a C^r bijection. Let $2\delta > 0$ be the Lebesgue number of the covering $\{V_i^i \mid i = 1, \cdots, k, j = 1, \cdots, d\}$ of M. For $x \in M$ denote by

 $D_{\delta}(x)$ the open disc of radius δ centered at x. Then the closure $\overline{D_{\delta}(x)}$ is contained in some V_j^i , which is homeomorphically mapped by f onto U_i . Therefore, there is a path connected neighborhood \mathcal{V} of f in $C^r(M, M)$, with $\mathcal{V} \subset \mathcal{N}$, such that for any $g \in \mathcal{V}$ and any $x \in M$, $g(\overline{D_{\delta}(x)})$ is contained in some U_i . Let $g \in \mathcal{V}$. By assumption, $g: M \to M$ is a covering map. Since U_i is an open disc, U_i is evenly covered by g, which implies that $D_{\delta}(x)$ is homeomorphically mapped by g onto an open subset of U_i .

Fix $x \in M$. Choose orientations

$$\{1_y \in H_n(D_{\delta}(x), D_{\delta}(x) \setminus \{y\}) \mid y \in D_{\delta}(x)\} \quad \text{and} \quad \{1_z \in H_n(U_i, U_i \setminus \{z\}) \mid z \in U_i\}$$

of $D_{\delta}(x)$ and U_i respectively. Since \mathcal{V} is path connected, there is a constant $\tau = \pm 1$ such that for any $g \in \mathcal{V}$ and $y \in D_{\delta}(x)$, $g_*(1_y) = \tau 1_{g(y)}$, where $g_* : H_n(D_{\delta}(x), D_{\delta}(x) \setminus \{y\}) \rightarrow$ $H_n(U_i, U_i \setminus \{g(y)\})$ is the induced isomorphism. Since $\delta > 0$ is chosen to be small, we can take a C^{∞} diffeomorphism $\phi_x : D_{\delta}(x) \rightarrow D$. For $y \in D_{\delta}(x)$ let $A_y = D_{\phi_x(y)}(\varphi_i \circ f \circ \phi_x^{-1})$ be the derivative. Without loss of generality, we may assume that $\varphi_i : U_i \rightarrow D$ and $\phi_x : D_{\delta}(x) \rightarrow D$ send the orientations of U_i and of $D_{\delta}(x)$ to the standard orientation of D. Then, if the determinant $\det(A_y)$ is not zero, the sign of the constant τ is consistent with that of $\det(A_y)$.

For given $y \in D_{\delta}(x)$ assume $\det(A_y) = 0$, and choose regular matrices P and Q such that the signs of $\det(P)$ and $\det(Q)$ are both positive, and

$$PA_{y}Q = \begin{pmatrix} O_{11} & O_{12} \\ O_{21} & B_{22} \end{pmatrix},$$

where O_{11} , O_{12} and O_{21} are zero matrices, and B_{22} is a regular matrix. Let

$$B_{11}^{\varepsilon} = \begin{pmatrix} \varepsilon_1 & & O \\ & \ddots & \\ O & & \varepsilon_m \end{pmatrix}$$

be a regular diagonal matrix, where m is the size of the matrix O_{11} , such that the absolute values $|\varepsilon_1|, \cdots, |\varepsilon_m|$ are small enough and the sign of $\det(B_{11}^{\epsilon}) \cdot \det(B_{22})$ is different from that of τ . Then

$$A_{y}^{\varepsilon} = P^{-1} \begin{pmatrix} B_{11}^{\varepsilon} & O_{12} \\ O_{21} & B_{22} \end{pmatrix} Q^{-1}$$

is a regular matrix and the norm $||A_y - A_y^{\varepsilon}||$ is small enough. Let W_1 and W_2 be open neighborhoods of $\phi_x(y)$ in D such that $\overline{W}_1 \subset W_2$ and $\overline{W}_2 \subset D$, and choose a C^{∞} function $b: D \to \mathbb{R}$ satisfying the condition that b(z) = 1 for $z \in W_1$ and b(z) = 0 for $z \in D \setminus W_2$. Define $g: M \to M$ by

$$\varphi_i \circ g \circ \phi_x^{-1}(z) = b(z)(A_y - A_y^{\varepsilon})(z - \phi_x(y)) + \varphi_i \circ f \circ \phi_x^{-1}(z)$$

for $z \in D$, and g = f otherwise. Since each element of $A_y - A_y^{\varepsilon}$ can be chosen to be approximately zero, we have that $g \in \mathcal{V}$. On the other hand, $D_{\phi_x(y)}(\varphi_i \circ g \circ \phi_x^{-1}) = A_y^{\varepsilon}$, whose determinant has a different sign from τ , a contradiction.

