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Abstract

This paper considers a triplet of optimization, inequality and identity through
the Golden ratio. When a conditional optimization problem which optimizes an
objective function under a constraint function yields a pair of optimum value and
optimum point, an inequality holds between the objective function and the con-
straint function. Conversely, if an inequality holds between two functions together
with an equality condition, we can easily solve the optimization problem by apply-
ing the inequality and the equality condition. Thus an optimization is equivalent
to an inequality. IFUrther an inequality between two functions is equivalently stated
as an identity form by adding a supplementary nonnegative term. Conversely, an
identity between two functions involving an additional nonnegative term is stated
in an inequality form without the nonnegative term. Thus an inequality is also
equivalent to an identity. Therefore, the triplet is equivalent each other. In this
sense, we call an equivalent triplet trinity.

Furthermore, we introduce the Golden ratio into trinity–Golden optimum so-
lution, Golden inequality, and Golden identity-. Such a trinity is called Golden. In
a class of quadratic functions, we specify six Golden trinities on the basis of three
quadratic forms: $x^{2}+y^{2},$ $x^{2}-y^{2},$ $x^{2}+(x-y)^{2}$ . The triplet is called the Golden
triplet of quadratic forms.

1 Introduction
It is well known that a cetain optimization problem is easily solved through application
of an inequality involving both objective function and constraint function in optimization
problem. Conversely a cetain inequality is proved by finding an optimal solution-a pair of
optimum value and optimum point-. In general, an inequality together with an equality
condition is stated as an equivalent identity involving a nonnegative term. Thus a certain
triplet of optimization problem, inequality and identity turns out to be equivalent.
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Throughout the paper we call a triplet of optimization, inequality and identity trinity
if they are equivalent each other. If an optimum solution is Golden, we call it Golden op-
timum solution. We transliterate the Golden optimum solution both as Golden inequality
and as Golden identity. Then the trinity is called Golden. In a class of quadratic func-
tions, we specify six Golden trinities both in two-variable problems and in one-variable
problems.

Figure 1 The Golden $r_{\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{y}}$

2 Trinity
We take (i) optimization, (ii) inequality and (iii) identity as three expression forms. Let
two two-variable functions $f,$ $g:Darrow R^{1}$ be given, where $D\subset R^{2}$ . Then we consider the
following triplet each of which is associated with two real constants $\alpha,$

$\beta$ .

(i) An optimization problem

Optimize $f(x, y)$

$\mathrm{M}\mathrm{A}_{1}$ subject to (i) $g(x, y)=1$

(ii) $(x, y)\in D$
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has the optimum value $M=\beta$ at the point $(x^{*}, y^{*})=\lambda(1, \alpha)$ , namely, with the slope

$\frac{y^{*}}{x}*=\alpha$ , where A is a real number satisfying (i). (1)

(ii) It holds that

$f(x, y)$ $\leq(\geq)\beta g(x, y)$ on D. (2)

The sign of equality holds if and only if $y=\alpha x$ .
(iii) It holds that

$f(x, y)+h(\alpha x, y)=\beta g(x, y)$ , $h(x, y)\geq(\leq)0$ on D. (3)

Lemma 2.1 The triplet (1) $-(\mathit{2})-(\mathit{3})$ is equivalent each other.

In this paper we call an equivalent triplet trinity. Let us take a basic standard real
number

$\phi=\frac{1+\sqrt{5}}{2}\approx$ 1.61803

The number $\phi$ is called the Golden ratio. $\phi$ is defined as the positive solution of quadratic
equation

$x^{2}-x-1=0$ .

We say that a pair $(\alpha, \beta)$ constitutes the Golden ratio if

$| \frac{\beta}{\alpha}|=\emptyset$ or $| \frac{\alpha}{\beta}|=\emptyset$ .

When the pair constitutes the Golden ratio, we say that the trinity (1)$-(2)-(3)$ is Golden.
In the case, we say as follows.

$\bullet$ $\mathrm{M}\mathrm{A}_{1}$ has a Golden optimum solution $M,$ $(x^{*}, y^{*})$ .

$\bullet$ The inequality (2) is Golden.

$\bullet$ The identity (3) is Golden.

