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Abstract. In this paper, we consider fuzzy $\mathrm{b}\mathrm{i}$-matrix games, namely, two-person games
with fuzzy payoff. Based on fuzzy $\mathrm{m}\mathrm{a}s_{\llcorner}’$ order, for such games: we define three kinds of
concepts of Nash equilibrium $\mathrm{s}\mathrm{t}r$ategies and investigate their properties.
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1 Introduction
Since seminal works by Neumann-Morgenstern$([13])$ and Nash( $[11]$ and [12]), Game theory
has played an important role in the fields of decision making theory such as economics,
management, and operations research, etc. When we apply the game theory to model some
practical problems which we encounter in $\mathrm{r}e$ al situations, we have to know the values of
payoffs exactly. However, it is difficult to know the exact values of payoffs and we could
only know the values of payoffs approximately, or with some imprecise degree. In such
situations, it is useful to model the problems aas games with $\mathrm{f}\mathrm{i}_{1}\mathrm{z}\mathrm{z}\mathrm{y}$ payoffs. In this ease,
since the expected payoffs of the game should be fuzzy-valued. there are no concepts of
equilibrium strategies to be accepted widely. So, it is an important task to define the
concepts of equilibrium strategies and investigate their properties. Compos $([3])$ has pro-
posed a methods to solve fuzzy matrix games based on linear programming, but has not
defined explicit concepts of equilibrium strategies. For matrix games with fuzzy payoffs,
Maeda$([9])$ has defined minimax equilibrium strategies based on fuzzy $\max$ order and inves-
tigatcd $\mathrm{t}l_{1}\mathrm{c}^{\backslash }\mathrm{i}_{1}$. properties. For Bi-xnatrix garncs with fuzzy payofls, $\mathrm{M}^{l}\mathrm{a}\mathrm{C}^{\backslash }\mathrm{d}\mathrm{a}([10])$ has dcfincd
Nash equilibrium strategies based on possibility and necessity measures and investigated
its properties. While, Aubin$([2])$ has considered fuzzy cooperative games.

In this paper, we consider fuzzy $\mathrm{b}\mathrm{i}$-matrix games. For such a game, we shall define
three kinds of concepts of Nash equilibrium strategies and investigate their properties.

For that purpose, this paper is organized as follows. In Section 2, we shall give some
basic definitions and notations on fuzzy numbers. In Section 3, we shall define fuzzy bi-
matrix game with fuzzy payoffs and three kin($l\backslash ^{\backslash }$ of concepts of Na.sh equilibrium strategics
and investigate their properties. In Section 4, we investigate the properties of values of
fuzzy matrix games by means of possibility and necessity measures.
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2 Preliminary
In this section, we shall give some definitions and notations on fuzzy numbers, which arc
used throughout the paper.

Let $R^{n}$ be $n$-dimensional Euclidean space, and $x\equiv(x_{1}, x_{2}, \cdots, x_{n})^{\mathrm{T}}\in R^{n}$ be any
vector, where $x_{i}\in R,$ $i=1,2,$ $\cdots,$ $n$ and $T$ denotes the transpose of the vector. For any
two vectors $x,$ $y\in R^{n}$ , we $\mathrm{w}r\mathrm{i}\mathrm{t}\mathrm{e}x\geqq y$ iff $x_{i}\geqq y_{i},$ $i=1,2,$ $\cdots,$ $n,$ $x\geq y$ iff $x\geqq y$ and $x\neq y$

)and $x>y$ iff $x_{1}>y:,$ $i=1,2,$ $\cdots,$ $n$ , respectively.