We proved that $det(A_y) \neq 0$ for all $y \in D_{\delta}(x)$. Since x is arbitrary, it follows that f is regular. The proof is complete.

From Lemma 1.1 the followng Proposition 1.2 is obtained immediately.

Proposition 1.2. Let $f: M \to M$ be a C^r map, $1 \le r \le \infty$. Suppose that $f: M \to M$ is positively expansive. If $\operatorname{Sing}(f) \ne \emptyset$, then f belongs to $PE^r(M) \setminus \operatorname{int} PE^r(M)$.

In the rest of this section we give an example of a positively expansive C^{∞} map $f: S^1 \to S^1$ on the circle such that $\operatorname{Sing}(f) \neq \emptyset$.

Take $\ell \geq 1$ an integer. Let $\tilde{h}: \mathbb{R} \to \mathbb{R}$ be a strictly monotone increasing C^{∞} function having the property that $\tilde{h}(x+1) = \tilde{h}(x) + 1$ for all $x \in \mathbb{R}$, the derivative $\tilde{h}'(x)$ is positive whenever x is not an integer, $\tilde{h}(x) = x^{2\ell+1}$ on a small neighborhood of x = 0, and $\tilde{h}(x) = 2x - \frac{1}{2}$ on a small neighborhood of $x = \frac{1}{2}$. We choose $\tilde{g}: \mathbb{R} \to \mathbb{R}, x \mapsto 2x$, and define $\tilde{f}: \mathbb{R} \to \mathbb{R}$ by $\tilde{f} = \tilde{h} \circ \tilde{g} \circ \tilde{h}^{-1}$. Then $\tilde{f}(x) = 2^{2\ell+1}x$ if x is in a neighborhood of 0, and $\tilde{f}(x) = (4x-2)^{2\ell+1} + 1$ if x is in a neighborhood of $\frac{1}{2}$. Let $p: \mathbb{R} \to S^1 = \mathbb{R}/\mathbb{Z}$ be the covering projection, and define $f: S^1 \to S^1$ as the projection of $\tilde{f}: \mathbb{R} \to \mathbb{R}$ by p. Then $f: S^1 \to S^1$ is positively expansive and of class C^{∞} , and $\operatorname{Sing}(f) = \{p(\frac{1}{2})\} \neq \emptyset$.

§2 Invariant manifolds

Let $f: X \to X$ be a continuous map of a compact metric space, and denote the set of all orbits of f by

$$\lim_{\leftarrow} (X,f) = \{(x_i) \in \Pi^{\infty}_{-\infty} X \mid f(x_i) = x_{i+1}, \forall i \in \mathbb{Z}\},\$$

which is called the *inverse limit* of f. Let d be the metric for X, and define a metric \tilde{d} for $\prod_{-\infty}^{\infty} X$ by

$$\tilde{d}((x_i), (y_i)) = \sum_{i \in \mathbb{Z}} \frac{d(x_i, y_i)}{2^{|i|}}$$

and the shift $\sigma : \prod_{-\infty}^{\infty} X \to \prod_{-\infty}^{\infty} X$ by $\sigma((x_i)) = (x_{i+1})$. Then $\lim_{\leftarrow} (X, f)$ is a σ -invariant closed subset. The homeomorphism $\sigma : \lim_{\leftarrow} (X, f) \to \lim_{\leftarrow} (X, f)$ is called the *inverse limit system* for f, which is a natural extension of f. Define $p_0 : \lim_{\leftarrow} (X, f) \to X$ by $p_0((x_i)) = x_0$. Then, $f \circ p_0 = p_0 \circ \sigma$ holds.

