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Upper bounds for quantum biased oracles with explicit bias rate
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Abstract — We investigate the query complexity of quantum biased oracles. Suppose that the biased oracles
answer queries correctly with probability at least 1/2 + £. Given such an oracle, we present an algorithm to simulate a
single query to an oracle that answers queries correctly with probability at least 2/3, using O(1/&) queries to the given
oracle. For searching problems, combining the algorithm with a known result, we can obtain an optimal algorithm.
The simulating algorithm works effectively when we know the value of . We also consider the situation where no

knowledge about ¢ is given.

1 Introduction

In the quantum computing, query complexity is often used
as a measure of the performance of algorithms. 1t is the
number of calls of a black-box (often called oracle) com-
puting a certain function f during running an algorithm.
A perfect oracle receives x and returns f(x) with certainty.
On the other hand, a biased oracle, which we deal with in
this paper, receives x and returns f(x) with probability
at least 1/2 + &. Since the algorithm depends on the ora-
cle’s outputs, the erroneous outputs from the biased oracle
may need to be corrected to perform the algorithm prop-
erly. In general, the query complexity of biased oracles
may increase compared to that of perfect oracles because
of overheads for error-correction.

Majority voting is well-known as one of methods for
error-correction. By using multiple queries to a given bi-
ased oracle and majority voting, we can increase the prob-
ability that the oracle answers each query correctly. It
is known that O(1/€?) queries are sufficient to increase
the correct probability from 1/2 + & to 2/3, and O(log T)
queries are sufficient from 2/3 to 1 — 1/T. Now, suppose
that an algorithm uses T queries to a perfect oracle. In the
algorithm, each query to the perfect oracle is simulated by
0('355) queries to the corresponding biased oracle: As
mentioned above, by 0(1—'?,1) queries and majority vot-
ing, we can increase the correct probability from 1/2 + &
to 1 — 1/T for each query, and if the correct probability of
each query reaches 1 — 1/T, the error probability piled up

by T queries is upper-bounded by some constant. Thus
it is known that O (3T ) queries to a biased oracle are
sufficient to perform any algorithms. It is optimal in some
classical cases. On the other hand, in the quantum setting,
a lower bound Q (T/¢g) by Iwama et al. [8] is only known,
therefore the algorithms by the simple majority may not
be optimal.

For some specific problems, O(T/£?) quantum al-
gorithms are known, which is efficient by a factor of
log T. For example, Hgyer et al. presented a robust quan-
tum search algorithm with O(T/€?) queries in [7], and
Buhrman et al. also showed O(T/£?) algorithm for com-
puting some functions such as parity with quantum biased
oracles [4]. Moreover, Iwama et al. showed O (T /¢) algo-
rithms in a restricted setting or when T € O(1) in [8].
However, in the general biased setting, no quantum algo-
rithm matching the corresponding lower bound has been
presented.

Our contribution. We present an algorithm to simu-
late a single query to an oracle that answers each query
cotrectly with probability at least 2/3, using O(1/g)
queries to the given oracle that answers each query cor-
rectly with probability at least 1/2 + &. It implies that
O(1/€?) factors by majority voting can be replaced with
new O(1/¢) factors for any algorithms, since the simulat-
ing algorithm is independent of problems. Incorporating
the robust quantum search algorithm by Hegyer et al. [7],
we can obtain an optimal algorithm to solve searching
problems in an N-element space with O(VN/¢) queries to
a biased oracle. The simulating algorithm does not work

135



effectively unless the value of € is given. We also present
a non-trivial algorithm to cope with a situation in which
we have no prior knowledge about &.

2 Preliminaries

In this section, we introduce the quantum computing and
the query complexity. We also define quantum biased or-
acles.

2.1 Quantum state and evolution

A state of n-qubit quantum register |i) is a superpo-
sition of 2" classical strings with length n, ie., ) =
Y @4|x) where x € {0, 1}* and the amplitudes a, are com-
plex numbers consistent with the normalization condition:
T lax? = 1. If we measure the state i) with respect to
the standard basis, we observe |x) with probability lo,*
and after the measurement the state |) collapses into |x).

Without measurements, a quantum system can evolve
satisfying the normalization condition. These evolutions
are represented by unitary transformations. In this paper,
unitary transformations controlled by other registers are
often used. For example, one of them acts as some unitary
transformation if the control qubit is |1}, otherwise it acts
as identity. The following operator Ay is also one of their
applications.

Definition 1 For any integer M > 1 and any unitary op-
erator U, the operator Ay(U) is defined by

DU ©@<j<M)

ey = {IJ')U”Iy) G2 M.

Ay is controlled by the first register |j) in this case.
Ap(U) uses U for M times.