Deflnition 2.1 A fuzzy number $\tilde{a}$ is defined as a fuzzy set on the space of real number $R$ ,
whose membership function $\mu_{\overline{a}}$ : $Rarrow[0,1]$ satisfies the following conditions:

(i) there exists a unique real number $c$ , called center of $\tilde{a}$ , such that $\mu_{\overline{a}}(c)=1$ ,

(ii) $\mu_{\overline{a}}$ is upper semi-continuous,

(iii) $\mu_{\overline{a}}$ is quasi concave,

(vi) $\mathrm{s}\mathrm{u}\mathrm{P}\mathrm{p}(\tilde{a})$ is compact, where $8\mathrm{u}\mathrm{p}\mathrm{p}(\tilde{a})$ denotes the support of $\tilde{a}$ .
We denote the set of all fuzzy numbers by .7‘.

Let $\tilde{a},\tilde{b}$ be any fuzzy numbers and let $\lambda\in R$ be any real number. Then the sum of two
fuzzy numbers and scalar product of A and $\tilde{a}$ are defined by membership functions

$\mu_{\overline{a}+\overline{b}}(t)=\sup\min_{t=u+v}\{\mu_{\overline{a}}(u), \mu_{\overline{b}}(v)\}$,
$\mu_{\lambda\overline{a}}(t)=\max\{0,\sup_{t=\lambda u}\mu_{\overline{a}}(u)\}$ , (1)

where we set $\sup\{\emptyset\}=-\infty$ .

Deflnition 2.2 Let $m$ be any real number and let $h$ be any positive number. A fuzzy
number $\tilde{a}$ whose membership function is given by

$\mu_{\overline{a}}(x)\equiv\{$

$1-| \frac{x-m}{h}|$ for $x\in[m-h, m+h]$
(2)

$0$ otherwise
is called a symmetric triangular fuzzy number, and we denote the set of all symmetric
triangular fuzzy numbers by $F_{\mathrm{T}}$ .
Real numbers $m$ and $h$ in (2) are called the center aud the deviation paramet,$\mathrm{t}^{1},r$ of $\tilde{a}$ ,
respectively Since any symrnctric triangular fuzzy number $\tilde{a}$ is characterized by the center
$m$ and the deviation parameter $h$ of $\tilde{a}$ , we denote the symmetric triangular fuzzy number
$\overline{a}$ by $\tilde{a}\equiv(m, h)_{\mathrm{T}}$ .

Let $\tilde{a}$ be any fuzzy number and let $\alpha\in(0,1]$ be any real number. The set $[\overline{a}]^{\alpha}\equiv\{x\in$

$R|\mu_{\overline{a}}(x)\geqq\alpha\}$ is called the a-level set of $\tilde{a}$ . For $\alpha=0$ , we set $[\tilde{a}]^{0}\equiv \mathrm{c}1\{x\in R|\mu_{\overline{a}}(x)>0\}$ ,
where cl denotes the closure of sets. Since the set $[\overline{a}]^{\alpha}$ is a closed interval for each $\alpha\in[0,1]$ ,
we denote the a-level set of $\tilde{a}$ by $\lfloor a_{\alpha}^{L},$ $a_{\alpha}^{R}$ ], where $a_{\alpha}^{L} \equiv\inf[\tilde{a}]^{\alpha}$ and $a_{\alpha}^{R}\equiv \mathrm{s}n\mathrm{p}[\tilde{a}]^{\alpha}$ .

For any two fuzzy numbers $\tilde{a},$ $b\in F_{\mathrm{T}}$ , we introduce three kinds of binary relations.
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Deflnition 2.3 For any symmetric triangular fuzzy numbers $\overline{a},\tilde{b}\in \mathcal{F}_{\mathrm{T}}$ , we wnte

$\tilde{a}\underline{\succeq}\tilde{b}$ iff $(a_{\alpha}^{L}, a_{\alpha}^{R})^{\mathrm{T}}\geqq(b_{\alpha}^{L}, b^{R})^{\mathrm{T}}(X’$ $\forall\alpha\in[0,1]$ , (3)
$\tilde{a}\succ\tilde{b}$ iff $(a_{\alpha}^{L}, a^{R})^{\mathrm{T}}(X>(b_{\alpha}^{L}, b_{\alpha}^{R})^{\mathrm{T}},$ $\forall\alpha\in[0,1]$ . (4)

We call binary relations 4 $and\succ$ a fuzzy $\max$ order and a strong fuzzy $\max$ order,
respectively.