2.1 Cauchy-Schwarz
Let us take $f(x, y)=(ax+by)^{2},$ $g(x, y)=x^{2}+y^{2}$ , where $a(\neq 0),$ $b$ are real constants.
Then we have the following trinity (4) $-(\overline{0})-(6)$ .
(i) An optimization problem

Maximize
$\mathrm{M}\mathrm{A}_{2}$ subject to

$(ax+by)^{2}$

(i) $x^{2}+y^{2}=1$

(ii) $-\infty<X,$ $y<\infty$
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has the maximum value $M=(a^{2}+b^{2})$ at the point $(x^{*}, y^{*})= \pm\frac{1}{\sqrt{a^{2}+b^{2}}}(a, b)$ ,

namely, with the slope $\frac{y^{*}}{x}*=\frac{b}{a}$ . (4)

(ii) It holds that

$(ax+by)^{2}\leq(a^{2}+b^{2})(x^{2}+y^{2})$ on $R^{2}$ . (5)

The sign of equality holds if and only if $ay=bx$ .
(iii) The Lagrange identity ([1, p.3, $\mathrm{p}.60]$ ) holds.

$(ax+by)^{2}+(bx-ay)^{2}=(a^{2}+b^{2})(x^{2}+y^{2})$ on $R^{2}$ . (6)

We note that (bx–ay)2 $=a^{2}$ . Thus we have

$\alpha=\frac{b}{a}$ , $\beta=a^{2}+b^{2}$ , $h(x, y)=a^{2}(x-y)^{2}$ .

When a and $\beta$ constitute the Golden ratio, the trinity becomes Golden.

2.2 Minkowski
Second we set $f(x, y)=(a+x)^{2}+(b+y)^{2},$ $g(x, y)=x^{2}+y^{2}$ , where $a(\neq 0),$ $b$ are real
constants. Then we have trinity (7)$-(8)-(9)$ as follows.

(i) A maximization problem

Maximize $(a+x)^{2}+(b+y)^{2}$

$\mathrm{M}\mathrm{A}_{3}$ subject to (i) $x^{2}+y^{2}=1$

(ii) $-\infty<X,$ $y<\infty$

has the maximum value $M=(\sqrt{a^{2}+b^{2}}+1)^{2}$ at the point $(x^{*}, y^{*})= \pm\frac{1}{\sqrt{a^{2}+b^{2}}}(a, b)$ ,

namely, with the slope $\frac{y^{*}}{x}*=\frac{b}{a}$ . (7)

(ii) It holds that

$\sqrt{(a+x)^{2}+(b+y)^{2}}\leq\sqrt{a^{2}+b^{2}}+\sqrt{x^{2}+y^{2}}$ on $R^{2}$ . (8)

The sign of equality holds if and only if $ay=bx$ .
(iii) It holds that

$\sqrt{(a+x)^{2}+(b+y)^{2}}+H(x, y)=\sqrt{a^{2}+b^{2}}+\sqrt{x^{2}+y^{2}}$ on $R^{2}$ (9)

where

$H(x, y)$

$= \frac{2(bx-ay)^{2}}{(\sqrt{a^{2}+b^{2}}+\sqrt{x^{2}+y^{2}}+\sqrt{(a+x)^{2}+(b+y)^{2}})(\sqrt{a^{2}+b^{2}}\sqrt{x^{2}+y^{2}}+ax+by)}$ .
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2.3 Trinity for one-variable functions
Let two one-variable functions $f,$ $g:Earrow R^{1}$ be given, where $E\subset R^{1}$ . We assume that
$g(u)>0$ on $E$ .

(i) A fractional optimization problem

Optimize $\frac{f(u)}{g(u)}$

$\mathrm{M}\mathrm{A}_{4}$

subject to (i) $u\in E$

has the optimum value $M=\beta$ at the point $u^{*}=\alpha$ . (10)

(ii) It holds that

$f(u)$ $\leq(\geq)\beta g(u)$ on E. (11)

The sign of equality holds if and only if $u=\alpha$ .
(iii) It holds that

$f(u)+h(u)=\beta g(u)$ , $h(u)\geq(\leq)0$ on $E$ , $h(\alpha)=0$ . (12)

Lemma 2.2 The triplet (10) $-(\mathit{1}\mathit{1})-(\mathit{1}\mathit{2})$ is equivalent each other.