Let $f: M \to M$ be a regular C^r map, and let $\Lambda \subset M$ be an f-invariant closed set (i.e. $f(\Lambda) = \Lambda$). Then $\lim_{\leftarrow} (\Lambda, f)$ is a σ -invariant closed subset of $\lim_{\leftarrow} (M, f)$. We say that Λ is a hyperbolic set if there there are constants C > 0 and $0 < \lambda < 1$ such that for any $(x_i) \in \lim_{\leftarrow} (\Lambda, f)$ there is a splitting

$$\coprod_{i\in\mathbb{Z}}T_{x_i}M=\coprod_{i\in\mathbb{Z}}E^s_{x_i}\oplus E^u_{x_i}=E^s\oplus E^u,$$

which is left invariant by Df, such that for all $n \ge 0$,

$$\|Df^n(v)\| \leq C\lambda^n \|v\|$$
 if $v \in E^s$ and $\|Df^n(v)\| \geq C^{-1}\lambda^{-n} \|v\|$ if $v \in E^u$.

When $(x_i) \neq (y_i)$ and $x_0 = y_0$, we have $E_{x_0}^u \neq E_{y_0}^u$ in most cases. Hence, we will sometimes write $E_{x_0}^u = E_{x_0}^u((x_i))$. On the other hand, even if $(x_i) \neq (y_i)$, it follows that $E_{x_0}^s = E_{y_0}^s$ whenever $x_0 = y_0$.

For $x \in \Lambda$ and $\varepsilon > 0$ we define the *local stable set*

$$W^s_{\varepsilon}(x) = \{ y \in M \mid d(f^i(x), f^i(y)) \le \varepsilon, \forall i \ge 0 \},\$$

and for $(x_i) \in \lim_{\leftarrow} (\Lambda, f)$ and $0 < \varepsilon \leq \varepsilon_0$, the local unstable set is defined by

$$W^{\boldsymbol{u}}_{\varepsilon}((x_i)) = \{ y \in M \mid \text{ there exists } (y_i) \in \lim_{\leftarrow} (M, f) \text{ such that} \ y_0 = y \text{ and } d(x_i, y_i) \leq \varepsilon, \forall i \leq 0 \}.$$

Let Y be a subset of $\lim_{\leftarrow} (M, f)$. For $\delta > 0$ denote by $L_{\delta}(Y)$ the set of points $\mathbf{x} \in \lim_{\leftarrow} (M, f)$ such that there is a path w, contained in a δ -neighborhood of $\tilde{\Lambda}$ in $\lim_{\leftarrow} (M, f)$, jointing \mathbf{x} and some point of Y.

Stable manifold theorem. Let $f: M \to M$ be a regular C^r map, $1 \le r \le \infty$, and let Λ be a hyperbolic set. Then there is $\varepsilon_0 > 0$ such that for $0 < \varepsilon \le \varepsilon_0$, $\{W^s_{\varepsilon}(x) \mid x \in \Lambda\}$ and $\{W^u_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)\}$ are families of discs of class C^r which varify continuously on $x \in \Lambda$ and $\mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)$ respectively. Furthermore, there is $\delta > 0$ such that $\{W^s_{\varepsilon}(x) \mid x \in \Lambda\}$ and $\{W^u_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)\}$ are extended to families $\{D^s_{\varepsilon}(x) \mid x \in p_0(L_{\delta}(\lim_{\leftarrow} (\Lambda, f)))\}$ and $\{D^u_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in L_{\delta}(\lim_{\leftarrow} (\Lambda, f))\}$ of discs of class C^r , respectively, which are semi-invariant under f and have the local product structure.

Let Λ be an *f*-invariant closed set of *M*. We say that Λ has the *dominated splitting* if there are constants C > 0 and $0 < \lambda < 1$ such that for any $(x_i) \in \lim_{\leftarrow} (\Lambda, f)$ there is a splitting

$$\prod_{i\in\mathbb{Z}}T_{x_i}M=\prod_{i\in\mathbb{Z}}E_{x_i}\oplus F_{x_i},$$

which is left invariant by Df, such that for all $n \ge 0$ and $i \in \mathbb{Z}$,

$$\frac{\|Df_{|E_i}^n\|_M}{\|Df_{|F_i}^n\|_m} \le C\lambda^n,$$

where $\| \cdot \|_M$ is the maximum norm and $\| \cdot \|_m$ is the minimum norm, and the correspondences $(x_i) \in \lim_{\leftarrow} (\Lambda, f) \mapsto E_{x_0} = E_{x_0}((x_i))$ and $(x_i) \in \lim_{\leftarrow} (\Lambda, f) \mapsto F_{x_0} = F_{x_0}((x_i))$ are continuous.