IFlrom the definition, the fuzzy $\max \mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}\succeq \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{s}$ a partial order on $F_{\mathrm{T}}$ .
Theorem 2.1 ([6]) Let $\tilde{a}\equiv(a, \alpha)_{\mathrm{T}}$ and $\tilde{b}\equiv(b,\beta)_{\mathrm{T}}$ be any symmetnc triangular fuzw
numbers. Then, it holds that

$\tilde{a}\underline{\succeq}\tilde{b}$ iff $a-b\geqq|\alpha-\beta|$ , (5)
$\tilde{a}\succ\tilde{b}$ iff $a-b>|\alpha-\beta|$ . (6)

Deflnition 2.4 Let $\tilde{a},\tilde{b}$ be any fuzzy numbers. We define the inequality relations as fol-
lows:

(i) Pos $( \tilde{a}\geqq\tilde{b})\equiv\sup\{\min(\mu_{\overline{a}}(x), \mu_{\overline{b}}(y))|x\geqq y\}$,

(ii) Nes $( \tilde{a}\geqq\tilde{b})\equiv\inf_{x}\{\sup_{y}\{\max(1-\mu_{\overline{a}}(x), \mu_{\overline{b}}(y))|x\geqq y\}\}$ ,

Theorem 2.2 ([15]) Let $\tilde{a},\tilde{b}$ be any symmetric triangular fuzzy numbers and let a $\in(0,1]$

be any real number. Then we have the following relationships:

(i) $\mathrm{P}\mathrm{o}\mathrm{s}(\tilde{a}\geqq\tilde{b})\geqq$ a iff $a_{\alpha}^{R}\geqq b_{\alpha}^{L}$ ,

(ii) $\mathrm{P}\mathrm{o}\mathrm{s}(\tilde{a}\geqq\tilde{b})\leqq$ a iff $a_{\alpha}^{R}\leqq b_{\alpha}^{L}$ ,

(iii) Nes $(\tilde{a}\geqq\tilde{b})\geqq$ a iff $a_{1-\alpha}^{L}\geqq b_{\alpha}^{L}$ ,

(iv) $\mathrm{N}\mathrm{c}^{\backslash }\mathrm{s}(\tilde{a}\geqq\tilde{b})\leqq\alpha$ iff $a_{1-\alpha}^{L}\leqq b_{\alpha}^{L}$ .

3 Bi-matrix Game with Fuzzy Payoffs and Its Equi-
librium Strategy

Let $I,$ $J$ denote players and let $M\equiv\{1,2, \cdots, m\}$ and $N\equiv\{1,2, \cdots, n\}$ be the sets of all
pure strategies available for player $I$ and $J$ , respectively. We denote the sets of all mixed
strategies available for players $I$ and $J$ by

$S_{I} \equiv\{(x_{1}, x_{2}, \cdots, x_{m})\in R_{+}^{m}|x_{i}\geqq 0, i=1,2, \cdots, m, \sum_{i=1}^{m}x_{i}=1\}$ ,

$S_{J} \equiv\{(y_{1}, y_{2}, \cdots, y_{n})\in R_{+}^{n}|y_{j}\geqq 0, j=1,2, \cdots,n,\sum_{j=1}^{n}y_{j}=1\}$ .
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By $\tilde{a}_{ij}\equiv(a_{lj}’, h_{ij})_{\mathrm{T}},\tilde{b}_{ij}\equiv(b_{ij}, k_{ij})_{\mathrm{T}}\in F_{\mathrm{T}}$ , we denote tlle payoffs that player $I$ receives and
$J$ receives when player $I$ plays the pure strategy $i$ and player $J$ plays the pure strategy $j$ ,
respectively. Now we define fuzzy $\mathrm{b}\mathrm{i}$-matrix game by

$\tilde{\Gamma}\equiv((\tilde{a}_{rn1}(\tilde{a}_{21},\tilde{b}_{21})(\tilde{a}_{11},\tilde{b}_{11}))_{\overline{b}_{m1})}:$
$(\tilde{a}_{m2},\cdot\tilde{b}_{m2})(\tilde{a}_{22},\tilde{b}_{22})(\overline{a}_{12},\tilde{b}_{12}):$

$..$ .
$(\tilde{a}_{mn}(^{\tilde{\frac{a}{a}}}2n"\tilde{b}2n)(1n\tilde{b}1n)|_{\tilde{b}_{mn})}:)$ .

