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Hyperbolicity of positively expansive C" maps on compact
smooth manifolds which are C" structurally stable
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Let X be a metric space with metric d, and let f : X — X be a continuous map. We
say that f is positively expansive if there is a constant e > 0, called a expansive constant,
such that for z,y € X if d(f™(z), f*(y)) < e for all n > 0 then z = y. If X is compact,
the property that f : X — X is positively expansive does not depend on the choice -
of metrics for X compatible with the topology of X, although so is not the expansive
constant. Also, for continuous maps of compact metric spaces, positive expansiveness is
preserved under topological conjugacy.

Reddy [20] proved that if X is compact and f : X — X is positively expansive then
f: X = X is topologically expanding, i.e. there are constants A > 1 and 6 > 0 and a
metric D for X, called the hyperbolic metric, compatible with the topology of X such
that for z,y € X if D(z,y) < 6 then D(f(z), f(y)) > AD(z,y). As an application of
this result, it is easily obtained that if a compact metric space X admits a positively
expansive homeomorphism then X must be a finite set (for example, see [1, Theorem
2.2.12)).

If a positively expansive map f : X — X is an open map, obviously f is a local
homeomorphism. Let X be compact. Then, using the hyperbolic metric, we can show
that a positively expansive map f : X — X is an open map if and only if f has the
shadowing property (for example, see [1, Theorem 2.3.10]). From this fact it follows
that if a positively expansive map f : X — X is an open map then the dynamics of f
behaves like Axiom A differetiable dynamics in topological viewpoint and, especially, X
has Markov partitions. For details the readers can refer to [1].

Let M be a compact connected manifold. If M admits a positively expansive map
then the boundary M must be empty ([11]). Hence, every positively expansive map
f: M — M is an open map, by Brouwer’s theorem on invariance of domain, and it
is a self-covering map with the covering degree greater than one. After the studies
of expanding differetiable maps by Shub [21], Franks [5] and so on (see below for the
definition), Coven-Reddy [3] showed that if f : M — M is positively expansive then the
set Fix(f) of all fixed points is not empty, the set Per(f) of all periodic points is dense
in M, the universal covering space of M is homeomorphic to the Euclidean space, and if
another positively expansive g : M — M is homotopic to f then f and g are topologically
conjugate. The author [9] proved that M admits a positively expansive map then the
fundamental group 7;(M) has polynomial growth. Combining these facts with results
of Franks [5] and Gromov [7], we have that a positively expansive map f: M — M is
topologically conjugate to an expanding infra-nilmanifold endomorphism, in the same
way as expanding differetiable maps. See also [10]. Thus, the dynamics of positively
expansive maps on compact manifolds is well-understood in topological viewpoint.



The purpose of this paper is to study the dynamics of positively expansive map form
differetiable viewpoint.

Let M be a closed Riemannian smooth (= C*) manifold, and let f : M — M be a
C! map. We recall that f is ezpanding if there are constants C > 0 and A > 1 such that
the derivative Df : TM — T'M has the following property; for all v € TM and n > 0

IDf* (@)l 2 CAv,

where || - || is the Riemannian metric. It is not difficult to check that an expanding C*
map f: M — M is positively expansive.

Let 1 < r < 00, and denote by C" (M, M) the space of all C" maps of M with the C"
topology. We let

PE"(M)={f € C"(M,M) | f is positively expansive },

and denote by int PE™ (M) the interior of PE™ (M) in C"(M, M) with respect to the C"
topology.

Theorem 1. Let f: M — M be a C" map, 1 <r < o0o. Then

[ €intPE"(M) < f: M — M is expanding.

The implication <= in Theorem 1 is clear because the set of all expanding C' maps on
M is an open subset of C1(M, M) with respect the C! topology (see [21], and also Lemma
3.1). The case of r = 1 for the implication == in Theorem 1 can be shown in the same
method as the proof given by Mafié [16] whose result says that the interior intE*(M)
of the set E*(M) of all expansive C! diffeomorphisms in the space Diff*(M) of all C*!
diffeomorphisms endowed with the C! topology is consistent with the set of all Axiom
A C? diffeomorphisms satisfying the condition that T, W?*(z) N T,W*(z) = {0} for all
z € M, where W*(z) and W*(z) are stable and unstable manifolds of z. However, our
proof of the implication = in Theorem 1 will be different from the one given by Mané,
because we handle the C" cases, 1 < r < o0, and can not use well-known methods such

as Pugh’s closing lemmma ([19]), Franks’ lemma ([6]) and Hayashi’s connecting lemma

([8]) which work only for the C! case.
From Theorem 1 the following corollary is obtained immediately.

