
A Message Passing Algorithm for $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$

Osamu Watanabe (渡辺治) ’and Masaki Yamamoto (山本真基)

Dept. of Math. and Comp. Sci., Tokyo Inst. of Technology, Japan
東京工業大学, 情報理工学研究科, 数理・計算科学専攻

(watanabeQis. titech. $\mathrm{a}\mathrm{c}$. jp)

1 Introduction

Motivated by recent work [OW05] on deriving a simple message passing algorithm for graph
partitioning problems, we consider in this paper the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem, one of the well-know
$\mathrm{N}\mathrm{P}$-hard optimization problems, and propose a simple deterministic algorithm that runs in
$O(n(n+m))$ time for a given 2-CNF formula with n variables and m clauses. For analyzing
its average case performance, we propose one probabilistic model, a variation of the planted
solution model [JS98] that has been used for the same purpose for the Graph Bisection problem.
Then we prove that the algorithm produces one of the optimal solutions with high probability
if instances are generated by our planted solution model with probability parameters satisfying
a certain condition.

We introduce some notations and state our result more precisely. We will use standard
notions and notations on propositional Boolean formulas and graphs without explanation. For
Boolean formulas, the size parameter n determines the number of variables. Throughout this
paper, for simplicity, we assume that a formula has even number of variables, and let $2n$

denote the number of variables of a given formula. On the other hand, we use m to denote
the number of clauses of a given formula. We use $x_{1},$ \ldots,x_{2n} for denoting Boolean variables.
Since we consider only ZCNF formulas, formulas defined as a conjunction of clauses of two
literals, each clause is specified as $(x_{i}\vee x_{j}),$ $(x_{i}\vee\overline{x}_{j}),$ $(\overline{x}_{i}\vee x_{j})$, or $(\overline{x}_{i}\vee\overline{x}_{j})$, for $1\leq i\leq j\leq 2n$,
where x_{i} and \overline{x}_{i} are called positive and negative literals respectively. A formula may contain
the same clause more than once. We assume that formulas are encoded appropriately. Now
what follows is the description of the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem.

$\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem
Input: A $2\mathrm{C}\mathrm{N}\mathrm{F}$ formula over Boolean variables $x_{1},$

$\ldots,$
x_{2n} .

Task Find an assignment to $x_{1},$ \ldots,x_{2n} maximizing the number of satisfied clauses.

In this paper, we reduce the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem to some variable of graph partitioning
problems. Consider any 2-CNF formula F with $2n$ variables. Corresponding to this F , consider
the following directed graph $H_{F}=(U, A)$: A vertex set U is defined by $U^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}U_{1}\cup\tilde{U}_{1}\cup U_{2}\cup\tilde{U}_{2}$,

’Supported in part by a Grant-in-Aid for Scientific Research on Priority Areas “New Horizons in Computing”
2004-2006.

数理解析研究所講究録
1489巻 2006年 106-113 106

where
U_{1}

$\mathrm{d}\mathrm{e}\mathrm{f}=$

$\{1, \ldots, n\}$, \tilde{U}_{1}

$\mathrm{d}\mathrm{e}\mathrm{f}=$ $\{-1, \ldots, -n\}$,
U_{2}

$\mathrm{d}\mathrm{e}\mathrm{f}=$

$\{n+1, \ldots, 2n\}$, \tilde{U}_{2}

$\mathrm{d}\mathrm{e}\mathrm{f}=$ $\{-(n+1), \cdots, -2n\}$.
That is, $U=\{-2n, \ldots, -1,1, \ldots, 2n\}$. An edge set A consists of directed edges (i,j) corre-
sponding clauses $(\ell_{|i|}arrow l_{|j|})$ in F . For example, suppose that F has a clause $(x_{2}\vee\overline{x}_{5})$, which
is equivalent to both $(\overline{x}_{2}arrow\overline{x}_{5})$ and $(x_{5}arrow x_{2})$. Then corresponding to this clause, two edges
$(-2, -5)$ and $(5, 2)$ are put into A .