We define two matrix with fuzzy elements by $\tilde{A}=(A, H)=(\tilde{a}_{ij})$ and $\tilde{B}=(B, K)=(\tilde{b}_{ij})$ .
Now we shall define the the three kinds of concept of Nash equilibrium strategies to

Game $\tilde{\Gamma}$ .

Definition 3.1 A point $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is said to be a Nash equilibrtum strategy to
Game $\tilde{\Gamma}$ if it holds that

(i) $x^{\mathrm{T}}\tilde{A}y^{*}\underline{\preceq}x^{*\mathrm{T}}\tilde{A}y^{*}$ , $\forall x\in S_{I}$ ,

(ii) $x^{*\mathrm{T}}\tilde{B}y\underline{\preceq}x^{*\mathrm{T}}$ By’, $\forall y\in S_{J}$ .
Then a point $x^{*}\tilde{A}y^{*}$ is said to be the value of Game $\tilde{\Gamma}$

Definition 3.2 A point $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is said to be a non-dominated Nash equilibrium
strategy to Game $\tilde{\Gamma}$ if

(i) there exist no $x\in S_{I}$ such that $x^{*\mathrm{T}}\tilde{A}y’\underline{\preceq}x^{\mathrm{T}}\tilde{A}y^{*}$ and $x^{*\mathrm{T}}\tilde{A}y^{*}\neq x^{\mathrm{T}}\tilde{A}y^{*}$ ,

(ii) there exist no $y\in S_{J}$ such that $x^{*\mathrm{T}}\tilde{B}y^{*}\underline{\preceq}x^{*\mathrm{T}}\tilde{B}y$ and $x^{*\mathrm{T}}\tilde{B}y^{*}\neq x^{*\mathrm{T}}\overline{B}y$

hold.

Deflnition 3.3 A point $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is said to be a weak non-dominated Nash
equilibrium strategy to Game $\tilde{\Gamma}$ if

(i) there exist no $x\in S_{I}$ such that $x^{*\mathrm{T}}\tilde{A}y^{*}\prec x^{\mathrm{T}}\tilde{A}y^{*}f$

(ii) there exist no $y\in S_{J}$ such that $x^{*\mathrm{T}}\tilde{B}y’\prec x^{u\mathrm{T}}\tilde{B}y$

hold.

By Definition, it is obvious that the following relationship holds among these definitions.

(1) If a strategy $(x”, y’)\in S_{I}\cross S_{J}$ is a Nash equilibrium strategy to Garne $\tilde{\Gamma}$ . it is a
non-dominated Nash strategy.

(2) If a $\mathrm{s}\mathrm{t}r$ ategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is a non-dominated Nash equilibrium strategy to
Game $\tilde{\Gamma}$ , it is a weak non-dominated Na.sh strategy.
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When all elements $\tilde{a}_{ij}s$ are crisp numbers, these definitions coincide with that of bi-matrix
games $([13])$ . Therefore, these definitions are natural extensions of Nash cquilibrium strat-
egy in $\mathrm{b}\mathrm{i}$-matrix to fuzzy $\mathrm{b}\mathrm{i}$-matrix game.

Associated with Game $\overline{\Gamma}$ , wc $\mathrm{d}_{\mathrm{C}^{\backslash }}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{b}\mathrm{i}$-inatrix games witlr vector payoffs $\Gamma$ by

$\Gamma\equiv\langle\{I, J\}, S_{1}\cross S_{J}, (A-H, A+H), (B-K, B+K)\rangle$ .