Corollary 2. Let 1 <r < co. Then

intPE" (M) = intPE'(M) N C™(M, M).

We say that a C" map f : M — M is C” structurally stable if there is a neighborhood
N of f in C"(M, M) such that any g € N is topologically conjugate to f. Since positive
expansiveness is preserved under topological conjugacy, we also obtain the following
corollary.
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Corollary 3. Let1 <r < oo. If a C" map f: M — M is positively ezpansive and CT
structurally stable, then f : M — M is expanding.

For f € C"(M, M) we denote by Sing(f) the set of all singularities of f, i.e.
Sing(f) = {z € M | Dy f : TsM — Tj(;)M is not an isomorphism }.

If Sing(f) = 0, then f : M — M is called regular, which is a self-covering map. It is
evident that any expanding C! map is regular.

We say that p € Per(f) is repelling if the absolute value of any eigenvalue of Df" :
ToM — T, M is greater than one, where n is the period of p. Using our idea of the proof
of Theorem 1, we will also obtain the following theorem.

Theorem 4. Let f : S1 — S be a C™ map of the circle, 1 < r < oo. Suppose that
f: 81 — S is positively ezpansive. Then f belongs to PE"(S') \ intPET(S!) if and
only if Sing(f) # O or there ezists a periodic point of f which is not repelling.

Corollary 5. Suppose that a C' map f : S' — S* of the circle is positively ezpansive
and regular. If all periodic points of f are repelling, then f : S* — S is expanding.

We remark that the C? version of Corollary 5 is obtained from a result of Mafié [18,
Theorem A].

It remains a problem of whether or not there is f € PE™(M) \ intPE"(M), in the
case where dim(M) > 2, such that f is regular and all periodic points of f are repelling,
where 1 < r < co. Compare with a result of Bonatti-Diaz-Vuillemin [2] which says
that there are expansive C3 diffeomorphisms on the two-dimensional torus 72 with the
property that all periodic points are hyperbolic but the diffeomorphisms do not belong
to the interior int E3(T?) of the set E3(M) of all expansive C® diffeomorphisms in the
space Diff*(T?) of all C® diffeomorphisms with the C3 topology. See also Enrich [4].

§1 Positively expansive C™ maps with singularities

In this section we first show the following Lemma 1.1.

Lemmal.l. Let f: M — M beaC™ map,1 <r < oco. Iff: M — M is a self-covering
map and there is a neighborhood N of f in C™(M, M) with respect to the C" topology
such that any g : M — M belonging to N is a self-covering map, then f : M — M is
regqular.

Proof. Let {(U;, ¢;)}%.; be an atlas of M with a finite number of charts such that each
chart @; : U; = D is a C*™ diffeomorphism, where D is the unit open disc in R”®,
n = dim(M). Since f : M — M is a C" covering map and each U; is an open disc
in M, it follows that U; is evenly covered by f, i.e. f~1(U;) is expressed as a finite
disjoint union f~1(U;) = U3V} of open discs in M, where d is the covering degree of f,
such that each restriction f : Vj‘ — U; is a C™ bijection. Let 26 > 0 be the Lebesgue
number of the covering {V,’ |4=1,--- ,k,j=1,---,d} of M. For £ € M denote by
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Ds(z) the open disc of radius § centered at . Then the closure Dj(x) is contained in
some Vj", which is homeomorphically mapped by f onto U;. Therefore, there is a path
connected neighborhood V of f in C"(M, M), with V C N, such that for any g € V and
any £ € M, g(Ds(z)) is contained in some U;. Let g € V. By assumption, g : M - M
is a covering map. Since U; is an open disc, U; is evenly covered by g, which implies
that Ds(z) is homeomorphically mapped by g onto an open subset of U;.