Invariant manifold theorem. Let $f: M \to M$ be a regular C^r map, $1 \le r \le \infty$, and let Λ be an f-invariant closed set having the dominatted splitting. Then there is $\varepsilon_0 > 0$ such that for $0 < \varepsilon \le \varepsilon_0$ there are families $\{D_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)\}$ and $\{D'_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)\}$ of discs of class C^r which are semi-invariant under f and varify continuously on $\mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)$ respectively. Furthermore, there is $\delta > 0$ such that $\{D_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)\}$ and $\{D'_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in \lim_{\leftarrow} (\Lambda, f)\}$ are extended to families $\{D_{\varepsilon}(x) \mid \mathbf{x} \in L_{\delta}(\lim_{\leftarrow} (\Lambda, f))\}$ and $\{D'_{\varepsilon}(\mathbf{x}) \mid \mathbf{x} \in L_{\delta}(\lim_{\leftarrow} (\Lambda, f))\}$ of discs of class C^r , respectively, which are semi-invariant under f and have the local product structure.

$\S3$ Proofs of Theorems 1 and 4

Let $f: M \to M$ be a regular C^r map, $1 \le r \le \infty$. For b > 1 we define

$$egin{aligned} \Lambda_b &= \{x \in M \mid ext{ there is } v \in T_x M, v
eq 0, ext{ such that} \ & \|Df^v(v)\| \leq b \|v\| ext{ for all } n \geq 0 \}. \end{aligned}$$

It is evident that Λ_b is a closed subset of M.

Lemma 3.1. If there is b > 1 such that $\Lambda_b = \emptyset$, then $f : M \to M$ is expanding.

Proof. By assumption, for any $x \in M$ and $v \in T_x M$ with $v \neq 0$ there is n > 0 such that $||Df^n(v)|| > b||v||$. Let $S^1(M) = \{v \in TM \mid ||v|| = 1\}$. Since $S^1(M)$ is compact, there are a finite open cover $\{U_1, \dots, U_k\}$ of $S^1(M)$ and a sequence $\{n_1, \dots, n_k\}$ of positive integers such that for each $v \in U_i$, $1 \leq i \leq k$, $||Df^{n_i}(v)|| \leq b||v||$. Let $N_0 = \max\{n_1, \dots, n_k\}$, and choose c > 0 such that for all $v \in TM$ and $0 \leq n \leq N_0$, $||Df^n(v)|| \geq c||v||$. Since b > 1, there is $\ell > 0$ such that $\lambda = b^\ell c > 1$. Take N > 0 such that $N/N_0 \geq \ell$. Then, for any $v \in TM$ there is $m \geq \ell$ such that

$$v \in U_{i_1}, Df^{n_{i_1}}(v) \in U_{i_2}, \cdots, Df^{n_{i_1}+n_{i_2}+\cdots+n_{i_{m-1}}}(v) \in U_{i_m},$$

and $0 \le n = N - (n_{i_1} + n_{i_2} + \dots + n_{i_m}) \le N_0$. Hence, we have

$$\begin{aligned} \|Df^{N}(v)\| &= \|Df^{n} \circ Df^{n_{i_{m}}} \circ \cdots Df^{n_{i_{1}}}(v)\| \\ &= cb^{m}\|v\| \ge \lambda \|v\|, \end{aligned}$$

which means that $f^N: M \to M$ is expanding. The proof is complete.

By Lemma 3.1, if $f: M \to M$ is not expanding, then $\Lambda_b \neq \emptyset$ for all b > 1. In this case, for b > 1 given we define

$$E^{sc}_x(0)=\{v\in T_xM\mid ext{ there is }K>0 ext{ such that}\ \|Df^n(v)\|\leq K\|v\| ext{ for all }n\geq 0\},\quad x\in\Lambda_b.$$

It is easy to see that $E_x^{sc}(0)$ is a subspace of T_xM . Since $x \in \Lambda_b$, it follows that $1 \leq \dim E_x^{sc}(0) \leq \dim M$. Let $\Lambda(b) = \bigcap_{n=0}^{\infty} f^{-n}(\Lambda_b)$. If $x \in \Lambda(b)$ then $f^n(x) \in \Lambda_b$ for all $n \geq 0$, and so $f(x) \in \Lambda_b$, which implies that $f(\Lambda(b)) \subset \Lambda(b)$. Hence, $\Lambda_{\infty}(b) = \bigcap_{n=0}^{\infty} f^n(\Lambda(b))$ is an f-invariant closed set.