Namely, when player $I$ plays a pure strategy $i$ and player $J$ plays a pure strategy $j$ ,
then player $I$ receives vector payoff $(a_{ij}-h_{ij}, a_{ij}+h_{ij})$ and player $J$ loses vector payoff
$(b_{1j}-k_{ij}, b_{ij}+k_{ij})$ , respectively.

Now we shall define three types of concepts of Nash equilibriuin strategy to Game F.

Deflnition 3.4 A point $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ is said to be a perfect Nash equilibrium strategy
to Game $\tilde{\Gamma}$ if it holds that

(i) $x^{\mathrm{T}}Ay^{*}\leqq x^{*\mathrm{T}}Ay^{*}$ , $\forall x\in S_{I}$ ,

(ii) $x^{*\mathrm{T}}By\leqq x^{*\mathrm{T}}\mathcal{B}y^{*}$ , $\forall y\in S_{J}$ ,

where $x^{\mathrm{T}}Ay\equiv(x^{\mathrm{T}}(A-H)y, x^{\mathrm{T}}(A+H)y)^{\mathrm{T}},$ $x^{\mathrm{T}}\mathcal{B}y\equiv(x^{\mathrm{T}}(B-K)y, x^{\mathrm{T}}(B+K)y)^{\mathrm{T}}$

Deflnition 3.5 A point $(x’,y^{*})\in S_{I}\cross S_{J}$ is said to be a Pareto Nash $equilib7\dot{\mathrm{Y}}um$ strategy
to Game $\tilde{\Gamma}$ if it holds that

(i) there is no $x\in S_{I}$ such that $x^{*}\mathrm{T}Ay^{*}\leq x^{\mathrm{T}}Ay^{*}f$

(ii) there is no $y\in S_{J}$ such that $x^{*\mathrm{T}}By\leq x^{*\mathrm{T}}By^{*}$

hold.

Deflnition 3.6 A point $(x^{*}, y’)\in S_{1}\cross S_{J}$ is said to be a weak Pareto Nash equdibrium
strategy to Game $\tilde{\Gamma}$ if it holds that

(i) there is no $x\in S_{I}$ such that $x^{*}\mathrm{T}Ay^{*}<x^{\mathrm{T}}Ay^{*}$ ,

(ii) there is no $y\in S_{J}$ such that $x^{*\mathrm{T}}By<x^{*\mathrm{T}}By^{*}$

hold.

From Theorem 2.1, we could derive the following theorems.

Theorem 3.1 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a Nash equilibrium strategy to
Game $\tilde{\Gamma}$ , it is necessary and sufficient that $(x^{*}, y^{*})$ be a perfect Nash equilibrium strategy
to Game $\Gamma$ .

Theorem 3.2 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a non-dominated Nash equi-
librium strategy to Game $\tilde{\Gamma}$ , it is necessary and sufficient that $(x^{*}, y^{*})$ be a Pareto Nash
equilibrium strategy to Game F.
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Theorem 3.3 In order that a strategy $(x^{*}y^{*}))\in S_{I}\cross S_{J}$ be a weak non-dominated Nash
equilibrium strategy to Game $\tilde{\Gamma}$ , it is necessary and sufficient that $(x^{*}, y^{*})$ be a weak Pareto
Nash equilibrium strategy to Game $\Gamma$ .

For further discussions, associated with fuzzy $\mathrm{b}\mathrm{i}$-matrix game $\overline{\Gamma}$ , we shall define para-
metric $\mathrm{b}\mathrm{i}$-matrix games with crisp payoffs, namely, $\mathrm{b}\mathrm{i}$-matrix games whose payoffs are
parameterized.