Now consider any assignment a for F , which is considered as a mapping $\{1, \ldots, 2n\}$ to
$\{-1, +1\}$; that is, $a(i)=+1$ and $a(i)=a(i)-1$ means to assign respectively true and false
to the variable $X:$. This assignment defines the assignment t to vertices of H_{F} in the following
natural way: for any $i\in U,$ $t(i)=a(i)$ if $i>0$ and $t(i)=-a(i)$ if $i<0$. Consider the
partition of U by the assignment t . Then it is easy to see that cut edges from a true vertex
to a false vertex corresponds to clauses unsatisfied by the $\mathrm{a}s8$ignment a . (Precisely speaking,
two cut edges corresponds to one unsatisfied clause.) Consider the converve. We say that an
assignment t to U is consistent if $t(i)=-t(-i)$ for all $i\in U$. Then it is clear that any consistent
assignment t defines some assignment a to F . Therefore, finding a consistent assignment to
vertices (or a partition) that minimizes the number of cut edges from true to false vertices is
to find the optimal assignment for F .

For this problem, we consider a simple message passing type algorithm1 which computes
$b(i)$, “belief“ that a vertex i is assigned true. The computation is based on the following simple
heuristic idea: if a graph H_{F} has an directed edge (j, i) and $b(i)$ is negative, i.e., we believe
(for some reason) that this vertex i is assigned false, then (in order to minimize unsatisfied
cut edges), we had better send a message to the vertex j , suggesting the false assignment to
j . At each iteration, such messages are sent in parallel from vertices with negative beliefs
to their connected vertices. Then at each vertex, its belief is updated based on the received
messages. Note that we need to compute a consistent assignment; thus, beliefs should be
consistent between $i\mathrm{a}\mathrm{n}\mathrm{d}-i$, which is achieved by simply forcing $b(i)=-b(-i)$ at each step.
After several iterations, if all belie& get stabled, then we can determine the assignment to
each vertex i based on the sign of $b(i)$. It is not so hard to see that the algorithm can be
implemented so that each iteration needs $O(n+m)$ time by the standard unit cost RAM
model.

Although simple, we think that this algorithm works quite well on average. For justify-
ing our intuition, we introduce one scenario for discussing the average case performance of
algorithms for the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem, and prove that our algorithm indeed yields a correct
answer with high probability. For the average case scenario, we propose some planted solu-
tion model, which has been proposed [Yam05] as a method for generating test instances for
$\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ algorithmv. Also it is regarded as a variation of the the planted solution model
[JS98] that has been used for the same purpose for the Graph Bisection problem. In general, a
model for an average case scenario is a way to define a distribution of problem instances, and
a planted solution model defines is by providing a way to generate problem instances. Intu-
itively, under a planted solution model, a target solution –which is called a planted solution
–is first determined (or generated randomly), and a problem instance is generated randomly

1Rom the term “belieP’, one may expect some relation to the Perl’s belief propagation algorithm [Pea88].
Our algorithm, though motivated by the one [OW05] that is indeed derived from the Perl’s belief Propagation
algorithm, has nothing to do with it.

107

consistent with this solution. In our situation, we first fix one assignment, and then gener-
ate clauses independently following a certain distribution; roughly, clauses satisfied with the
assignment are generated with probability p , and clauses unsatisfied with the assignment are
generated with probability r . More precise description of the generation procedure is stated
again in terms of graphs; see the next section for the details. Intuitively, if $p>>r$, then one
can expect that the planted solution is the optimal assignment, satisfying $O(pn^{2})$ clauses and
unsatisfying $O(rn^{2})$ clauses. In fact, we show the following theorem.

Theorem 1. For any probability parameters p and r satisfying $p=\Omega(\ln^{2}n/n)$ and $p\geq 9r$,
consider a randomly generated formula F under our planted solution model for the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$

problem. Then with high probability (i.e., with probability $1-o(1)$ w.r.t. n), four planted
solutions are optimal solutions for F ; futhermore, there are no other optimal solutions.

