
Nakano Semipositivity of the direct
images of pluricanonical systems

Hajime TSUJI

1 Introduction
In this paper, I would like to explain my recent works on the direct image of
pluricanonical system and adjoint line bundles ([T5, T6]).

1.1 Semipositivity theorem
Our starting point is the following theorem.

Theorem 1.1 ($[Ka\mathit{1}$ , p.57, Theorem 1]) Let $f$ : $Xarrow C$ be an algebraic fiber
space over a projective curve C. Then $F_{m}:=f_{*}O_{X}(mK_{X/s})$ is a semipositive
vector bundle on $S$ in the sense that for any quotient sheaf 2 of $f_{*}O_{X}(mK_{X/S})$ ,
$\deg_{C}Q\geqq 0$ holds. $\square$

Theorem 1.1 has been used in many contexts in algegraic geometry ([$\mathrm{K}\mathrm{a}1$ , Ka2,
Vl, V2]). The original proof of Theorem 1.1 is based on the fact that the
hermitian metric

11 $\eta||_{\frac{1}{m}}:=(\int_{X_{\iota}}(\eta\wedge\overline{\eta})^{\perp}m)^{\frac{m}{\mathit{2}}},\eta\in H^{0}(X_{\epsilon},O_{X_{\mathrm{g}}}(mK_{X_{*}}))$

on the tautological line bundle on $\mathrm{P}(F_{m}^{*})$ has semipositive curvature. It is na-
trual to ccnsider the following problem.

Problem 1.2 Does $F_{m}$ admits a natural hermitian metric with semipositive
curvature ? $\square$

The purpose of this paper is to show that $F_{m}$ has a natural continuous metric
with semipositive curvature in the sense of Nakano:

Theorem 1.3 $([T\mathit{5}J)$ Let $f$ : $Xarrow S$ be projective family such that $X$ and $S$

are smooth. Let $S^{\mathrm{o}}$ be a nonempty Zariski open subset such that $f$ is smooth
over $S^{\mathrm{o}}$ . Then $K_{X/S}$ has a relative $AZDh$ over $S^{\mathrm{o}}$ such that $\Theta_{h}$ is semipositive
on $X$ .

And $F_{m}:=f_{*}O_{X}(mK_{\mathrm{x}/S})$ carries a continuous hermitian metric $h_{F_{m}}$ urith
Nakano semipositive curvature in the sense of current over $S^{\mathrm{o}}$ .

Let $x\in S-S^{\mathrm{o}}$ be a point and let $\sigma$ be a local holomorphic section of $F_{m}$ on
a neighbourhood $U$ of $x$ . Then $\sqrt{-1}\partial\log h_{F_{m}}(\sigma, \sigma)$ extends as a closed positive
current across $(S-S^{\mathrm{o}})\cap U.$ $\square$

By the $L^{2}$-extension theorem ( $\lfloor \mathrm{O}$ , O-T]), Theorem 1.3 immediately implies the
following theorern.
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Corollary 1.4 $([T\mathit{3}])$ Let $f$ : $Xarrow S$ be a smooth projective family. Then
$P_{m}(X_{s})=\dim H^{0}(X_{s}, \mathcal{O}_{X_{\theta}}(mK_{X_{\delta}}))$ is independent of $s\in S.$ $\square$

1.2 Variation of Bergman kernels
One of the main tool of the proof of Theorem 1.3 is a generalization of the recent
results of Berndtsson ([Bl, B2]).

Theorem 1.5 $([B\mathit{1}J)$ Let $D$ be a pseudoconvex domain in $\mathbb{C}_{z}^{n}\cross \mathbb{C}_{t}^{k}$ . And let di
be a plurisubharmonic function on D. For $t\in\Delta$ , we set $D_{t}:=\Omega\cap(\mathbb{C}^{n}\cross\{t\})$

and $\phi_{t}:=\phi|D_{t}$ . Let $K(z, t)(t\in \mathbb{C}_{t}^{k})$ be the Bergman kemel of the Hilbert space

$A^{2}(D_{t}, e^{-\phi_{t}}):= \{f\in O(\Omega_{t})|\int_{D_{t}}e^{-\phi_{t}}|f|^{2}<+\infty\}$ .