Let $\lambda,$ $\mu\in[0,1]$ be any real numbers and we set $A(\lambda)\equiv A+(1-2\lambda)H,$ $B(\mu)\equiv$

$B+(1-2\mu)K$ . We consider the following $\mathrm{b}\mathrm{i}$-matrix game with parameters $\lambda,$
$\mu$ :

$\Gamma(\lambda, \mu)\equiv\langle\{I, J\}, S_{I}, S_{J}, A(\lambda), B(\mu)\rangle$ .

Definition 3.7 ([12]) Let $\lambda,$ $\mu\in[0,1]$ be any real numbers. A strategy $(x^{\mathrm{r}}, y^{*})\in S_{I}\cross S_{J}$

is said to be a Nash equilibrium strat$\mathrm{e}gy$ to Game $\Gamma(\lambda, \mu)$ if it holds that

$x^{\mathrm{T}}A(\lambda)y^{*}\leqq x^{*\mathrm{T}}A(\lambda)y^{*}$ , $\forall x\in S_{I}$ (7)
$x^{*\mathrm{T}}B(\mu)y\leqq x’ B\mathrm{T}(\mu)y^{*}$ , $\forall y\in S_{J}$ . (8)

The following theorems give relationships between Game $\tilde{\Gamma}$ and Gaine $\Gamma(\lambda, \mu)$ .

Theorem 3.4 In order that a strategy $(x^{*}, y^{*})\in S_{1}\cross S_{J}$ be a non-dominated Nash strategy
to Game $\tilde{\Gamma}$ , it is necir$\prime Ssan/and$ $s\uparrow\iota ffi,cien.ttho,t$ there exist $positi?/p$, real numbers $\lambda,$ $l^{t}\in(0,1)$

such that $(x^{*}, y^{*})$ be a Nash equilibrium strategy to $bi$-matrix Game $\Gamma(\lambda, \mu)$ .

Theorem 3.5 In order that a strategy $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be a weak non-dominated Nash
equilibrium strategy to Game $\tilde{\Gamma}$ , it $is\uparrow\iota ecc^{\lambda}ssa\uparrow y$ and $suff_{l^{\backslash }}cier\iota t$ that $the7e$ canst positive $\uparrow eal$

numbers $\lambda,$ $\mu\in[0,1]$ such that $(x^{*}, y^{*})$ be a Nash equilibrium strategy to $bi$-matrix Game
$\Gamma(\lambda, \mu)$ .

From Theorem 3.4 and 3.5, in order to find non-dominated or weak non-dominated
Nash equilibrium strategy to Game $\overline{\Gamma}$ , it suffices to find Nash equilibrium strategy to Garne
$\Gamma(\lambda, \mu)$ . In this sense, Game $\tilde{\Gamma}$ is equivalent to a family of $\mathrm{b}\mathrm{i}$-matrix games $\{\Gamma(\lambda, \mu)\}_{\lambda.\mu}$ .

For any real numbers A. $\mu\in[0,1]$ , it is well known that there exists at least one Nash
$\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{b}\mathrm{r}\mathrm{i}\mathrm{u}\iota \mathrm{n}$strategy to Game $\Gamma(\lambda, \mu)([1])$ . Therefore, from Theorem 3.4 and 3.5, we have
the following theorem.

Theorem 3.6 In Game $\tilde{\Gamma}$ , the following holds:

(i) There exists at least one non-dominated Nash equilibrium strategy.

(ii) There exists at least one weak non-dominated Nash equilibrtum strategy.

182



4 Properties of Values of Fuzzy Matrix Games
In the previous section, we have shown that a fuzzy $\mathrm{b}\mathrm{i}$-matrix game is equivalent to a
family of parametric $\mathrm{b}\mathrm{i}$-matrix games. However, this implies that there are infinite number
of non-dominated Nash equilibrium strategies. In this section, we investigate the properties
of the value of Game $\overline{\Gamma}$ .