Under this planted solution model (with probability parameters satisfying the above) the
success probability of the algorithm is computed as the probability that it yields one of the
planted solutions for randomly generated formulas. For some technical reason, we modify
the algorithm so that it terminates after two iterations; see Section 3 for some other detail
modifications. Even with such a strong time bound, we can show that the algorithm yields a
correct answer (i.e., one of the planted solutions) with high probability if $p-r$ is large enough,
which is stated more formally as follows.

Theorem 2. For any probability parameters p and r satisfying $p-r\geq n^{-1/2+\epsilon_{\mathrm{P}}}$ for some
constant $\epsilon_{\mathrm{P}}>0$, consider the execution of the algorithm (with MAXSTEP $=2$) on a randomly
generated formula F under our planted solution model for the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem. Then with
high probability (i.e., with probability $1-o(1)$ w.r.t. n), it yields one of the planted solutions
for F .

We omit all proofs of those theorems and related lemmas for want of space. See [WY05]
for those complete proofs.

2 A Planted Solution Model for $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$

We explain our average case scenario or probability model, more specifically, a way of gener-
ating 2-CNF formulas for $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ instances. This model is regarded as a “planted solution
model” for the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem.

For a given $n\geq 1$, we discuss the way of generating a 2-CNF formula over $2n$ variables
$X=\{x_{1}, \ldots, x_{2n}\}$. The outline of our generation is as follows. First generate a directed graph,
and then transform the graph into a 2-CNF formula. We first explain the graph generation2.
A generated graph $H=(U, D)$ is a directed graph of $4n$ vertices. The set U of vertices is
determined from n by $U^{\mathrm{d}}=^{\mathrm{e}\mathrm{f}}U_{1}\cup\tilde{U}_{1}\cup U_{2}\cup\tilde{U}_{2}$, where

U_{1}

$\mathrm{d}\mathrm{e}\mathrm{f}=$

$\{$ 1, \ldots , $n\}$, \tilde{U}_{1}

$\mathrm{d}\mathrm{e}\mathrm{f}=$

$\{-1, \ldots, -n\}$,
U_{2}

$\mathrm{d}\mathrm{e}\mathrm{f}=$ $\{n+1, \ldots , 2n\}$, \tilde{U}_{2}

$\mathrm{d}\mathrm{e}\mathrm{f}=$ $\{-(n+1), \cdots, -2n\}$.

2The explanation here is for the simplified version, which determine $U_{1},\tilde{U}_{1},$ U_{2} , and \tilde{U}_{2} uniquely from n . In
more general, we first generate an equal size partition T_{1} and T_{2} of $\{1, \ldots, 2n\}$ randomly, and for each $i\in T_{1}$

(resp., $i\in T_{2}$), with randomly chosen $s\in\{-1, +1\}$, assign $s\cdot i$ into U_{1} and $-\epsilon\cdot i$ into \tilde{U}_{1} (reap., $s\cdot i$ into U_{2}

$\mathrm{a}\mathrm{n}\mathrm{d}-s\cdot i$ into \tilde{U}_{2}).

108

On the other hand, edges are generated randomly. There are two types of edges, and the set
D of edges is defined by $D=I\cup C$ where I and C are generated as follows.

Internal edges:
$\overline{Iarrow\emptyset;}$

for each $V\in\{U_{1}, U_{2}\}$

and for each $i,j\in V\mathrm{s}.\mathrm{t}$. $i\neq j$ do $\{$

repeat $\lfloor pn\rfloor$ times do $Iarrow I\cup\{(i,j)\}$ with probability $1/n$;
$\}$

Crossing edges:
$Carrow\emptyset$;
for each V and $V’$ from the following do $\{$

1: $(U_{1}, U_{2}),$ $(U_{1},\tilde{U}_{2}),$ $(\tilde{U}_{1}, U_{2}),$ $(\tilde{U}_{1},\tilde{U}_{2})$,
2: $(U_{1},\tilde{U}_{1}),$ (\tilde{U}_{1}, U_{1}) , and
3: $(U_{2},\tilde{U}_{2}),$ (\tilde{U}_{2}, U_{2}) ,
repeat $\lfloor rn\rfloor$ timeI do $\{$

$farrow \mathrm{a}$ random permutation mapping from V to V‘

for each $i\in V$ do $Carrow C\cup\{(i, f(i))\}$;
$\}\}$

$//\mathrm{B}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{w}$ we simply write, e.g., pn for $\lfloor pn\rfloor$.

