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Abstract. Since quantum information is continuous, its handling is sometimes surprisingly
harder than the classical counterpart. A typical example is cloning; making a copy of digital
information is straightforward but it is not possible exactly for quantum information. The
question in this paper is whether or not quantum network coding is possible. Its classical
counterpart is another good example to show that digital information flow can be done much
more efficiently than conventional (say, liquid) flow.

Our answer to the question is similar to the case of cloning, namely, it is shown that quantum
network coding is possible if approximation is allowed, by using a simple network model called
Butterfly. In this network, there are two flow paths, $s_{1}$ to $t_{1}$ and $s_{2}$ to $t_{2}$ , which shares a single
bottleneck channel of capacity one. In the classical case, we can send two bits simultaneously,
one for each path, in spite of the bottleneck. Our results for quantum network coding include:
(i) We can send any quantum state $|\psi_{1}\rangle$ from $s_{1}$ to $t_{1}$ and $|\psi_{2}\rangle$ from s2 to $t_{2}$ simultaneously
with a fidelity strictly greater than 1/2. (ii) If one of $|\psi_{\mathrm{k}}\rangle$ and $|\psi_{2}\rangle$ is classical, then the fidelity
can be improved to 2/3. (iii) Similar improvement is also possible if $\mathrm{C}\mathrm{b}_{\mathrm{i}}\rangle$ and $1\mathrm{C}\mathrm{b}2\rangle$ are restricted
to only a finite number of (previously known) states. This allows us to design an interesting
protocol which can send two classical bits from $s_{1}$ to $t_{1}$ (similarly from $s_{2}$ to $t_{2}$ ) but only one of
them should be recovered.

1 Introduction

Coding is obviously one of the most important techniques for information processing, and is
used for many different purposes including cryptography, error correction, data compression,
etc. Recently it has been shown that coding is also useful to effectively achieve larger channel
capacity than can be achieved by simple routing. The technique is based on a completely different
idea from data compression and has been known as network coding since its introduction by
Ahlswede, Cai, Li and Yeung [2]. It has been quite popular as a mutual interest of theoretical
computer science and information theory (see e.g., [14. 16, 17, 18] for recent developments).

Network coding is nicely explained by using the so-called Butterfly network as shown in Fig.
1. The capacity of each directed link is all one and there are two source-sink pairs $s_{1}$ to $t_{1}$ and
$s_{2}$ to $t_{2}$ . Notice that both paths have to use the single link from $s_{0}$ to to and hence the total

数理解析研究所講究録
1489巻 2006年 128-134 128



amount of flow in both paths is bounded by one, say, 1/2 for each. Interestingly, this max-flow
$\min$-cut theorem no longer applies for “digital information flow.” As shown in Fig. 2, we can
transmit two bits, $x$ and $y$ , on the two paths simultaneously. Tricks here are (at least) twofold:
The first one is the EX-OR (Exclusive-OR) operation at node $s_{0}$ . One can see that the bit $y$

is encoded by using $x$ as a key which is sent directly from $s_{1}$ to $t_{2}$ , and vise versa. The second
trick is even more important; at node $t_{0}$ we can make an exact copy of one-bit information from
$s_{0}$ .

The main objective of this paper is to develop similar, but approximated network coding
for quantum channels and quantum information. (It turns out that exact transmission is not
possible, which one intuitively expects by the continuous nature of quantum information, the
no-cloning theorem [23] etc.) For given two quantum states $|\psi_{1}\rangle$ at $s_{1}$ and $|\psi_{2}\rangle$ at $s_{2}$ , our task
is to transmit them to $t_{1}$ and $t_{2}$ simultaneously and output as $\rho_{1}$ and $\rho_{2}$ , respectively. Our goal
is to aake $\rho_{1}$ and $\rho_{2}$ as similar to the original $|\psi_{1}\rangle$ and $|\psi_{2}\rangle$ as possible, respectively (we use
bold fonts for 2 $\mathrm{x}2$ and $4\cross 4$ density matrices for exposition). Every channel capacity remains
one and any physically implementable operation is allowed at each node.