Then $\log K(z, t)$ is a plurisubharmonic function on D. $\square$

This is a generalization of the former result of Maitani and Yamaguchi ([M-Y]).
As in mensioned in [B2], his proof also works for a pseudoconvex domain in a
locally trivial family of manifolds which admits a Zariski dense Stein subdomain.

He also prove the following positivity theorem.

Theorem 1.6 ($[B\mathit{2}$, Theorem l.lJ) Let us consider a domain $D=U\cross\Omega$ and
let $\phi$ be a plurisubharmonic fimction on D. For simplicity we assume that $\phi$ is
smooth up to the boundary and strictly plurisubharrnonic in D. Then for each
$t\in U,$ $\phi_{t}:=\phi(\cdot, t)$ is $plur\cdot isubha\mathrm{r}monic$ on $\Omega$ . Let $A_{t}^{2}$ be the Bergman space of
holomorphic functions on $\Omega$ with no$rm$

$||f||^{2}=||f||_{t}^{2}:= \int_{\Omega}e^{-\phi_{t}}|f|^{2}$

The spaces $A_{t}^{2}$ are all equal as vector spaces but have norms that vary with $t$ .
Then ttinfinite rank” vector bundle $E$ over $U$ with fiber $E_{\mathrm{t}}=A_{t}^{2}$ is therefore
trivial as a bundle but is equipped with a notrivial metric. Then $(E, ||||_{t})$ is
strictly positive in the sense of Nakano. $\square$

In Theorem 1.5 the assumption that $D$ is a pseudoconvex domain in the product
space is rather strong. And in Theorem 1.6, Berndtsson also assumed that $D$ is a
product. Our first aim is to remove these assumptions and generalize Theorems
1.5,1.6 to the case of adjoint line bundles smooth projective fibrations.

By using this generalization we can study non locally trivial algebraic fiber
space.

To state our theorem, let us introduce the notion of the Bergman kernels
of adjoint line bundles. Let $X$ be a complex manifold of dimension $n$ and let
$(L, h)$ be a singular hermitian line bundle on $X$ . Let $K_{X}$ denote the canonical
line bundle on $X$ . Let $A^{2}(X, K_{X}+L, h)$ be the Hilbert space defined by

$A^{2}(X, K_{X}+L, h):= \{\sigma\in H^{0}(X, O_{X}(K_{X}+L))|(\sqrt{-1})^{n^{2}}\int_{X}h\cdot\sigma\wedge\overline{\sigma}<+\infty\}$,

where we have defined the inner product on $A^{2}(X, K_{X}+L, h)$ by

$(\sigma, \tau)’.=(\sqrt{-1})^{n^{2}}[h\cdot\sigma\wedge\overline{\tau}\prime \text{ノ},\backslash ’\cdot$
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We define the Bergman kernel $K(X, K_{X}+L, h)$ of the adjoint bundle $K_{X}+L$

with respect to $h$ by

$K(X, K_{X}+L, h):=( \sqrt{-1})^{n^{2}}\sum_{i}\sigma_{i}$ A $\overline{\sigma}_{i}$ .

where $\{\sigma_{i}\}$ is a complete orthonormal basis of the Hilber space $A^{2}(X, K_{X}+L, h)$ .
Then $K(X, K_{X}+L, h)$ is independent of the choice of the complete orthonormal
basis $\{\sigma_{i}\}$ . In fact

$K(X, K_{X}+L, h)(x)= \sup$ { $(\sqrt{-1})^{n^{2}}\sigma(x)$ A $\overline{\sigma}(x)|||\sigma||=1$ }

holds.

Now we shall state our theorem.

Theorem 1.7 $([T\mathit{5}J)$ Let $f$ : $Xarrow S$ be a smooth projective family of projec-
tive varieties over a complex manifold S. Let $(L, h)$ be a singular hermitian line
bundle on $X$ such that $\Theta_{h}$ is semipositive on X. Let $K_{s}:=K(X_{s},K_{X}+L|\mathrm{x}$.
, $h|\mathrm{x}_{\ell})$ be the Bergman kemel of $K_{X},$ $+(L|X_{s})$ with respect to $h|X_{s}$ . Then
the singular he$7mihan$ metric $h_{B}$ of $K_{\mathrm{x}/S}+L$ defined by