Note that the graph may have multiple edges. There are rn^{2} edges from, e.g, U_{1} to U_{2} , and
C has $8rn^{2}$ edges. On the other hand, the number of edges in I is from 0 to $2n^{2}$; but its
expectation is $2pn^{2}$. We denote the distribution of graphs generated as above by $\mathcal{H}_{4n,\mathrm{p},r}$.

The transformation of a graph $H=(U, D)$ to a 2-CNF formula F is natural. For each edge
$(i,j)\in D$ such that $i,j>0$, a clause $(\overline{x_{i}}\vee x_{j})$ is added to F . Similarly, for each edge $(i, -j)$
(resp., $(-i,j),$ $(-i,$ $-j)$) such that $i,j>0$, a clause $(\overline{x_{i}}\vee\overline{x_{j}})$ (resp., $(x_{i}\vee x_{j}),$ $(x_{i}\vee\overline{x_{j}})$) is
added to F . This is our random generation of 2-CNF formulas, i.e., instances of the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$

problem. Note that F has $|D|$ edges, where $|D|$ is $2pn^{2}+8rn^{2}$ on average.
Consider any assignment to a to $2n$ Boolean variables of the generated formula F . That

is, $a(i)\in\{-1, +1\}$ and $a(i)=+1$ $\Leftrightarrow x_{1}=1$. We also regard it an assignment t to the
vertices of H . For any $i\in U_{1}\cup U_{2}$, we defined $t(i)=a(i)$, and for any $-i\in\tilde{U}_{1}\cup\tilde{U}_{2}$, we
define $t(-i)=-a(i)$. Verticev assigned true (i.e., +1) are called true and vertices assigned
false (i.e., -1) are called false. Directed edges of H from a false vertex to a true vertex are
called unsatisfied edges. Clearly each unsatisfied edge corresponds to a clause of F unsatisfied
by the assignment a . On the other hand, any assignment t to vertices of H can be interpreted
as an assignment to $F’ \mathrm{s}$ variables if $t(i)=-t(-i)$ for any $i\in U$. Such an assignment is called
consistent. In particular, consistent assignments assigning the same values to all vertices in U_{1}

and U_{2} respectively are important. There are four such assignments, and we call them planted
solutions. The corresponding assignments to F are also called planted solutions. There are
four planted solution. For example, assigning true to all vertices in U_{1} and false to all in U_{2}

(hence, false to all in \tilde{U}_{1} and true to all in \tilde{U}_{2}) is one of the four planted solutions. It is easy
to see that any planted solution has rn^{2} unsatisfied edges; thus, rn^{2} clauses are unsatisfied by
the corresponding assignment to F .

Now we claim that if p is large enough (compared with r), then planted solutions are optimal
solutions (and no others) with high probability when $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ instances are generated as
above.

109

Theorem 2.1. For any probability parameters p and r satisfying $p=\Omega(\ln^{2}n/n)$ and $p\geq 9r$,
consider a randomly generated formula F from a random graph of $\mathcal{H}_{4n,p,r}$. Then with high
probability (i.e., with probability $1-o(1)$ w.r.t. n), four planted solutions are optimal solutions
for F ; futhermore, there are no other optimal solutions.

3 Algorithm and Its Average Performance

We state our algorithm algoMP$X\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ and prove our main theorem. That is, if a formula F

is generated under our planted solution model with P and $r\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathfrak{R}\mathrm{n}\mathrm{g}p-r\geq n^{-1/2+\epsilon}$, then
with high probability, the algorithm yields one of the planted solutions, which is (again with
high probability) the optimal solution for F .