Fix £ € M. Choose orientations

{1y € Ha(Ds(2), Ds(z) \ {y}) |y € Ds(z)} and {1, € Ho(Ui, Ui\ {2}) | 2 € Ui}

of Ds(z) and U; respectively. Since V is path connected, there is a constant 7 = %1 such
that for any g € V and y € Ds(z), g«(1y) = T1g(y), Where g4 : Hp(Ds(x), Ds(z) \{y}) =
H, (Ui, U;\{g(y)}) is the induced isomorphism. Since J > 0 is chosen to be small, we can
take a C* diffeomorphism ¢, : Ds(z) = D. For y € Ds(z) let Ay = Dy, (y)(pio fod;?!)
be the derivative. Without loss of generality, we may assume that ¢; : U; = D and
¢z : Ds(xz) — D send the orientations of U; and of Ds(z) to the standard orientation of
D. Then, if the determinant det(A,) is not zero, the sign of the constant 7 is consistent
with that of det(4,).

For given y € Ds(x) assume det(A,) = 0, and choose regular matrices P and @ such
that the signs of det(P) and det(Q) are both positive, and

_[(On Or2
PA,Q = (021 Bzz) '

where 011, O12 and O are zero matrices, and By, is a regular matrix. Let

€1 0
f1=( )
(0 Em

be a regular diagonal matrix, where m is the size of the matrix Oy;, such that the
absolute values |e;|,--- ,|em| are small enough and the sign of det(Bf;) - det(Baz) is
different from that of 7. Then
Bf, O
Ae = P—l 11 12) -1
4 (021 Ba ¢

is a regular matrix and the norm ||A, — A;7|| is small enough. Let W; and W2 be open
neighborhoods of ¢,(y) in D such that W; C Wy and W, C D, and choose a C*®
function b : D — R satisfying the condition that b(z) = 1 for z € Wy and b(z) = 0 for
z € D\ Wa. Define g: M — M by

i 0907 (2) = b(2)(Ay — A7)(2 — ¢z(y)) + @io f 0 677(2)

for z € D, and g = f otherwise. Since each element of A, — Aj can be chosen to be
approximately zero, we have that g € V. On the other hand, Dy, (,)(pi0go ¢71) = A3,
whose determinant has a different sign from 7, a contradiction.

We proved that det(A,) # 0 for all y € Ds(z). Since z is arbitrary, it follows that f
is regular. The proof is complete. ’

From Lemma 1.1 the followng Proposition 1.2 is obtained immediately.

128



Proposition 1.2. Let f: M — M be a C™ map, 1 < r < 0o. Suppose that f : M — M
is positively ezpansive. If Sing(f) # 0, then f belongs to PE™(M) \ intPE™ (M).

In the rest of this section we give an example of a positively expansive C* map
f: 81 — S! on the circle such that Sing(f) # 0.

Take £ > 1 an integer. Let & : R — R be a strictly monotone increasing C* function
having the property that h(z + 1) = h(z) + 1 for all z € R, the derivative A’ (z) is
positive whenever z is not an integer, h(z) = z2*! on a small neighborhood of z = 0
,and h(z) = 2z — 3 on a small neighborhood of z = 1. We choose §: R — R, z - 2z,
and define f : R - R by f = hogoh~!. Then f(z) = 22¢*1z if z is in a neighborhood
of 0, and f(z) = (4= — 2)**1 + 1 if ¢ is in a neighborhood of 2. Letp:R— S'=R/Z
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be the covering projection, and define f : S — S as the projection of f :R—>Rbyp.

Then f : §* — S is positively expansive and of class C*, and Sing(f) = {p(3)} # 0.