$h_{B}|X_{s}:=K_{s}^{-1}$

has semipositive curvature on X. $\square$

Theorem 1.7 follows $\mathrm{h}\mathrm{o}\mathrm{m}$ Theorem 1.5 by a simple trick as follows. We may
assume that $S$ is the unit open disk $\Delta$ cetered at O. $f$ : $Xarrow S$ is not locally
trivial. We shall embed $X$ into the trivial family $p$ : $X\cross\Deltaarrow\Delta,p(x, t)=$

$x(x\in X, t\in\Delta)$ by

$i$ : $Xarrow X\cross\Delta$

defined by

$i(x):=(x, f(x))$ .
Then $i(X)$ is a hypersurface in $X\cross\Delta$ and not a domain in $X\cross\Delta$ . So we shall
thicken $i(X)$ by replacing $X_{t}(t\in\Delta)$ by $f^{-1}(\Delta(t, \epsilon))$ , where $\Delta(t,\epsilon)$ denotes the
open disk of radius $\epsilon$ centered at $t$ . In this way we construct a thickend family

$f_{\epsilon}$ : $X(\epsilon)arrow\Delta(1/2)$

which is considered to be a pseudoconvex domain in the product family $X\cross$

$\Delta(1/2)$ over $\Delta(1/2)$ , where $\Delta(1/2)$ denotes $\Delta(0,1/2)$ . Then Theorem 1.5 is
applicable to the family of Bergman kernels of the adjoint bundle of $p^{*}(L, h)$

over $\Delta(1/2)$ . Letting $\epsilon$ tend to $0$ , with the rescaling constant $\pi\epsilon^{2}$ , we obtain
Theorem 1.7.

By entirely the same method, we also generalize Theorem 1.6 as follows.

Theorem 1.8 Let $f$ : $X-arrow S$ be a smooth projective family of over a complex
$cur\cdot veS$ of relative dimension $n$ . Let $(L, h)$ be a hermitian line bundle on $X$
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such that $\Theta_{h}$ is semipositive on X. We define the hermitian metric $h_{E}$ on
$E:=f_{*}O_{X}(K_{X/S}+L)$ by

$h_{E}( \sigma, \tau):=(\sqrt{-1})^{n^{2}}\int_{X_{\delta}}h\cdot\sigma\wedge\overline{\tau}$ .

Then $(E, h_{E})$ is semipositive in the sense of Nakano. Moreover if $\Theta_{h}$ is strictly
positive, then $(E, h_{E})$ is strictly positive in the sense of Nakano. $\square$

After I completed this work, I have received a preprint of Berndtsson [B3],
which proved Theorem 1.7 under the assumption that $h$ is $C^{\infty}$ . His proof is
more computational than the one in [T5] and it is not clear whether his proof
works also for a singular $h$ .

The proof in [T5] is very simple and based on the original proof of Theorem
1.5 in [B1].

2 Preliminaries
Deflnition 2.1 $L$ is said to be pseudoeffective, if there exists a singular her-
mitian metric $h$ on $L$ such that the curvature $cu7\gamma \mathrm{e}nt\Theta_{h}$ is a closed positive
current. Also a singular hermitian line bundle $(L, h)$ is said to be pseudoef-
fective, if the curvature current $\Theta_{h}$ is a closed positive current. $\square$

Here we shall introduce the notion of analytic Zariski decompositions. By using
analytic Zariski decompositions, we can handle big line bundles like nef and big
line bundles.

Definition 2.2 Let $M$ be a compact complex manifold and let $L$ be a holomor-
phic line bundle on M. A singular hermitian $metr’ ich$ on $L$ is said to be an
analytic Zariski decomposition, if the followings hold.

1. $\Theta_{h}$ is a closed positive current,

2. for every $m\geq 0$ , the natural inclusion

$H^{0}(M, O_{M}(mL)\otimes \mathcal{I}(h^{m}))arrow H^{0}(M, O_{M}(mL))$

is an isomorphim. $\square$

Remark 2.3 If an $AZDe$ rists on a line bundle $L$ on a smooth projective variety
$M,$ $L$ is pseudoeffective by the condition 1 above. $\square$

Theorem 2.4 $([T\mathit{1}, T\mathit{2}J)$ Let $L$ be a big line bundle on a smooth projective
variety M. Then $L$ has an $AZD$.

As for the existence for general pseudoeffective line bundles, now we have the
following theorem.