The description of algoMP $X\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ is shown in Figure 1. As explained in Introduction,
the algorithm is based on the following simple heuristic idea: if a 2-CNF formula F has a
clause $(larrow l’)$ and we believe (for some reason) literal $l’$ to be assigned false, then (in order
to satisfy as many clauses as possible), we suppose that we had better assign false to literal
l . This idea is implemented as statement (1); for any vertex corresponding literal $l’$ believed
to be false, a message that supports assignment false is sent from this vertex to all vertices
corresponding literals l such that $(larrow l’)\in F$ while no message is sent from vertices believed
to be true. Note that beliefs should be consistent between $i\mathrm{a}\mathrm{n}\mathrm{d}-i$, i.e., vertices for the same
variable; this consistency is forced by statement (2).

For understanding the algorithm, some more detail explanations are needed.

1. A graph $H_{F}=(U, A)$ constructed from F is different from the one $H=(U, D)$ for
generating F . We use the same vertex set U ; on the other hand, for each clause $(x_{i}\vee x_{j})$,
for example, H_{F} has two edges (i,j) and $(-j, -i)$. Thus, each edge in D corresponds to
two edges in A .

2. For any $C_{k}=(l\vee l^{j})$, let $e(C_{k})$ denote a directed edge corresponding to $(\overline{l}arrow l‘)$, and
$\overline{e}(C_{k})$ is a directed edge corresponding to $(\overline{l’}arrow l)$. By $N^{-1}(u)$ we mean the set of vertices
j having a direct edge to i . The function sign $(z)\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}\mathrm{s}+1$ if $z>0$ and-l otherwise.

3. For our theoretical analysis, we make the following modifications: (i) set MAXSTEP
$=2,$ $(\mathrm{i}\mathrm{i})$ statement (2) is not executed for the first round, and (iii) statement (3) is
inserted.

4. Due to our simplified version for generating instances (see the footnote of the previous
section), we could assume that $x_{1}=-1$ and $x_{n+1}=-1$. For the general $\mathrm{i}\mathrm{n}\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}_{)}$ while
we may still fix x_{1} , we would have to run the algorithm by fixing $x_{1}=\pm 1$ and $x_{j}=\pm 1$

for all $j\in\{1, \ldots, 2n\}\backslash \{i\}$.
It is easy to see that the running time of the algorithm (for the unit cost RAM model) is

$O(n+m)$; thus, the total running time for the general instances is $O((n+m)n)$.
Now we analyze the performance of the algorithm and prove the main theorem. IYom

now on, we consider sufficiently large n and a random formula F generated by our planted
solution model with parameters p and r . We assume that p and r satisfies the condition of the
theorem and $p\geq 9r$. That is, $p-r>n^{-1/2+\epsilon_{P}}$ for Iome $\epsilon_{p}>0$; hence, clearly $p>n^{-1/2+\epsilon_{\mathrm{P}}}$.
Let $H=(U,A)$ be a graph constructed in the algorithm from F. (For simpicity we omit the

110

$\mathrm{p}\mathrm{r}o$cedure algoMP$X\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}(F)$;
$//\mathrm{A}\mathrm{n}$ input $F=C_{1}\wedge\cdots\wedge C_{m}$ is a 2-CNF formula over variables $x_{1},$ \cdots,x_{2n} .
$//\mathrm{T}\mathrm{h}\mathrm{e}$ algorithm assumes that $x_{1}=-1$ (i.e., false) and $x_{n+1}=-1$ (i.e., false).
begin

Construct a directed graph $H_{F}=(U, A)$,
where $U=U_{1}\cup\tilde{U}_{1}\cup U_{2}\cup\tilde{U}_{2}$, and $A=\{e(C_{k}),\overline{e}(C_{k}) : 1\leq k\leq m\}$;

Set $b(i)$ to 0 for all $i\in U$;
Set $b(1)=b(n+1)=-1$;
repeat MAXSTEP timev do $\{$

for each $i\in\{1, \cdots, 2n\}\backslash \{1, n+1\}$ do $\{$

$//\mathrm{T}\mathrm{h}\mathrm{e}$ following update is made in parallel.