We consider the following two cases.

Bounded case. $\Lambda(b) \neq \emptyset$ for some b > 1.

In this case, $\Lambda_{\infty}(b) \neq \emptyset$. Thus, we can choose a minimal set, say $\Lambda_{min}(b)$, for $f: \Lambda_{\infty}(b) \to \Lambda_{\infty}(b)$.

Unbounded case. $\Lambda(b) = \emptyset$ for all b > 1.

In this case, we take b > 1 sufficiently large, and define $\Lambda_{exit}(b)$ as the set of points $x \in \Lambda_b$ such that $f(x) \notin \Lambda_b$. Then, $\Lambda_{exist}(b)$ is an open subset of Λ_b .

Let $x \in \Lambda_{exist}(b)$. Then, there is $v \in E_x^{sc}(0)$ with $v \neq 0$ such that $||Df^n(v)|| \leq b||v||$ for all $n \geq 0$. If $f(x), \dots, f^j(x) \notin \Lambda_b$, for $1 \leq i \leq j$ there is $n_i \geq 1$ such that $||Df^{n_i}(Df^i(v))|| > b||Df^i(v)||$. Since $||Df^{n_i}(Df^i(v))|| \leq b||v||$, we have $||v|| > ||Df^i(v)||$ for $1 \leq i \leq j$. Hence, if $f^i(x) \notin \Lambda_b$ for all $i \geq 1$ then, since b > 1 is taken large, $f(x) \in \Lambda_b$, a contradiction. Therefore, there is $j_x \geq 2$ such that $f(x), \dots, f^{j_x-1}(x) \notin \Lambda_b$ and $f^{j_x}(x) \in \Lambda_b$. Since b > 1 is taken sufficiently large, it follows that $\{j_x \mid x \in \Lambda_{exit}(b)\}$ is unbounded.

We define $r : \Lambda_b \to \Lambda_b$ by r(x) = f(x) if $x \in \Lambda_b \setminus \Lambda_{exit}(b)$ and $r(x) = f^{j_x}(x)$ if $x \in \Lambda_{exit}(b)$. Then, we can choose a minimal set, say $\Lambda_{min}(b) = \Lambda_{min}(b;r)$, for $r : \Lambda_b \to \Lambda_b$, i.e. if Λ is a nonempty closed subset of Λ_b , $r(\Lambda) \subset \Lambda$, and $\Lambda \subset \Lambda_{min}$, then $\Lambda = \Lambda_{min}$. Note that $\overline{r(\Lambda_{min})} = \Lambda_{min}$. Let $\Lambda_{min}(b; f) = \overline{\bigcup_{n=0}^{\infty} f^n(\Lambda_{min}(b))}$.

Lemma 3.2.

- (1) If the bounded case happens then $\dim \Lambda_{\min}(b) = 0$.
- (2) If the unbounded case happens then dim $\Lambda_{min}(b; f) = 0$.

Proposition 3.3. Let $f: M \to M$ be a regular C^r map, $1 \leq r \leq \infty$. Suppose that $f: M \to M$ is positively expansive and not expanding. Let $\Lambda_{\min} = \Lambda_{\min}(b)$ for the bounded case, and $\Lambda_{\min} = \Lambda_{\min}(b; f)$ for the unbounded case. Then in the both cases the following holds. There are a Df-invariant continuous subbundle $E^{sc}(i_0) = \bigcup_{x \in \Lambda_{\min}} E_x^{sc}(i_0)$ of $T_{\Lambda_{\min}}M$ with $\dim E^{sc}(i_0) \geq 1$, where $i_0 \geq 0$ is an integer, and finite fimilies $\{D_i^u\}_{i=1}^{\ell}$ and $\{D^{u'}_i\}_{i=1}^{\ell}$ of m-discs of class C^r , $m = \dim M - \dim E^{sc}(i_0)$, such that