An equivalent triplet is called trinity. When $\alpha$ and $\beta$ constitute the Golden ratio, we
say that the trinity (10)-(11)-(12) is Golden. In the case, we say as follows.

$\bullet$ $\mathrm{M}\mathrm{A}_{4}$ has a Golden optimum solution $M,$ $u^{*}$ .

$\bullet$ The inequality (11) is Golden.

$\bullet$ The identity (12) is Golden.

For instance we have the Golden trinity (13)-(14)-(15) as follows.

(i) A fractional optimization problem

Maximize $\frac{1+u^{2}}{1+(u-1)^{2}}$

subject to (i) $-\infty<u<\infty$

has the maximum value $M=1+\phi$ at the point $u^{*}=\phi$ . (13)

(ii) It holds that

$1+u^{2}\leq(1+\phi)\{1+(u-1)^{2}\}$ on $R^{1}$ . (14)

The sign of equality holds if and only ifu $=\phi$ .
(iii) It holds that

$1+u^{2}+\phi(\phi-u)^{2}=(1+\phi)\{1+(u-1)^{2}\}$ . (15)
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3 Non-Golden and Golden
This section illustrates a non-Golden trinity and a Golden trinity for simple two-variable
quadratic forms.

3.1 Non-Golden Trinity
First of all, let us take two quadratic forms $f(x, y)=xy,$ $g(x, y)=x^{2}+y^{2}$ . Then we have
trinity (16)-(17)-(18) as follows.
(i) The maximization problem

Maximize $xy$

$\mathrm{M}\mathrm{A}_{5}$ subject to (i) $x^{2}+y^{2}=1$

(ii) $-\infty<X,$ $y<\infty$ .

has the maximum value $M= \frac{1}{2}$ at the points $(x^{*}, y^{*})= \pm\frac{1}{\sqrt{2}}(1,1)$ , namely, with the
(16)

slope $\frac{y^{*}}{x}*=1$ .
(ii) It holds that

$xy \leq\frac{1}{2}(x^{2}+y^{2})$ on $R^{2}$ . (17)

The sign of equality holds if and only ify $=x$ .
(iii) It holds that

$xy+ \frac{1}{2}(x-y)^{2}=\frac{1}{2}(x^{2}+y^{2})$ on $R^{2}$ . (18)

This is not Golden:

$\alpha=1$ , $\beta=\frac{1}{2}$ , $h(x, y)= \frac{1}{2}(x-y)^{2}$

Then we call trinity (16)-(17)-(18) non-Golden.

3.2 Golden Trinity
Second we take another pair of quadratic forms $f(x, y)=x^{2}+y^{2},$ $g(x, y)=x^{2}+(y-x)^{2}$ .
Then we have the following trinity.

(i) The maximization problem

Maximize
$\mathrm{M}\mathrm{A}_{6}$ subject to

$x^{2}+y^{2}$

(i) $x^{2}+(y-x)^{2}=1$

(ii) $-\infty<X,$ $y<\infty$
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has the maximum value $M=1+\phi$ at the maximum points $(x^{*}, y^{*})=\pm\lambda(1, \phi)$

(19)
, namely, with the slope $\frac{y^{*}}{x}*=\phi$ , where $\lambda=\frac{1}{\sqrt{3-\emptyset}}$ .

(ii) It holds that

$x^{2}+y^{2}\leq(1+\phi)\{x^{2}+(y-x)^{2}\}$ on $R^{2}$ . (20)

The sign of equality holds if and only if $y=\phi x$ .
(iii) It holds that

$x^{2}+y^{2}+\phi(\phi x-y)^{2}=(1+\phi)\{x^{2}+(y-x)^{2}\}$ on $R^{2}$ . (21)

Further we see that both $\phi$ and $1+\phi$ constitute the Golden ratio:

$\frac{1+\emptyset}{\phi}=\emptyset$ .

Thus we have a Golden trinity.

4 The Golden Optimum Solutions
This section shows six optimization problems whose optimum solution is Golden.

4.1 Two-variable problems

First we consider two-variable quadratic optimization problems.

(i) Now we take the maximization and minimization problem

Maximize and minimize $x^{2}+y^{2}$

$\mathrm{T}\mathrm{P}_{1}$ subject to (i) $x^{2}+(y-x)^{2}=1$

(ii) $-\infty<x,$ $y<\infty$ .