Theorem 2.5 ([D-P-S, Theorem 1. $\mathit{5}J$) Let $X$ be a smooth projective variety
and let $L$ be a pseudoeffective line bundle on X. Then $L$ has an $AZD$.
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Theorem 2.6 ($[O$, Theorem 4]) Let $M$ be a complex manifold with a contin-
uous volume form $dV_{M_{2}}$ let $E$ be a holomorphic vector bundle over $M$ with
$C^{\infty}$ -fiber metric $h_{Ef}$ let $S$ be a closed complex submanifold of $M$ , let $\Psi\in\#(S)$

and let $K_{M}$ be the canonical bundle of M. Then $(S, dV_{M}(\Psi))$ is a set of inter-
polation for $(E\otimes K_{M}, h_{E}\otimes(dV_{M})^{-1},$ $dV_{M})$ , if the $fo$ llowings are satisfied.

1. There exists a closed set $X\subset M$ such that

$(a)X$ is locally negligble with respect to $L^{2}$ -holomorphic functions, $i.e.$ ,
for any local coordinate neighbourhood $U\subset M$ and for any $L^{2}-$

holomorphic function $f$ on $U\backslash X$ , there exists a holomorphic function
$\tilde{f}$ on $U$ such that $\tilde{f}|U\backslash X=f$ .

$(b)SM.\backslash X$
is a Stein manifold which intersects with every component of

2. $_{h_{E}}\geqq 0$ in the sense of Nakano,

3. $\Psi\in\#(S)\cap C^{\infty}(M\backslash S)$ ,

4. $e^{-(1+\epsilon)\Psi}\cdot h_{E}$ has semipositive curvature in the sense of Nakano for every
$\epsilon\in[0, \delta]$ for some $\delta>0$ .

Under these conditions, there exists a constant $C$ and an interpolation opera-
tor ffom $A^{2}(S, E\otimes K_{M}|s, h\otimes(dV_{M})^{-1}|s, dV_{M}[\Psi])$ to $A^{2}(M,$ $E\otimes K_{M},$ $h\otimes$

$(dV_{M})^{-1}.dV_{M})$ whose norm does not exceed $C\delta^{-3/2}$ . If $\Psi$ is plurisubharmonic,
the interpolation operator can be chosen so that its no$rm$ is less than $2^{4}\pi^{1/2}$ . $\square$

The above theorem can be generalized to the case that $(E, h_{E})$ is a singular
hermitian line bundle with semipositive curvature current (we call such a sin-
gular hermitian line bundle $(E, h_{E})$ a pseudoeffective singular hermitian
line bundle) as was remarked in [O].

Lemma 2.7 Let $M,$ $S,$ $\Psi,$ $dV_{\Lambda/I},$ $dV_{M}[\Psi],$ $(E, h_{E})$ be as in Theorem 2.6 Let $(L, h_{L})$

be a pseudoeffective singular hermitian line bundle on M. Then $S$ is a set of
interpolation for $(K_{M}\otimes E\otimes L, dV_{M}^{-1}\otimes h_{E}\otimes h_{L})$ . $\square$

3 Proof of Theorems 1.3

3.1 Dynamical construction of AZD
Let $X$ be a smooth projective variety and let $K_{X}$ be the canonical line bun-
dle of $X$ . Let $n$ denote the dimension of $X$ . We shall assume that $K_{X}$ is
pseudoeffective. Then by Theorem 2.5, $IC_{X}$ admits an AZD $h$ .

Let $A$ be a sufficiently ample line bundle on $X$ such that for every pseudo-
effective singular hermitian line bundle $(L, h_{L})$ ,

$O_{X}(A+L)\otimes \mathcal{I}(h_{L})$

and

$\mathcal{O}_{X}(I\mathrm{f}_{\lambda}$. $+A+L)\otimes \mathcal{I}(h_{L})$

are globally generated. This is possible by [ $\mathrm{S}$ , p. 667, Proposition 1].
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Let $h_{A}$ be a $c\infty$ hermitian metric on $A$ with strictly positive curvature.
Let $B$ be another ample line bundle on $X$ and let $h_{B}$ be a $c\infty$ hermitian

metric on $B$ with strictly positive curvature. Let $\ell$ be an arbitrary positive
integer greater than or equal to 2.