- (1) there is a constant $C_{i_0} > 0$ such that if $v \in E^{sc}(i_0)$ then $\|Df^n(v) \leq C_{i_0}n^{i_0}\|v\|$ for all $n \geq 0$,
- (2) $D_i^u \subset \operatorname{int} D_i^{u'}$ for $i = 1, \cdots, \ell$,
- (3) $\Lambda_{\min} \subset \bigcup_{i=1}^{\ell} \operatorname{int} D_i^u$,
- (4) if $x \in D_i^u \cap D_j^u \cap \Lambda_{min}$ then there is a neighborhood Λ_x of x in Λ_{min} such that $\Lambda_x \subset D^{u'}_i \cap D^{u'}_j$, and
- (5) if $x \in D_i^u \cap \Lambda_{min}$ then $E_x^{sc}(i_0) \oplus T_x D^{u'_i} = T_x M$ and there are constant C > 0and $\lambda > 1$ such that if $v \in T_x D^{u'_i}$ then $\|Df^n(v)\| \ge C\lambda^n \|v\|$ for all $n \ge 0$.

Proof of Theorem 1. Let $f \in intPE^{r}(M)$. By Proposition 1.2, $f: M \to M$ is regular. We assume that $f: M \to M$ is not expanding, and derive a contradiction. Let $\Lambda_{min} = \Lambda_{min}(b)$ for the bounded case, and $\Lambda_{min} = \Lambda_{min}(b; f)$ for the unbounded case, as in Proposition 3.3

By Proposition 3.3 there are a Df-invariant continuous subbundle $E^{sc}(i_0)$ of $T_{\Lambda_{min}}M$, and finite fimilies $\{D_i^u\}_{i=1}^{\ell}$ and $\{D_i^u\}_{i=1}^{\ell}$ of *m*-discs of class C^r such that the properties in Proposition 3.3 hold. Let $D_m = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1^2 + \dots + x_m^2 \leq 1, x_{m+1} = \dots = x_n = 0\}$, where $n = \dim M$. Choose charts $\varphi_i : U_i \to V_i$, $i = 1, \dots, \ell$, of M such that U_i is an open neighborhood of $D_i^{u'}$ in M, V_i is an open neighborhood of D_m in \mathbb{R}^n , and $\varphi_i(D^{u'_i}) = D_m$. By Lemma 3.2 and Proposition 3.3 (4) we can decompose Λ_{min} into a disjoint union $\Lambda_{min} = \Lambda_1 \cup \cdots \cup \Lambda_\ell$ of open and closed subsets such that $\Lambda_i \subset \operatorname{int} D^{u'_i}$ for $i = 1, \cdots, \ell$. Fix i with $1 \leq i \leq \ell$. Choose $W_1^i, W_2^i \subset V_i$, which are neighborhoods of $\varphi_i(\Lambda_i)$ in M, such that $\overline{W_1^i} \subset W_2^i$, $\overline{W_2^i} \subset V_i$, and $W_2^i \cap \varphi_i(\Lambda_{min} \setminus \Lambda_i) = \emptyset$. Let $\varepsilon > 0$ be sufficiently small. Let E_m is the identity matrix of size m, and let B be a diagonal matrix of size n - m defined by

$$B = \begin{pmatrix} 1 - \varepsilon g(x) & O \\ & \ddots & \\ O & 1 - \varepsilon g(x) \end{pmatrix},$$

where $g: V_i \to \mathbb{R}$ is a C^{∞} function satisfying g(x) = 1 on $\overline{W_1^i}$ and g(x) = 0 on $V_i \setminus W_2^i$. Define $g_i: V_i \to V_i$ by

$$x\mapsto \begin{pmatrix} E_m & O\\ O & B \end{pmatrix} x,$$

where O is the zero matrix. Then $g_i: V_i \to V_i$ is a C^{∞} diffeomorphism. If $x \in \varphi_i(\Lambda_i)$ then

$$D_{x}g_{i} = \begin{pmatrix} 1 & & & & O \\ & \ddots & & & & \\ & & 1 & & & \\ & & & 1-\varepsilon & & \\ & & & & \ddots & \\ O & & & & & 1-\varepsilon \end{pmatrix}$$

and $g_i = id$ on D_m .