The key seems to be whether we can find tricks similar to the above classical case. For the
second one, we may be able to use the approximated cloning by Bu\v{z}ek and Hillery [9], but for the
first one, there is no obvious way of encoding a quantum state by a quantum state. Consider, for
example, a simple extension of the classical operation at node $s_{0}$ by using a controlled unitary
transform $U$ as illustrated in Fig. 3. (Note that classical EX-OR is realized by setting $U=X$

“bit-flip.”) Then, for any $U$ , there is a quantum state $|\phi\rangle$ (actually an eigenvector of $U$) such
that $|\phi\rangle$ and $U|\phi\rangle$ are identical (up to a global phase). Namely, if $|\psi_{2}\rangle$ $=|\phi\rangle$ , then $\rho_{1}=|\phi\rangle$ $(\phi|$

at $t_{1}$ does not change for $|\psi_{1}\rangle$ $=|0\rangle$ and $|\psi_{1}\rangle$ $=|1\rangle$ . Since $|0\rangle$ and $|1\rangle$ are orthogonal, this means
either $|0\rangle$ and $\rho_{1}$ or $|1\rangle$ and $\rho_{1}$ are completely dissimilar or their fidelity is at most 1/2. Recall
that our measure for the transmission quality is the worst-case fidelity.

Our Contribution. In this paper, we give a protocol such that for any quantum states $|\mathrm{t}\mathrm{h}_{\mathrm{i}}\rangle$

at $s_{1}$ and $|\psi_{2}\rangle$ at $s_{2},$ $F(|\psi_{1}\rangle,\rho_{1})$ and $F(|\psi_{2}),\rho_{2})$ are both strictly greater than 1/2 (Theorem 3.1),
where $F$ is the fidelity. The idea is discretization of (continuous) quantum states. Namely, the
quantum state from $s_{2}$ is changed into classical three bits which are used as a key to “encode”
the state from $s_{1}$ at node $s_{0}$ and “decode” it at node $t_{1}$ . At node $t_{2}$ , we recover the key bits
by comparing the state from $s_{1}$ and its encoded one from $t_{0}$ . For thaee purposes, we need the
above approximated cloning, and what we call “three-dimensional (3D) measurement” that gives
us which basis the current quantum state is close to. Moreover; we use “approximated group

Figure 3: Network using a con-
Figure 1: Butterfly network. Figure 2: Coding scheme trolled unitary operation
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operations” for encoding quantum states and the Bell measurement for their comparison.
Note that the present value of $F(|\psi_{1}\rangle,\rho_{1})$ and $F(|\psi_{2}\rangle,\rho_{2})$ is only slightly better than 1/2

(some 1/2+1/100) in general. However, if we impose some restriction, the value becomes much
better. For example, if $1\mathrm{t}\mathrm{h}_{1}\rangle$ is a classical state (i.e. either $|0\rangle$ or $|1\rangle$ ), then the fidelity becomes
2/3 (Theorem 4.1). Similar improvement is also possible if $|\psi_{1}\rangle$ and $|\psi_{2}\rangle$ are restricted to only
a finite number of (previously known) states, especially if they are so called quantum random
access coding states [3]. By using this, we can design an interesting protocol which can send two
classical bits from $s_{1}$ to $t_{1}$ (similarly two bits from s2 to $t_{2}$ ) but only one of them, determined
by adversary, should be recovered. It is shown that the success probability for this protocol is
$1/2+\sqrt{2}/16$ (Theorem 4.2), but classically the success probability for any protocol is at most
1/2.

Related Work. The study of coding methods on quantum information and computation
has been deeply explored for error correction of quantum computation (since [22]) and data
compression of quantum sources (since [21]). Recall that their techniques are duplication of data
(error correction) and average-case analysis (data compression). Those standard approaches do
not seem to help in the core of our problem.

More tricky applications of quantum mechanism are quantum teleportation [5], superdense
coding [6], and a variety of quantum cryptosystems including the BB84 key distribution $[4_{\mathrm{J}}^{1}$ .
Probably most related one to this paper is the random access coding by Ambainis, Nayak, Ta-
shma, and Vazirani [3], which allows us to encode two or more classical bits into one qubit and
decode it to recover any one of the source bits. Our third protocol is a realization of this scheme
on the Butterfly network.

Different from the classical world, the quantum mechanics prohibits us from exact manipu-
lation of some fundamental operations such as cloning a qubit [23], deleting one of two copies of
a qubit [20], and the universal NOT of a qubit (on the Bloch sphere) [8]. However, since these
operations are so basic ones, it was natural that their approximated or probabilistic versions
were investigated. For instance, Bu\v{z}ek and Hillery [9] found a quantum cloning machine which
produces two copies of any unknown original state with fidelity 5/6, which was shown to be
optimal [7]. Our approximated approach reflects the policy of these studies on manipulations of
unknown quantum states.