Then $\mathrm{T}\mathrm{P}_{1}$ has the maximum value $M=1+\phi$ at the points $(x^{*}, y^{*})= \pm\frac{1}{\sqrt{3-\emptyset}}(1, \phi)$

and the minimum value $m=2-\emptyset$ at the points $( \hat{x},\hat{y})=\pm\frac{1}{\sqrt{2+\emptyset}}(1,1-\emptyset)$ .

(ii) We consider the maximization and minimization problem

Maximize and minimize $-x^{2}+y^{2}$

$\mathrm{T}\mathrm{P}_{2}$ subject to (i) $x^{2}+(y-x)^{2}=1$

(ii) $-\infty<x,$ $y<\infty$ .
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Then $\mathrm{T}\mathrm{P}_{2}$ has the maximum value $M=\phi$ at the points $(x^{*}, y^{*})= \pm\frac{1}{\sqrt{2+\emptyset}}(1,1+\phi)$

and the minimum value $m=1-\emptyset$ at the points $( \hat{x},\hat{y})=\pm\frac{1}{\sqrt{3-\emptyset}}(1,2-\emptyset)$ .

(iii) Let us now consider the maximization problem

Maximize $-y^{2}-(y-x)^{2}$

$\mathrm{T}\mathrm{P}_{3}$ subject to (i) $-x^{2}+y^{2}=1$

(ii) $-\infty<x,$ $y<\infty$ .

Then $\mathrm{T}\mathrm{P}_{3}$ has the maximum value $M=-\emptyset$ at the points $(x^{*}, y^{*})= \pm\frac{1}{\sqrt{1+3\phi}}(1,1+\phi)$ .

(iv) Let us consider the related minimization problem

minimize $y^{2}+(y-x)^{2}$

$\mathrm{T}\mathrm{P}_{4}$ subject to (i) $x^{2}-y^{2}=1$

(ii) $-\infty<x,$ $y<\infty$ .

Then $\mathrm{T}\mathrm{P}_{4}$ has the minimum value $m=-1+\phi$ at the points $(\hat{x},\hat{y})=\pm=^{1}-4+3\phi(1,2-\emptyset)$ .

4.2 One-variable problems

Second we consider one-variable quadratic-fractional optimization problems.

(i) Now we take the maximization and minimization problem

Maximize and minimize $\frac{1+u^{2}}{1+(u-1)^{2}}$

$\mathrm{O}\mathrm{P}_{1}$

subject to (i) $-\infty<u<\infty$ .

Then $\mathrm{O}\mathrm{P}_{1}$ has the maximum value $M=1+\phi$ at the point $u^{*}=\phi$ and the minimum
value $m=2-\emptyset$ at the point $\text{\^{u}}=1-\emptyset$ .

(ii) We consider the maximization and minimization problem

Maximize and minimize $\frac{-1+v^{2}}{1+(v-1)^{2}}$

$\mathrm{O}\mathrm{P}_{2}$

subject to (i) $-\infty<v<\infty$ .

Then $\mathrm{O}\mathrm{P}_{2}$ has the maximum value $M=\phi$ at the point $v^{*}=1+\phi$ and the minimum
value $m=1-\emptyset$ at the point $\hat{v}=2-\emptyset$ .
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(iii) Let us now consider the maximization problem

Maximize $\frac{u^{2}+(1-u)^{2}}{1-u^{2}}$

$\mathrm{O}\mathrm{P}_{3}$

subject to (i) $|u|>1$ .

Then $\mathrm{O}\mathrm{P}_{3}$ has the maximum value $M=-\emptyset$ at the point $u^{*}=1+\phi$ .

(iv) Let us consider the corresponding minimization problem

minlmlze $\frac{u^{2}+(1-u)^{2}}{1-u^{2}}$

$\mathrm{O}\mathrm{P}_{4}$

subject to (i) $-1<u<1$ .

Then $\mathrm{O}\mathrm{P}_{4}$ has the minimum value $m=-1+\phi$ at the point $\text{\^{u}}=2-\emptyset$ .

5 The Golden Inequalities
This section shows six Golden inequalities both in two-variable functions and in one-
variable functions.