Define $g: M \to M$ by

$$g = \begin{cases} \varphi_i^{-1} \circ g_i \circ \varphi_i & \text{on } V_i \quad (i = 1, \cdots, \ell) \\ id & \text{ortherwise} \end{cases}$$

Then we have

- (1) g = id on Λ_{min} ,
- (2) there is $0 < \tau < 1$ such that if $x \in \Lambda_i$, $1 \le i \le \ell$, and $v \in (T_x D^{u'}_i)^{\perp}$ then $\|Dg(v)\| \le \tau \|v\|$, and

(3) $g: M \to M$ is sufficiently close to $id: M \to M$ with respect to the C^r topology. By (3), $g \circ f: M \to M$ is sufficiently close to $f: M \to M$ with respect to the C^r topology, and so $g \circ f \in intPE^r(M)$. Therefore, $g \circ f: M \to M$ is positively expansive. By (1), Λ_{min} is $g \circ f$ -invariant. From (2) it follows that Λ_{min} is a hyperbolic set of $g \circ f$ with contracting direction. Hence, by the stable manifold theorem all points in Λ_{min} have non-trivial local stable manifolds with sufficiently small diameter, a contradiction. The proof is complete.

Proof of Theorem 4. If $\operatorname{Sing}(f) \neq \emptyset$ or there exists a non-repelling periodic point of f, then by Proposition 1.2 and the discussion in the proof of Theorem 1 it follows that

f belongs to $PE^{r}(M) \setminus \operatorname{int} PE^{r}(M)$. Conversely, if $f \in PE^{r}(M) \setminus \operatorname{int} PE^{r}(M)$ and $f: M \to M$ is regular, then by Theorem 1, $f: M \to M$ is not expanding. Since $\dim S^{1} = 1$, from Proposition 3.3 it follows that m = 0, and so Λ_{min} is a finite set, which implies that there is a non-repelling periodic point. The proof is complete.

For the details of this paper, the author hope to appear elsewhere.

References

- [1] N.Aoki and K.Hiraide, Topological theory of dynamical systems, Recent advances. North-Holland Mathematical Library 52, North-Holland, 1994.
- [2] C.Bonatti, L.Diaz and F.Vuillemin, Cubic tangencies and hyperbolic diffeomorphisms, Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), 99-144.
- [3] E.Coven and W.Reddy, Positively expansive maps of compact manifolds, Lecture Notes in Math. 819, Springer-Verlag, 1980, 96-110.
- [4] H.Enrich, A heteroclinic bifurcation of Anosov diffeomorphisms, Ergod. Th. and Dynam. Sys. 18 (1998), 567-608.
- [5] J.Franks, Anosov diffeomorphisms, Global Analysis, Proc. Sympos. Pure Math. 14, Amer. Math. Soc., 1970, 61–93.
- [6] J.Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301–308.
- [7] M.Gromov, Groups of polynomial growth and expanding maps, I.H.E.S. Publ. Math. 53 (1981), 53-78.
- [8] S.Hayashi, Connecting invariant manifolds and the solution of the C^1 stability and Ω -stability conjectures for flows. Ann. of Math. (2) 145 (1997),81–137.
- [9] K.Hiraide, Positively expansive maps and growth of fundamental groups, Proc. Amer. Math. Soc. 104 (1988), 934–941.
- [10] K.Hiraide, Positively expansive open maps of Peano spaces, Topology and its Appl. 37 (1990), 213–220.
- [11] K.Hiraide, Nonexistence of positively expansive maps on compact connected manifolds with boundary, Proc. Amer. Math. Soc. 110 (1990), 565-568.
- [12] M.Hirsch, Differential topology. Graduate Texts in Math. 33, Springer-Verlag, 1976.
- [13] M.Hirsch and C.Pugh, Stable manifolds and hyperbolic sets, Global Analysis, Proc. Sympos. Pure Math. 14, Amer. Math. Soc., 1970, 133–163.
- [14] M.Hirsch, J.Palis, C.Pugh and M.Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1970), 121–134.
- [15] M.Hirsch, C.Pugh and M.Shub, Invariant manifolds, Lecture notes in Math. 583, Springer-Verlag, 1977.
- [16] R.Mañé, Expansive diffeomorphisms, Dynam. Sys. Warwick, Lecture notes in Math. 468, Springer-Verlag, 1974, 162-174.
- [17] R.Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 252 (1979), 313–319.

- [18] R.Mañé, Hyperbolicity, sinks and measure in one-dimensional dynamics, Comm. Math. Phys. 100 (1985), 495–524.
- [19] C.Pugh and C.Robinson, The C¹ closing lemma, including Hamitonians, Ergod. Th. and Dynam. Sys. 3 (1983), 261–313.
- [20] W.Reddy, Expanding maps on compact metric spaces, Topology and its Appl. 13 (1982), 327-334.
- [21] M.Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199.