In this paper, we omit all the proofs of our results. See [15] for the details.

2 Formal Setting

Our model as a quantum circuit is shown in Fig. 4. The information sources at nodes $s_{1}$ and
$s_{2}$ are pure one-qubit states $|\psi_{1}\rangle$ and $|\psi_{2}\rangle$ . (It turns out, however, that the result does not
change for mixed states because of the joint concavity of the fidelity [19].) Any node does not
have prior entanglement with other nodes. At every node, a physically allowable operation,
i.e., trace-preserving completely positive map (TP-CP map), is done, and each edge can send
only one qubit. They are implemented by unitary operations with additional ancillae and by
discarding all qubits except for the output qubits $[1, 19]$ .

Our goal is to send $|\mathrm{t}\mathrm{h}_{1}\rangle$ to node $t_{1}$ and $|\psi_{2}\rangle$ to node $t_{2}$ as well as possible. The quality of data
at node $t_{j}$ is measured by the fidelity between the original state $|\psi_{j}\rangle$ and the state $\rho_{j}$ output at
node $t_{j}$ by the protocol. Here, the fidelity between two quantum states $\rho$ and $\sigma$ are defined as
$F(\sigma,\rho)=(\mathrm{n}\sqrt{\rho^{1/2}\sigma\rho^{1/2}})^{2}$ as in [7, 11, 12]. (The other common definition is Tr $\sqrt{\rho^{1/2}\sigma\rho^{1/2}}.$ ) In

particular: the fidelity between a pure state $|\psi\rangle$ and a mixed state $\rho$ is $F(|\psi\rangle,\rho)=\langle\psi|\rho|\psi\rangle$ . (To
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Figure 4: Quantum circuit for coding on the
Butterfly network$\mathrm{D}\mathrm{u}\iota\iota \mathrm{e}\mathrm{r}\mathrm{u}\mathrm{y}\iota\iota \mathrm{e}\iota \mathrm{W}\mathrm{U}1^{-}\mathrm{K}$ Figure 5: Protocol $XQQ$.

$\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{f}.\gamma$ the description, for a pure state $|\psi\rangle\langle$$\psi|$ we often use the vector representation $|\psi$) $.$ ) We
call the minimum of $F(|\psi_{j}\rangle,\rho_{j})$ over all one-qubit states $|\psi_{j}\rangle$ the fidelity at node $t_{j}$ . Note that a
protocol which achieves a fidelity of 1/2 trivially exists (i.e., the one which outputs completely
mixed states at $t_{1}$ and $t_{2}$ regardless of the input.) So, the question is whether we can achieve a
fidelity strictly better than 1/2.

3 Main Result
In this section we state the following main theorem.

Theorem S.l There exists a quantum protocol whose fidelities at nodes $t_{1}$ and $t_{2}$ are 1/2+
200/19683 and 1/2+180/19683, respectively.

3.1 Overview of the Protocol

Fig. 5 illustrates our protocol, Protocol for Crossing Two Qubits $(XQQ)$ . As expected, the
approximated cloning is used at nodes $s_{1},$ $s_{2}$ and $t_{0}$ .

At node $s_{0}$ , we first apply the $3\mathrm{D}$ measurement to the state of one-qubit system $Q_{3}$ and
obtain three classical bits $r_{1}r_{2}r_{3}$ . Their different eight values suggest which part of the Bloch
sphere the state of $Q_{3}$ sits in. These eight values are then used to choose one of eight operations,
the approximated group operations, to encode the state of $Q_{2}$ . These eight operations include
identity $I$ , bit-flip $X$ , phase-flip $Z,$ $\mathrm{b}\mathrm{i}\mathrm{t}+\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}$ -flip $\mathrm{Y}$ , and their combination with the universal
NOT [10] denoted by Inv. Here, we need to be careful since Inv is not physically allowable.
Actually, therefore, we use its approximation Inv’ $= \frac{1}{3}\mathrm{I}\mathrm{n}\mathrm{v}+\frac{I}{3}$ , which turns out to be physically
allowable. At node $t_{1}$ , we apply the reverse operations of these eight operations (actually the
same as the original ones) for the decoding purpose.