§2 Invariant manifolds

Let f: X — X be a continuous map of a compact metric space, and denote the set
of all orbits of f by

lim(X, f) = {(z:) € IZ X | f(zi) = zi41,Vi € Z},

which is called the inverse limit of f. Let d be the metric for X, and define a metric d
for II*_ X by

d((ze), W) =Y 9%_]@

i€z
and the shifto : 1%, X — I, X by 6((z;)) = (%i4+1). Thenlim, (X, f) is a o-invariant
closed subset. The homeomorphism ¢ : lim, (X, f) = lim (X, f) is called the inverse
limit system for f, which is a natural extension of f. Define pp : lim (X, f) = X by
po((z:)) = zo. Then, f o py = pg o o holds.

Let f : M — M be a regular C™ map, and let A C M be an f-invariant closed set
(ie. f(A) = A). Then lim (A, f) is a o-invariant closed subset of lim._ (M, f). We say
that A is a hyperbolic set if there there are constants C > 0 and 0 < A < 1 such that for
any (z;) € lim, (A, f) there is a splitting

[[Z.M =] B2, © BX, = E* © E*,
i€Z i€z
which is left invariant by Df, such that for all n > 0,
IDf* ()| K CA*||v||ifve E* and ||Df*(v)|| > C™IA™"||v| if v € E*.

When (z;) # (y;) and zo = yo, we have E3 # E, in most cases. Hence, we will
sometimes write E; = E} ((z;)). On the other hand, even if (z;) # (y:), it follows that
EZ, = Ej, whenever z¢ = yo.



For z € A and ¢ > 0 we define the local stable set
Wl(z) = {y € M | d(f(z), f*(y)) <& Vi > 0},
and for (z;) € lim. (A, f) and 0 < ¢ < €g, the local unstable set is defined by

W2((z:)) = {y € M | there exists (y;) € li+I_n(M , f) such that
yo =y and d(z;,3:) <€,Vi <0}

Let Y be a subset of lim, (M, f). For § > 0 denote by Ls(Y) the set of points
x € lim (M, f) such that there is a path w, contained in a é-neighborhood of A in
lim. (M, f), jointing x and some point of Y.

Stable manifold theorem. Let f : M — M be a regular C™ map, 1 < r < 00, and let
A be a hyperbolic set. Then there iseq > 0 such that for 0 < € < &g, {W&(z) | z € A} and
{Wk(x) | x € lim (A, f)} are families of discs of class C" which varify continuously
onz € A and x € lim, (A, f) respectively. Furthermore, there is § > 0 such that
{We(z) | z € A} and {W2(x) | x € lim(A, f)} are extended to families {D3(z) | z €
po(Ls(lim (A, £)))} and {D¥(x) | x € Ls(lim (A, f))} of discs of class C", respectively,
which are semi-invariant under f and have the local product structure.

Let A be an f-invariant closed set of M. We say that A has the dominated splitting
if there are constants C > 0 and 0 < A < 1 such that for any (z;) € lim, (A, f) there is

a splitting
[[7:.M =] E., © Fa,,
i€z i€z

which is left invariant by Df, such that for alln > 0 and ¢ € Z,

Dfig v

IO o

D7
where | - ||ar is the maximum norm and || - ||, is the minimum norm, and the

correspondances (z;) € lim, (A, f) = E;, = E;,((z;)) and (z;) € im (A, f) » F,, =
F,((z:)) are continuous.

Invariant manifold theorem. Let f : M — M be a regular C" map, 1 < r < oo,
and let A be an f-invariant closed set having the dominatted splitting. Then there is
go > 0 such that for 0 < € < ¢ there are families {D.(x) | x € lim_(A, f)} and
{DL(x) | x € lim (A, f)} of discs of class C" which are semi-invariant under f and
varify continuously on x € lim (A, f) respectively. Furthermore, there is § > 0 such
that {D.(x) | x € lim, (A, f)} and {DL(x) | x € lim (A, f)} are extended to families
{D.(z) | x € Ls(lim (A, f))} and {D'(x) | x € Ls(im (A, f))} of discs of class C",

respectively, which are semi-invariant under f and have the local product structure.
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§3 Proofs of Theorems 1 and 4
Let f: M — M be a regular C" map, 1 < r < oco. For b > 1 we define

Ap = {z € M| thereis v € T,M,w # 0, such that
IDf?(v)|| < bl|v| for all n > 0}.

It is evident that Ay is a closed subset of M.
Lemma 3.1. If there is b > 1 such that Ay = 0, then f : M — M is ezpanding.