We shall construct an AZD of $B+\ell K_{X}$ as follows.
Let $K(A+B+K_{X}, h_{A}\cdot h_{B})$ be the Bergman kernel of $A+B+K_{X}$ with

respect to $h_{A}\cdot h_{B}$ . We define the singular hermitian metric $h_{1}$ on $A+B+K_{X}$

by

$h_{1}:=K(A+B+K_{X}, h_{A}\cdot h_{B})^{-1}$ .
We define the singular hermitian metric on $A+B+2K_{X}$ by

$h_{2}:=K(A+B+2K_{X}, h_{1})^{-1}$ .
We continue this process until we obtan the singular hermitian metric $h_{\ell}$ on
$A+B+\ell K_{X}$ .

Next we define the singular hermitian metric $h_{\ell+1}$ on $A+2B+(\ell+1)K_{X}$

by

$h_{\ell+1}:=K(A+2B+(\ell+1)K_{X}, h_{\ell}\cdot h_{B})^{-1}$ .
And we continue as

$h_{\ell+2}:=K(A+2B+(\ell+2)K_{X}, h_{\ell+1})^{-1}$

until we obtain $h_{2\ell-1}$ .
It is clear that $h_{m}$ has semipositive curvature in the sense of currents for

every $m\geqq 1$ .
We set

$K_{m,1/p}:=1/h_{m,1/\ell}$ .
Proposition 3.1 (cf. $[T\mathit{3}J$)

$K_{\infty,1/\ell}:=\varlimsup_{marrow\infty}\sqrt[m]{(m!)^{-n}K_{m,1/\ell}}$

enists and

$h_{\infty,1/\ell:=}1/K_{\infty,1/\ell}$

is an $AZD$ of $K_{X}+\ell^{-1}B$ . $\square$

Proof of Proposition 3.1. There $\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{s}\mathrm{t}8$ a positive constant $C$ such that

$h^{0}(X, O_{X}(j(B+\ell K_{X})+kK_{X}+A)\otimes \mathcal{I}(h))\leqq C(j\ell+k)^{n}$

holds for every $j\geqq 1$ and $0\leqq k<\ell$ . We set

$m:=j\ell+k$ .
Let $dV$ be a fixed $C^{\infty}$ volume form on $X$ . Then by the submeanvalue inequality
of plurisubharmonic functions, we see that by induction there exists a positive
constant $C_{1}$ such that for $m=j\ell+k(0\leqq k\leq\ell--1)$

$K_{m,1/\ell}\leqq C_{1}^{m}\cdot(m!)^{n}dV^{m}h_{A}^{-1}h_{B}^{-j}$ (1)
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holds.
Now we shall consider the lower estimate of $K_{m,1/\ell}$ . We note that for every

$x\in X$ and $m=jl+k$ ,

$h_{m}^{-1}(x)=K(A+jB+mK_{X}, h_{m-1})=$

$\sup\{|\sigma|^{2}(x);\sigma\in\Gamma(X, O_{X}(A+jB+mK_{X}\otimes \mathcal{I}(h^{m}))), \int_{X}h_{m-1}\cdot|\sigma|^{2}=1\}$

holds by the extremal property of Bergman kernels (cf. [Kr, p.46, Proposition
1.4.16]).

Let $h$ be an AZD of $K_{X}+f^{-1}B$ .
Since $(K_{X}+\ell^{-1}B, h)|V$ is big. By Kodaira’s lemma, $h$ is dominated

by a singular hermitian metric $h’$ such that $\Theta_{h’}$ is strictly positive on $V$ . For
$0<\epsilon<1$ we set

$h_{\epsilon}:=h^{1-\epsilon}\cdot(h’)^{\epsilon}$ .
Then $h<h_{\epsilon}$ holds.

Using the $L^{2}$-extension theorem (Theorem 2.6 and Lemma 2.7), we see that
there exists a positive constant $C_{2}$ such that

$K_{m}\geqq(m!)^{n}C_{2}^{m}h_{A}^{-1}h^{\frac{k}{B\ell}}h_{\epsilon}^{-m}$ (2)

holds by induction. Here the factor $(m!)^{n}$ appears by the fact that $\Theta_{h_{*}}$ is
strictly positive hence we can take local frame $\mathrm{e}$ of $\ell K_{X}+B$ around $x\in V$ and
coordinate $z_{1},$ $\cdots,$ $z_{\nu}$ so that

$h_{\epsilon}(\mathrm{e}, \mathrm{e})=(1-||z||^{2})h(\mathrm{e}, \mathrm{e})(x)+o(||z||^{2})$ (3)

holds $(\mathrm{c}\mathrm{f}[\mathrm{T}\mathrm{i}, \mathrm{p}.105,(1,11)])$ . and the equality

$\frac{\sqrt{-1}}{2}\int_{|t|<1}(1-|t|^{2})^{m}dt\wedge d\overline{t}=\frac{2\pi}{m+1}$ .