At node $t_{2;}$ we recover the three bits $r_{1}r_{2}r_{3}$ (actually the corresponding quantum state for
the output state) by comparing $Q_{1}$ and $Q_{6}$ . This should be possible since $Q_{2}(\approx Q_{1})$ is encoded
into $Q_{5}(\approx Q_{6})$ by using $r_{1}r_{2}r_{3}$ as a key but its implementation is not obvious. It is shown that
for this purpose, we can use the Bell measurement together with the fact that $Q_{1}$ and $Q_{2}$ are
partially entangled as a result of cloning at node $s_{1}$ .
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4 Protocols for Restricted Problems

4.1 Protocol $XQC$

We first consider the case where one of the sources (say, node $s_{2}$ ) receives a classical bit $b$ .
Notice that, in this case, the fidelity at node $t_{2}$ equals to the probability that $b$ can be recovered
successfully at $t_{2}$ . See Fig. 6 for the protocol $XQC$.

Theo$nm\mathit{4}\cdot 1XQC$ achieves a fidelity of 2/3 at both $t_{1}$ and $t_{2}$ .

As before we use cloning at $s_{1}$ and $s_{2}$ but there is no shrink at 82 this time. At $\epsilon_{0}$ , the
state on $Q_{2}$ is bit-flipped iff $b=1$ . Then, the decoding process is rather straightforward: at $t_{1}$

the state is flipped back iff $b=1$ , while at $t_{2}$ the quantum states received from $s_{1}$ and to are
compared to retrieve $b$ by an appropriate measurement. As mentioned in Sec. 1, this protocol
would not work if perfect cloning were possible (and were used) at node $s_{1}$ . The approximated
cloning at $s_{1}$ creates some entanglement between $Q_{1}$ and $Q_{2}$ (and between $Q_{1}$ and $Q_{6}$ ), which
is essential for the performance of $XQC$ .

4.2 Protocol $X2C2C$

We next consider the case that both sources are restricted to be one of the four $(2, 1, \cos^{2}\pi/8)-$

quantum random access (QRA) coding states [3], where $(m,n,p)$-QRA coding is the coding of
$m$ bits to $n$ qubits such that any one bit chosen from the $m$ bits is recovered with probability $p$ .
In this case, we can send them with high fidelity (at least 3/4) from $s_{1}$ to $t_{1}$ and from $s_{2}$ to $t_{2}$

by combining the measurement in the basis $B_{x}$ at the sources and the classical network coding
scheme for the Butterfly network.

As an application. we can consider a more interesting problem where each source receives
two classical bits, namely, $x_{1}x_{2}\in\{0,1\}^{2}$ at $s_{1}$ , and $y_{1}y_{2}\in\{0,1\}^{2}$ at $s_{2}$ . At node $t_{1}$ , we
output one classical bit Out1 and similarly Out2 at $t_{2}$ . Now an adversary chooses two numbers
$i_{1},$ $i_{2}\in\{1,2\}$ . Our protocol can use the information of $i_{1}$ only at node $t_{1}$ and that of $i_{2}$ only at
$t_{2}$ . Our goal is to maximize $F(x_{i_{1}}, \mathrm{O}\mathrm{u}\mathrm{t}^{1})$ and $p(y_{i},, \mathrm{O}\mathrm{u}\mathrm{t}^{2})$ , where $F(x_{i_{1}}, \mathrm{O}\mathrm{u}\mathrm{t}^{1})$ turns out to be
the probability that $x_{i_{1}}=\mathrm{O}\mathrm{u}\mathrm{t}^{1}$ and similarly for $F(y_{i},, \mathrm{O}\mathrm{u}\mathrm{t}^{2})$ . Fig. 7 illustrates $X2C2C$.

Theorem 4.2 $X2C2C$ achieves a fidelity of $1/2+\sqrt{2}/16$ at both $t_{1}$ and $t_{2}$ .

By contrast, any classical protocol cannot achieve a success probability greater than 1/2 for
the following reason: Let fix $y_{1}=y_{2}=0$ . Then the path from $s_{1}$ to $t_{1}$ is obviously equivalent to
the $(2, 1, p)$-classical random access coding, where the success probability $P$ is at most 1/2 [3].
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