Proof. By assumption, for any x € M and v € T, M with v # 0 there is n > 0 such -
that |[Df"(v)|| > b||lv||. Let S}(M) = {v € TM | |jv|| = 1}. Since S*(M) is com-
pact, there are a finite open cover {Uy,--- ,Ui} of S*(M) and a sequence {ny,--- ,ng}
of positive integers such that for each v € U;, 1 < 1 < k, ||[Df™(v)|| < b||lv]l. Let
No = max{ny,--+ ,ng}, and choose ¢ > 0 such that for all v € TM and 0 < n < Np,
IDf* ()}l > c||v||. Since b > 1, there is £ > 0 such that A = b’c > 1. Take N > 0 such
that N/Ng > £. Then, for any v € TM there is m > £ such that

v € Uiy, Df*1(v) € Uiy, -+« , Dttt " im-1(v) € Uy,
and 0 <n=N - (n;;, + ni, +---+n4,,) < No. Hence, we have

IDfN(W)|| = |Df™ o Df™im o--- D f™ (v)]
= cb™||v]| > Aljv]],

which means that fV : M — M is expanding. The proof is complete.

By Lemma 3.1, if f : M — M is not expanding, then A, # 0 for all b > 1. In this
case, for b > 1 given we define

E2°(0) = {v € T,M | there is K > 0 such that
|IDf*(v)|| < K|lv|| for all n > 0}, =z € As.

It is easy to see that E;°(0) is a subspace of T, M. Since z € Ay, it follows that
1 < dimEZ°(0) < dimM. Let A(b) = N of"(Ap). If z € A(b) then f*(z) € Ap
for all n > 0, and so f(x) € Ap, which implies that f(A(b)) C A(b). Hence, Ax(b) =
N2 of"(A(D)) is an f-invariant closed set.

We consider the following two cases.
Bounded case. A(b) # 0 for some b > 1.

In this case, Aoo(b) # 0. Thus, we can choose a minimal set, say Amin(b), for
J i Ao(d) = A (D).



Unbounded case. A(b) =0 for all b > 1.

In this case, we take b > 1 sufficently large, and define A.;;(b) as the set of points
z € Ap such that f(z) € Ap. Then, Aczist(b) is an open subset of Ay.

Let £ € Aegist(b). Then, there is v € E2°(0) with v # 0 such that ||[Df"(v)| < b||v||
for all n > 0. If f(z),--,fi(z) € Ay, for 1 < 4 < j there is n; > 1 such that
|IDf™ (D ()|l > bllDf*(v)|l- Since [[Df™(Df(v))ll < bllv]l, we have [|v]| > [|Dfi(v)]|
for 1 < i < j. Hence, if f*(z) € Ap for all ¢ > 1 then, since b > 1 is taken large,
f(z) € Ay, a contradiction. Therefore, there is j, > 2 such that f(z), -, fi=~1(z) & Ap
and fI=(x) € Ap. Since b > 1 is taken sufficiently large, it follows that {j; | £ € Aezit(b)}
is unbounded.

We define r : Ay = Ap by r(z) = f(z) if z € Ap \ Aezit(b) and r(z) = f=(z)
if £ € Aczit(b). Then, we can choose a minimal set, say Amin(b) = Amin(b;r), for
T : Ap — Ayp, ie. if A is a nonempty closed subset of Ay, 7(A) C A, and A C Ay, then
A = Apin. Note that ’I‘(Amm) = Apin. Let A,-m'n(b; f) = Ugo=0f" (Amin (b))

Lemma 3.2.

(1) If the bounded case happens then dim Anyin(b) = 0.
(2) If the unbounded case happens then dim Ap;n(b; f) = 0.