Let $(x^{*}, y^{*})\in S_{I}\cross S_{J}$ be any non-dominated Nash equilibrium strat $e$gy to Game $\tilde{\Gamma}$ .
Then from Theorem 3.4, there exist real numbers $\lambda,$ $\mu\in(0,1)$ such that

$x^{*\mathrm{T}}(A+(1-2\lambda)H)y^{*}\geqq x^{\mathrm{T}}(A+(1-2\lambda)H)y^{*}$ , $\forall x\in S_{I}$ , (9)
$x^{*\mathrm{T}}(B+(1-2\mu)K)y^{*}\geqq x^{*\mathrm{T}}(B+(1-2\mu)K)y$, $\forall y\in S_{J}$ . (10)

Now we set $v’\equiv x’(\mathrm{T}A+(1-2\lambda)H)y^{*}$ and $w^{*}\equiv x^{*\mathrm{T}}(B+(1-2\mu)K)y^{*}$ . In case that
$\lambda,$

$l/,$ $\in(0,1/2]$ , from Theorem 2.2, (9) and (10) imply that

$2\lambda=\mathrm{P}\mathrm{o}\mathrm{s}(x^{*\mathrm{T}}\tilde{A}y^{*}\geqq v^{*})\geqq \mathrm{P}\mathrm{o}\mathrm{s}(x^{\mathrm{T}}\tilde{A}y^{*}\geqq v^{*})$ , $\forall x\in S_{I}$ , (11)
$2\mu=\mathrm{P}\mathrm{o}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y^{*}\geqq w^{*})\geqq \mathrm{P}\mathrm{o}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y\geqq w^{*})$, $\forall y\in S_{J}$ . (12)

On the other hand, in case that $\lambda,$ $\mu\in(1/2,1)$ , we have

$2\lambda-1=\mathrm{N}\mathrm{e}\mathrm{s}(x^{*\mathrm{T}}\tilde{A}y^{*}\geqq v^{*})\geqq \mathrm{N}\mathrm{e}\mathrm{s}(x^{\mathrm{T}}\tilde{A}y^{*}\geqq v^{*})$ , $\forall x\in S_{I}$ , (13)
$2\mu-1=\mathrm{N}\mathrm{e}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y^{*}\geqq w^{*})\geqq \mathrm{N}\mathrm{e}\mathrm{s}(x^{*\mathrm{T}}\tilde{B}y\geqq w^{*})$ , $\forall y\in S_{J}$ . (14)

Namely, the strategy $x^{*}$ maximizes the possibility(or necessity) that fuzzy expected payoff
$x^{T}\tilde{A}y^{*}$ is greater than or equal to $v^{*}$ , given player $J’ \mathrm{s}$ strategy $y^{*}$ and maximum value of
the possibility(or necessity) is $2\lambda$ (or $2\lambda-1$ ). On the other hand, the strategy $y^{*}$ maximizes
the possibility(or necessity) that fuzzy expected payoff $x^{*T}\tilde{B}y$ is greater than or equal to
$w^{*}$ , given player I’s strategy $y^{*}$ and maximum value of the possibility(or necessity) is $2\mu$

(or $2\mu-1$ ). These facts induce us to define another types of games.
Let $v\in R$ be any real numbers and we define real-valued functions $P_{v}^{A}$ : $S_{I}\cross S_{J}arrow$

$[0,1],$ $N_{v}^{A}$ : $S_{I}\cross S_{J}arrow[0,1],$ $P_{v^{B}}$ : $S_{I}\cross S_{J}arrow[0,1]$ and $N_{v}^{B}$ : $S_{I}\cross S_{J}arrow[0,1]$ by
$P_{v^{A}}(x, y)\equiv \mathrm{P}\mathrm{o}\mathrm{s}^{A}(x^{r_{1^{\backslash }}}\tilde{A}y\geqq v),$ $N_{v}^{A}(x, y)\equiv \mathrm{N}\mathrm{e}\mathrm{s}(x^{\mathrm{T}}\tilde{A}y\geqq v),$ $P_{v}^{B}(x, y)\equiv \mathrm{P}\mathrm{o}\mathrm{s}^{B}(x^{\mathrm{T}}\tilde{B}y\geqq v)$ ,
and $N_{v}^{B}(x, y)\equiv \mathrm{N}\mathrm{e}\mathrm{s}(x^{\mathrm{T}}\tilde{B}y\geqq v)$ , respectively. Then we consider the following four kinds
of two-person games:

$\Gamma^{\mathrm{F}\mathrm{G}}(v, w)\equiv\langle\{I, J\}, S_{I}, S_{J}, F_{v}^{A}(\cdot, \cdot), G_{w^{B}}(\cdot, \cdot)\rangle$,

where $F=P,$ $N,$ $G=P,$ $N$ .
In each Game, player $I$ chooses a strategy that maximizes possibility or necessity which

the fuzzy expected payoff $x^{T}\tilde{A}y^{*}$ is greater than or equal to $v$ , which is a inspiration level
of expected payoff player $I$ claims to get, given player $J’ \mathrm{s}$ strategy. While player $J$ chooses
a strat$e\mathrm{g}\mathrm{y}$ that maximizes possibility or necessity which the fuzzy expected payoff $x^{*T}\tilde{B}y$

is greater than or equal to $w$ , which is a inspiration level of expected value player $J$ accepts
to lose, given player $I’ \mathrm{s}$ strategy.

From the above discussions, we have the following theorem.
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Theorem 4.1 Let a strategy $(x^{*}, y^{*})\in S_{1}\cross S_{J}$ be any non-dominated Nash equilibmum
strategy to Game $\tilde{\Gamma}$ . Then there exist real numbers $v^{*},$ $w^{*}\in R$ and $F=P,$ $N$ and $G=P,$ $N$

such that $(x^{*}, y^{*})$ is a Nash equilibrium strategy to one of Game $\Gamma^{\mathrm{F}\mathrm{G}}(v^{*}, w^{*})$ .

Theorem 4.1 shows that each player $I,$ $J$ faces one of the gamcs $\Gamma^{\mathrm{P}\mathrm{P}}(v, w),$ $\Gamma^{\mathrm{P}\mathrm{N}}(v, w)$ ,
$\Gamma^{\mathrm{N}\mathrm{P}}(v, w)$ , and $\Gamma^{\mathrm{N}\mathrm{N}}(v, w)$ .

Next we shall show that converse relationships holds among them.

Theorem 4.2 Let $v,$ $w\in R$ be any real numbers and let a strategy $(x^{*}, y’)\in S_{I}\cross S_{J}$ be any
Nash equilibrium strategy to Game $\Gamma^{\mathrm{F}\mathrm{G}}(v, w),$ $F,$ $G=P$, N. If $F_{v}^{A}(x^{*}, y^{*}),$ $G_{w}B(x^{*}, y^{*})\in$

$(0,1)$ , then $(x^{*}, y^{*})$ is a non-dominated Nash equilibrium strategy to Game $\tilde{\Gamma}$ .

In Theorem 4.2, conditions $F_{v}(x^{*}, y^{*}),$ $G_{w}(x^{*}, y^{*})\in(0,1)$ are important. In fact, if
parameters $v,$ $w$ are sufficiently small or sufficiently large, all strategies will be Nash equi-
librium strategies to Game $\Gamma^{\mathrm{F}\mathrm{G}}(v, w)$ . In order to exclude such a case, we need these
conditions.

5 Conclusion
In this paper, we considered fuzzy $\mathrm{b}\mathrm{i}$-matrix games and defined three kinds of concepts of
Nash equilibrium strategies to fuzzy $\mathrm{b}\mathrm{i}$-matrix games based on the concepts of fuzzy $\max$

order and investigated their properties. Especially, we have shown that the sets of all these
Nash equilibrium strategies coincide with sets of Nash equilibrium strategies of a family
of parametric $\mathrm{b}\mathrm{i}$-rnatrix garnes with crisp payoffs. Ill addition, we have investigated the
properties of values of the fuzzy $\mathrm{b}\mathrm{i}$-matrix games based on possibility or necessity measures.
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