It is also known that quantum transformations can com-
pute all classical functions. Let g be any classically com-
putable function with m input and k output bits. Then,
there exists a unitary transformation U, corresponding to
the computation of g: for any x € {0, 1}" and y € {0, 1}%,
U, maps |x)ly) to [x)|y @ g(x)), where © denotes the bit-
wise exclusive-OR.

2.2 Query complexity

In this paper, we are interested in the query complexity,
which is discussed in the following model. Suppose we
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want to compute some function ¥ with an N-bit input
and we can access each bit only through a given oracle
O. The query complexity is the number of queries to the
oracle. A quantum algorithm with T queries is a sequence
of unitary transformations: Uy — 0y = U; — ... —
Or — Uy, where O; denotes the unitary transformation
corresponding to the i-th query to the oracle O, and U;
denotes an arbitrary unitary transformation independent
of the oracle. Our natural goal is to find an algorithm to
compute ¥ with sufficiently large probability and with the
smallest number of oracle calls.

The most natural quantum oracles are quantum perfect
oracles Oy that map 1x)0™1)[0) to [x)I0™1)| f(x)) for any
x € [N]. Here, |0 !) is a work register that is always
cleared before and after querying oracles. On the other
hand, quantum biased oracles, which we deal with in this
paper, are defined as follows.

Definition 2 A guantum oracle of a Boolean function f
with bias & is a unitary transformation 0;. or its inverse

O;T such that

OI0™ )0} = [xNadw)|F()) +Blw FGN),

where \a,2 = 1/2+ &, 2 1/2+&for any x € [N). Let also
Emin = mxins,.

Note that 0 < £ < &yin < & < 1/2 for any x. In practice,
€ is usually given in some way and &g Or &; may be
unknown. Unless otherwise stated, we discuss the query
complexity with a given biased oracle 0} in the rest of the

paper.

3 Known results

3.1 Amplitude amplification

Brassard et al. showed amplitude amplification in [3],
which is very useful to design quantum algorithms as fol-
lows. Suppose that we have a quantum algorithm A with
success probability p. If there exists a Boolean function y
that can distinguish between success and fail (often called
good and bad state), we can increase the success proba-
bility close to 1 by using A and y for O(1/+/p) times.

In the amplitude amplification, a unitary operator Q =
~ASe A8, is used. Here, Sy denotes an operator to flip
the sign of amplitude of the state |0), and S, denotes an



operator to flip the signs of amplitudes of all the good
states. Applying Q to the state A|0) for j times, we have

QA0 = % Sin((2J + 1)6,) [¥:)

1
Ny
where [¥1) has all the good states and (¥{|¥;) = p =
sin’(e,,) and [¥;) is orthogonal to [¥p). After applying Q
for about 7/46, € O(1/+/p) times, we can measure a good
solution with probability close to 1. Note that we need to
know the value of p to do so. See [3] for more details.

Even if the success probability of A, i.e., p is not given,
we can have a good estimation of p as mentioned in Sec-
tion 3.2. The next lemma in [8] states that the amplitude
amplification works effectively when we know about the

initial success probability p with some degree of preci-
sion. ,

cos((2j+ 1)6p) W), (1)

Lemma 1 Let A be any quantum algorithm that uses no
measurements, and x : Z — {0, 1} be any Boolean func-
tion, and k be any integer at least 2. If 8, is given such
that 16,-8,] < ;(—,‘,9&3, where p = sin(6),) is the initial suc-
cess probability of A (i.e., the probability of outputting z
such that x(z) = 1), and 0 < 6, < n/2, then there exists a
quantum algorithm that finds a good solution with prob-
ability at least (1 - ;‘;) using a number of applications of
Aand R that is in 0(-#).

Proof Sketch. In [8], the algorithm by de-randomization
idea is presented, which replaces the given algorithm
A with a new algorithm A’ with success probability p’
slightly smaller than p. The algorithm adjusts the success
probability p’ and the number of applications of A’ and
x (in precise, x’) suitably, to boost the success probability
to almost equal to 1. It can be done as follows. At first,
we compute the following four values: m* = [-;-(5’5’: -1,
6 = o2, p* = sin*(8}), and p = sin’(8,). m" is used
as the number of the applications of A’ and y’. The other
values are used in making the new algorithm A’: We ro-

tate the last initialized qubit |0) into ‘[’-’;- 0y + ,/1 - %ll)
and regard the good state that has |0) in the last qubit as
a new good state. This means that we have a new algo-
rithm A’ with success probability p’ = p%' = sin%(g,).
After applying Q' = —~A'S{A'”'S,, to the state A'|0) for
m* times, we have a good state 7%,— sin(2m* + 1)8,)[¥})
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like Equation (1), and sin((2m" + 1)) > ,/ 1- 1’5 can be
shown in this case.