$b(-i)$ $arrow$ $j \in N\sum_{j\in N^{\bigvee_{1}^{1}}}(i)(-i)$

$b(i)$ $arrow$ \sum

$\min(0,b(j));\min(0,b(j));\}$ $-(1)$

$b(-i)b(i)$ $arrowarrow$ $b(i)-b(-i);-b(i);\}$ $-(2)$

$\}$

if all sign(i) are stabilized then break;
$//\mathrm{S}\mathrm{e}\mathrm{t}b(1),$ $b(-1),$ $b(n+1),$ $b(-(n+1))$ to 0 ; $-(3)$

$\}$

output $(-1,\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(b(2)),$ \cdots
\dagger sign$(b(n)),$ $-1,$ $\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(b(n+2)),$ \cdots , sign$(b(2n)))$;

end-procedure

Figure 1: Message passing algorithm for the $\mathrm{M}\mathrm{A}\mathrm{X}2\mathrm{S}\mathrm{A}\mathrm{T}$ problem

111

subscript F ; this H is different from the one used for generating $F.$) We denote by I a set of
edges within $V\in\{U_{1},\tilde{U}_{1}, U_{2},\tilde{U}_{2}\}$ and define $C=A\backslash I$.

Consider any $i\in\{1, \cdots, 2n\}\backslash \{1, n+1\}$. Let b_{i} be a random variable denoting the value
obtained as $b(i)$ after the execution. Its expectation can be calculated as follows.

Lemma 3.1. For any $i\in\{1, \cdots, 2n\}\backslash \{1, n+1\}$, we have $\mathrm{E}[b_{i}]=-((p-r)^{2}n-2p(p-r))$.
From our choice of p and r , we have $\mathrm{E}[b_{i}]=-((p-r)^{2}n-2p(p-r))<-1$ because the value

of $b_{:}$ is integer. Thus, the algorithm yields on average all false assignment, which is one of the
planted solutions. Now for showing that the algorithm surely yields this planted Iolution, we
will discuss below concentration of b_{i} around its average. More specifically, for $i\in U_{1}\backslash \{1\}$,
we estimate the following probability: the value of $\mathrm{P}\mathrm{r}\{b_{i}>(1-\alpha)\mathrm{E}[b_{1}]\}$ for any $\alpha>0$. (The
analysis is similar for $i\in U_{2}\backslash \{n+1\}.)$

Since the expectation of $-b_{1}$ is $\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}_{)}$ we deal with $-b_{i}$ not b_{i} for our convenience.
Consider the following cases: for an arbitrary constant $\epsilon>0$,

$(*)\cdots\{$
$|(\sum_{j\in U_{1}\backslash \{1,i\}}A_{j1})-p(n-2)|$ $<$ $\epsilon p(n-2)$,
$|(\sum_{j\in U\mathrm{a}\backslash \{n+1\}}A_{jn+1})-p(n-1)|$ $<$ $\epsilon p(n-1)$,

and

$(**)\cdots\{$

$\max\{A_{j1} : j\in U_{1}\}$ \leq $\ln n$, $\max\{A_{jn+1} : j\in U_{2}\}$ \leq $\ln n$,
$\max\{B_{jn+1} : j\in U_{1}\}$ \leq $\ln n$,

$\max\{B_{j1} : j\in\tilde{U}_{1}\}$ \leq $\ln n$, $\max\{B_{jn+1} : j\in\tilde{U}_{1}\}$ \leq $\ln n$,
$\max\{B_{j1} : j\in U_{2}\}$ \leq $\ln n$,
$\max\{B_{j1} : j\in\tilde{U}_{2}\}$ \leq $\ln n$, $\max\{B_{jn+1} : j\in\tilde{U}_{2}\}$ \leq $\ln n$.