Proposition 3.3. Let f : M — M be a regular C™ map, 1 < r < o0. Suppose
that f : M — M is positively ezpansive and not expanding. Let Apmin = Amin(b) for
the bounded case, and Amin = Anmin(b; f) for the unbounded case. Then in the both
cases the following holds. There are a D f-invariant continuous subbundle E*°(ig) =
UzeAin B2(i0) of Th,,,. M with dim E*¢(ig) > 1, where ig > 0 is an integer, and finite
fimilies {D?},_, and {D*}}._, of m-discs of class C", m = dim M — dim E*¢(io), such
that
(1) there is a constant Cy, > 0 such that if v € E*%(ig) then ||Df™(v) < Ci,n'||v||
for alln >0,
(2) D¥ C intD¥; fori=1,--- ¢,
(8) Amin C Uf_,intD¥,
(4) fz e DN D} 0 Amin then there is a neighborhood Ay of x in Ay, such that
Az c D¥,n D“;-, and
(5) if z € D¥ N Apin then E2(ig) & T,D*; = T, M and there are constant C > 0
and A > 1 such that if v € T, D" then |Df™(v)|| > CA"||v|| for alln > 0.

Proof of Theorem 1. Let f € intPET(M). By Proposition 1.2, f : M — M is regular.
We assume that f : M — M is not expanding, and derive a contradiction. Let Apin =
Ammin(b) for the bounded case, and Amin = Amin(b; f) for the unbounded case, as in
Proposition 3.3

By Proposition 3.3 there are a D f-invariant continuous subbundle E*°(ig) of T, M,
and finite fimilies {D¥}{_, and {D%;}{_, of m-discs of class C" such that the properties
in Proposition 3.3 hold. Let Dy, = {(z1, -+ ,Zn) €R® |22+ -4+22 < L, Zpy1 =+ =
z, = 0}, where n = dim M. Choose charts ¢; : U; = V;, i = 1,--- , £, of M such that
U; is an open neighborhood of D*; in M, V; is an open neighborhood of D,, in R™, and
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©i(D*;) = D,,. By Lemma 3.2 and Proposition 3.3 (4) we can decompose Ap;n into a
disjoint union Amin, = A; U+ U Ay of open and closed subsets such that A; C intD¥;
fori=1,---,£ Fix i with 1 < ¢ < £. Choose Wi, W} C V;, which are neighborhoods
of v;(A;) in M, such that Wi ¢ Wi, Wi C Vi, and Wi N @;i(Amin \ Ai) = 0. Let € > 0
be sufficiently small. Let E,, is the identity matrix of size m, and let B be a diagonal
matrix of size n — m defined by

1-—eg(x) 0
B= ,
0 1-eg(z)

where g : V; = R is a C™ function satisfying g(z) =1 on —V_l;'—{— and g(z) =0 on V; \ Wj. |

Define g; : V; = V; by
where O is the zero matrix. Then g; : V; = V; is a C*® diffeomorphism. If z € ¢;(A;)
then )

(1 0

Dmgiz 1—¢ )

Lo R

and g; = id on D,,.
Define g : M — M by

g_{w{logeocpe onV; (i=1,---,0)
id ortherwise .

Then we have

(1) g =id on Apin,

(2) there is 0 < 7 < 1 such that if z € Ay, 1 < i < £, and v € (T;D*})* then
[Dg(v)|| < 7{jvll, and

(3) g: M — M is sufficiently close to id : M — M with respect to the C" topology.

By (3), go f : M — M is sufficiently close to f : M — M with respect to the C™
. topology, and so go f € intPE"(M). Therefore, go f : M — M is positively expansive.
By (1), Amin is g o f-invariant. From (2) it follows that A is a hyperbolic set of go f
with contracting direction. Hence, by the stable manifold theorem all points in Apin
have non-trivial local stable manifolds with sufficiently small diameter, a contradiction.
The proof is complete.

Proof of Theorem 4. If Sing(f) # @ or there exists a non-repelling periodic point of f,
then by Proposition 1.2 and the discussion in the proof of Theorem 1 it follows that
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f belongs to PE"(M) \ intPE™(M). Conversely, if f € PE"(M) \ intPE"(M) and
f+ M — M is regular, then by Theorem 1, f : M — M is not expanding. Since
dim S* = 1, from Proposition 3.3 it follows that m = 0, and so Ai, is a finite set,
which implies that there is a non-repelling periodic point. The proof is complete.

For the details of this paper, the author hope to appear elsewhere.
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