By (1) and (2), moving $x$ and letting $\epsilon$ tend to $0$ , we have that

$K_{\infty,1/\ell:=\varlimsup_{marrow\infty^{\pi}}\sqrt[*]{(m!)^{-n}K_{m}}}$

exists and
$h_{1/\ell}:=1/K_{\infty,1/\ell}$

is an AZD of $K_{X}+\ell^{-1}B$ .
Now we shall construct an AZD of $K_{X}$ . We set

$C(p):= \frac{n!}{\ell^{n}}\varlimsup_{marrow\infty}m^{-n}h^{0}(X, O_{X}(m(\ell K_{X}+B))$.

The following proposition follows from (3).

Proposition 3.2
$K_{\infty}:=\varlimsup_{\ellarrow\infty}(C(\ell)\cdot K_{\infty,1/\ell)}$

exists and
$h_{\infty}:=1/I\mathrm{f}_{\infty}$

is an $\Lambda ZD$ of $\mathrm{A}_{J}’\mathrm{v}\cdot\square$
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3.2 Completion of the proof of Theorem 1.3
Let $f$ : $Xarrow S$ be a smooth projective morphism. We perform the construction
of AZD for $K_{X_{\delta}}(s\in S)$ simultaeneously for all $s\in S$ .

Let $A$ be a sufficiently ample line bundle on $X$ with $C^{\infty}$ hermitian metric
$h_{A}$ with strictly positive curvature. Let $B$ be another ample line bundle on $X$ .
Then as in Section 3.1, we construct a family of Bergman kernels $K_{m,1/\ell,\mathit{8}}(s\in S)$

of $A|_{X_{\epsilon}}+(jB|_{X_{s}}+(j\ell+k)K_{X_{e}}(s\in S, m=jP+k)$ as in the last subsection.
By Theorem 1.7, we see that if we define $K_{m,1/\ell}$ by

$K_{m,1/\ell}|_{X}.=K_{m,1/\ell,\epsilon}$ ,

$h_{m1/\ell=}1/K_{m,1/\ell}$

is a singular hermitian metric of $A+jB+mK_{X/s}$ with semipositive curvature
current by induction on $m$

Then letting $\ell$ tend to infinity, we obtain a family of AZD $\{h_{\infty,s}\}$ of $K_{X}.(s\in$

$S)$ . If we define a singular hermitian metric $h_{\infty}$ on $K_{X/S}$ by

$h_{\infty}|_{X}.=h_{\infty,\epsilon}$ ,

then $h_{\infty}$ is a singular hermitian metric of $K_{X/S}$ with semipositive curvature
current. We define a continuous hermitian metric $h_{F_{m}}$ on $F_{m}=f_{*}O_{S}(mK_{X/S})$

by

$h_{F_{n1}}( \sigma,\tau)(s):=(\sqrt{-1})^{n^{2}}\int_{X}$. $h_{\infty}^{m-1}\sigma$ A $\overline{\tau}$

Then by Theorem 1.8, we see that $h_{F_{m}}$ has semipositive curvature in the
sense of current.

To complete the proof of Theorem 1.3, we need to consider the asymptotic
behavior of $h_{m}$ around the singular fibers. This can be treated by considering
the thickenning of fibers, since the theckened fiber is smooth.

4 Applications
As immediate consequences of Theorem 1.3, we obtain simple intrinsic proofs
of the following theorems.

Theorem 4.1 ([SchlJ) Let $\mathcal{T}_{g}$ be the Teichm\"uller space of Riemann surfaces of
genus $g$ . Let $g$ be the Weil-Petersson metric is $\mathcal{T}_{g}$ . Then the curvature $\Theta_{gWP}$

of the K\"ahler metric $g_{WP}$ is strongly neagative. $\square$

Theorem 4.2 $([V\mathit{1}, V\mathit{2}J)$ Let $\mathcal{M}_{can}$ be the moduli space of canonically poralized
varieties with only canonical simgularities. Then $\mathcal{M}_{can}$ is quasiprojective. $\square$
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