We denote by Good(H) the event that all the events of $(*)$ and $(**)$ simaltaniously occur. As
is shown in Lemma 3.2, the probability of $\overline{\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)}$ (for any $\epsilon>0$) is less than $1/n^{2}$. (We
can actually prove much smaller probability. But the value of $1/n^{2}$ is sufficiently small for our
purpose.) Thus, we have

$\mathrm{P}\mathrm{r}\{-b_{1}<(1-\alpha)\mathrm{E}[-b_{i}]\}$ $=$ $\mathrm{P}\mathrm{r}\{\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)\}\mathrm{P}\mathrm{r}\{-b_{i}<(1-\alpha)\mathrm{E}[-b;]|\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)\}$

$+\mathrm{P}\mathrm{r}\{\overline{\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)}\}\mathrm{P}\mathrm{r}\{-b_{i}<(1-\alpha)\mathrm{E}[-b_{i}]|\overline{\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)}\}$

$<$ 1 $\cdot \mathrm{P}\mathrm{r}\{-b_{i}<(1-\alpha)\mathrm{E}[-b_{i}]|\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)\}$

$+(1/n^{2})\cdot \mathrm{P}\mathrm{r}\{-b_{i}<(1-\alpha)\mathrm{E}[-b_{i}]|\overline{\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)}\}$

\leq $\mathrm{P}\mathrm{r}\{-b;<(1-\alpha)\mathrm{E}[-b_{1}]|\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)\}+1/n^{2}$.

Lemma 3.2. The probability that at least one of $(*)$ and $(**)$ is not Iatisfied is l\’es than
$1/n^{2}$, i.e., $\mathrm{P}\mathrm{r}\{\overline{\mathrm{G}\mathrm{o}\mathrm{o}\mathrm{d}(H)}\}<1/n^{2}$.

Therefore, $\mathrm{w}\mathrm{e}’ 11$ show that the conditional probability of $\mathrm{P}\mathrm{r}\{-b_{i}<(1-t)\mathrm{E}[-b_{1}]\}$ given
Good(H) is small. That is:

Lemma 3.3. With high probability, say, $1-o(1)$, we have $-b_{i}>1$ and $b_{-i}>1$ for all
$i\in\{1, \cdots, 2n\}$.

112

Now we summarize what we have obtained is enough for proving the main theorem. First
from Lemma 3.1 and by our choice of p and r , if each b_{i} is close to its expectation, then the
assignment that the algorithm yields is one of the planted solution, i.e., all false assignment.
Secondly, from Lemma 3.3, if H (i.e., H_{F} constructed from F in the algorithm) satisfies some
condition, then the deviation of b_{i} from its expectation is small enough. Finally, Lemma 3.2
guarantees that such a good situation occurs with high probability. Therefore we have our
theorem, i.e., Theorem 2 stated in Introduction.

References
[HM98] M. Habib et al. Ed., “Probabilistic Methods for Algorithmic Discrete Mathematics”,

Springer, 1998.

[JS98] M. Jerrum and G. Sorkin, The Metropolis algorithm for graph bisection, Discrete
Appl. Math 82(1-3), 155-175, 1998.

[MR95] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press,
1995.

[Pea88] J. Pearl, Prvbabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Morgan Kauinann Publishers Inc., 1988.

[OW05] M. Onsj\"o and O. Watanabe, Simple algorithms for graph partition problems, Re-
search Report C-212, Dept. of Math. and Comput. Sci., Tokyo Inst. of Tech, 2005.

[WY05] 0. Watanabe and M. Yamamoto, A Message Passing Algorithm for MAX2SAT,
Research Report C-216, Dept. of Math. and Comput. Sci., Tokyo Inst. of Tech,
2005.

[Yam05] M. Yamamoto, Generating instances for MAX2SAT with optimal solutions, Theory
of Comput. Syst., to appear.

113