5.1 Two-variable functions

First we consider Golden inequalities between two-variable quadratic functions $f,$ $g$ :
$R^{2}arrow R^{1}$ . Each of (22) and (23) yields a pair of Golden inequalities. Both (24) and
(25) constitute a pair of Golden inequalities. Thus we have six Golden inequalities in the
following.

Theorem 5.1 (i) It holds that

$(2-\phi)\{x^{2}+(y-x)^{2}\}\leq x^{2}+y^{2}\leq(1+\phi)\{x^{2}+(y-x)^{2}\}$ on $R^{2}$ . (22)

The sign of gleft equality holds if and only if $y=(1-\phi)x$ and the sign of right equality
holds if and only if $y=\phi x$ .
(ii) It holds that

$(1-\phi)\{x^{2}+(y-x)^{2}\}\leq-x^{2}+y^{2}\leq\phi\{x^{2}+(y-x)^{2}\}$ on $R^{2}$ . (23)

The sign of left equality holds if and only if $y=(2-\phi)x$ and the sign of right equality
holds if and only if $y=(1+\phi)x$ .
(iii) The middle-right inequality (resp. left-middle) in (22) is equivalent to the left-middle
(resp. middle-right) inequality in (23).

Theorem 5.2 (i) It holds that

$(-1+\phi)(x^{2}-y^{2})\leq y^{2}+(y-x)^{2}$ on $R^{2}$ . (24)

9



The sign of equality holds \’if and only if $y=(2-\phi)x$ . It holds that

$-y^{2}-(y-x)^{2}\geq\phi(x^{2}-y^{2})$ on $R^{2}$ . (25)

The sign of equality holds if and only if $y=(1+\phi)x$ .
(ii) The inequality (24) is equivalent to the middle-right inequality in (23). The inequality
(25) is equivalent to the left-middle inequality in (23).

5.2 One-variable functions
Second we consider six Golden inequalities between two one-variable functions $f,$ $g$ : $R^{1}arrow$

$R^{1}$ . The inequalities (26) and (27) are pairs of Golden inequalities. The inequalities (28)
and (29) are Golden. Thus we have also six Golden inequalities in the following.

Lemma 5.1 (i) It holds that

$(2-\phi)\{1+(u-1)^{2}\}\leq 1+u^{2}\leq(1+\phi)\{1+(u-1)^{2}\}$ on $R^{1}$ . (26)

The sign of left equality holds if and only if $u=1-\emptyset$ and the sign of right equality holds
if and only if $u=\phi$ (Figure 2).
(ii) It holds that

$(1-\phi)\{1+(v-1)^{2}\}\leq-1+v^{2}\leq\phi\{1+(v-1)^{2}\}$ on $R^{1}$ . (27)

The sign of left equality holds if and only if $v=2-\emptyset$ and the sign of right equality holds
if and only if $v=1+\phi$ .
(iii) The middle-right inequality (resp. left-middle) in (26) is equivalent to the left-middle
(resp. middle-right) inequality in (27).

Lemma 5.2 (i) It holds that

$(-1+\phi)(1-u^{2})\leq u^{2}+(u-1)^{2}$ on $R^{1}$ (28)

The sign of equality holds if and only if $u=2-\emptyset$ . It holds that

$-u^{2}-(u-1)^{2}\leq\phi(1-u^{2})$ on $R^{1}$ (29)

The sign of equality holds if and only if $u=1+\phi$ .
(ii) The inequality (28) is equivalent to the middle-right inequality in (27). The inequality
(29) is equivalent to the left-middle inequality in (27).
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Figure 2 A pair of Golden Inequalities
$(2-\phi)\{1+(1-u)^{2}\}\leq 1+u^{2}\leq(1+\phi)\{1+(1-u)^{2}\}$ .

The left and right equalities attain at $\text{\^{u}}=1-\emptyset$ and $u^{*}=\phi$ , respectively.
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6 The Golden Identities
This section shows six Golden identities both in two-variable and in one-variable.

6.1 Two-variable quadratic functions
We have six Golden identities between three quadratic forms.
Theorem 6.1 (i) It holds that

$x^{2}+y^{2}+\phi(\phi x-y)^{2}=(1+\phi)\{x^{2}+(y-x)^{2}\}$ (30)

$(2-\phi)\{x^{2}+(y-x)^{2}\}+(\phi-1)\{(1-\phi)x-y\}^{2}=x^{2}+y^{2}$ . (31)

(ii) It holds that

$-x^{2}+y^{2}+(\phi-1)\{(1+\phi)x-y\}^{2}=\phi\{x^{2}+(y-x)^{2}\}$ (32)

$(1-\phi)\{x^{2}+(y-x)^{2}\}+\phi\{(2-\phi)x-y\}^{2}=-x^{2}+y^{2}$ . (33)

(iii) The identity (30) (resp. (31)) is equivalent to the identity (33) (resp. (32)).

Theorem 6.2 (i) It holds that

$(-1+\phi)(x^{2}-y^{2})+(1+\phi)\{(2-\phi)x-y\}^{2}=y^{2}+(y-x)^{2}$ (34)

$-\{y^{2}+(y-x)^{2}\}+(2-\phi)\{(1+\phi)x-y\}^{2}=\phi(x^{2}-y^{2})$ . (35)

(ii) The identity (34) (resp. (35)) is equivalent to the identity (33) (resp. (32)).

6.2 One-variable quadratic functions
We have the corresponding Golden identities between one-variable quadratic functions.

Theorem 6.3 (i) It holds that

$1+u^{2}+\phi(\phi-u)^{2}=(1+\phi)\{1+(u-1)^{2}\}$ (36)

$(2-\phi)\{1+(u-1)^{2}\}+(\phi-1)(1-\phi-u)^{2}=1+u^{2}$ . (37)

(ii) It holds that

$-1+v^{2}+(\phi-1)(1+\phi-v)^{2}=\phi\{1+(v-1)^{2}\}$ (38)

$(1-\phi)\{1+(v-1)^{2}\}+\phi(2-\phi-v)^{2}=-1+v^{2}$ . (39)

(iii) The identity (36) (resp. (37)) is equivalent to the identity (39) (resp. (38)).

Theorem 6.4 (i) It holds that

$(-1+\phi)(1-u^{2})+(1+\phi)(2-\phi-u)^{2}=u^{2}+(u-1)^{2}$ (40)

$-\{u^{2}+(u-1)^{2}\}+(2-\phi)(1+\phi-u)^{2}=\phi(1-u^{2})$ . (41)

(ii) The identity (40) (resp. (41)) is equivalent to the identity (39) (resp. (38)).
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7 The Golden Trinities
As a summary, we enumerate six Golden trinities both in two-variable and in one-variable.

7.1 Two-variable functions
1. Maximum solution in $\mathrm{T}\mathrm{P}_{1}$ –Right-middle inequality (22) –Identity (30)

This Golden trinity is stated in (19)$-(20)-(21)$ .

2. Minimum solution in $\mathrm{T}\mathrm{P}_{1}$ –Left-middle inequality (22) –Identity (31)

3. Maximum solution in $\mathrm{T}\mathrm{P}_{2}-\mathrm{R}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$-middle inequality (23) –Identity (32)

4. Minimum solution in $\mathrm{T}\mathrm{P}_{2}-\mathrm{L}\mathrm{e}\mathrm{f}\mathrm{t}$ -middle inequality (23)–Identity (33)

5. Maximum solution in $\mathrm{T}\mathrm{P}_{3}$ –Inequality (24) $–$ Identity (34)

6. Minimum solution in $\mathrm{T}\mathrm{P}_{4}$ –Inequality (25) –Identity (35)

7.2 One-variable functions
1. Maximum solution in $\mathrm{O}\mathrm{P}_{1}$ –Right-middle inequality (26)–Identity (36)

This Golden trinity is stated in (13)-(14)-(15).

2. Minimum solution in $\mathrm{O}\mathrm{P}_{1}$ –Left-middle inequality (26) -Identity (37)

3. Maximum solution in $\mathrm{O}\mathrm{P}_{2}-\mathrm{R}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}$-middle inequality (27)–Identity (38)

4. Minimum solution in $\mathrm{O}\mathrm{P}_{2}-\mathrm{L}\mathrm{e}\mathrm{f}\mathrm{t}$ -middle inequality (27)–Identity (39)

5. Maximum solution in $\mathrm{O}\mathrm{P}_{3}$ –Inequality (28)–Identity (40)

6. Minimum solution in $\mathrm{O}\mathrm{P}_{4}$ –Inequality (29) –Identity (41)
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