3.2 Amplitude estimation

Brassard et al. also showed amplitude estimation in [3].
We rewrite it in terms of phase estimation for our conve-
nience.

Theorem 2 Let A,x, and 6, be as in Lemma 1. There
exists a quantum algorithm Est_Phase(A, x, M) that out-
puts 8, such that |6, — bl < i+ With probability at least
f;. It uses exactly M invocations of A and x, respectively.
If6, = 0 then 8, = O with certainty, and if 8, = § and M
is even, then 8, = § with certainty.

3.3 Robust quantum search

Grover showed a quantum search algorithm that finds a
solution in an N-element space [6]. It uses O(VN) queries
to a perfect oracle Oy to check whether the i-th element
is a solution or not. Hgyer et al. showed a robust quan-
tum search algorithm in [7]. It uses a biased oracle
instead of a perfect oracle to access the elements, and it
finds a solution by using O(VN) queries to the biased ora-
cle, which has no overheads for error-correction as stated
in the following theorem formally.

Theorem 3 There exists a quantum algorithm that out-
puts x such that f(x) = 1, if any, with probability at least
2/3 using O(NN) queries to the given oracle 0} 5,

4 Upper bound with known &

In this section, we present a quantum algorithm to sim-
ulate a single query to an oracle 0}’ 6 by O(1/g) queries
to a given oracle 0% with known &. At the end of this
section a quantum n{gorithm for searching problems with
biased oracles is also presented and it can be seen that the
algorithm is optimal.

Before presenting the simulating algorithm in Theo-
rem 6, we show that we can replace the given oracle 0}
with a new oracle 0%. The next lemma describes the ora-

cle 0*} and how to construct it from 0.

Lemma 4 There exists a quantum oracle 0} that consists
of one O%; and one 0% such that for any x € [N]

O51x,0m,0) = (=1 926,jx,0",0) + Ix,¥x),  (2)



where |x,y,) is orthogonal to |x,0™,0) and its norm is
V1 -4g2

Proof We can show the construction of 0‘} in a similar
way in Lemma 1 in [8]. m}

Now, we describe our approach to simulate an oracle
0}’ 6 by the given oracle 0. According to [8], if the query
register |x) is not in a superposition, phase flip oracles can
be simulated with sufficiently large probability: by us-
ing amplitude estimation through 0%, we can estimate the
value of &,, then by using the estimated value and apply-
ing amplitude amplification to the state in Equation (2),
we can obtain the state (—1)’™®|x, 0™, 0) with high prob-
ability. In Theorem 6, we essentially simulate the phase
flip oracle by using the above algorithm in a superposition
of |x). Note that we convert the phase flip oracle into the
bit flip version in the theorem.

We will present the simulating algorithm after the fol-
lowing lemma, which shows that amplitude estimation
can work in quantum parallelism. Est_Phase in Theo-
rem 2 is straightforwardly extended to Par_Est_Phase in
Lemma 5. We omit the proof of Lemma 5.

Lemma 5 Let y : Z — {0,1} be any Boolean function,
and let O be any quantum oracle that uses no measure-
ments such that

OIDI0) = [X)0:0) = [)¥;) = (P + ¥

where a state |¥,) is divided into a good state |¥1) and a
bad state [¥°) by x. Let sin®(6,) = (YL|¥1) be the success
probability of 0,|0) where 0 < 6x < n/2. There exists a
quantum algorithm Par_E st_Phase(O, x, M) that changes
states as follows:

M-1
I0)0) — [x)@ ), & lo M)

=0

. 8
where Z |6, ,-I2 > ) for any x, and |vy;) and
j:lex" x,,lsﬁ
[vs.;) are mutually orthonormal vectors for any i, j. It uses
O and its inverse for O(M) times.

Now, we show a whole algorithm to construct an oracle
O}/ ¢ from 0% by O(1/¢) queries with known &.

Theorem 6 There exists a quantum albgon'thm that sim-
ulates a single query to an oracle Olf’ by using O(1/e)

queries to OF if we know &.
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Proof

We will show a quantum algorithm that changes states
as follows:

IXONOY +— XN @xlwF(x)) + Balw N FCIN),

where |a,f2 > 2/3 for any x, using O(1/) queries to 0%.
The algorithm performs amplitude amplification follow-
ing amplitude estimation in a superposition of |x).

At first, we use amplitude estimation in parallel to es-
timate &, or to know how many times the following am-
plitude amplification procedures should be repeated. Let
sin@ = 2¢ and sind, = 2, such that 0 < 6,6, < n/2.
Note that @(f) = O(g) since sinf < § < 7sind when
0 <6 < n/2. Letalso My = l’m';ifl and y be
a Boolean function that divides a state in Equation (2)
into a good state (—=1®2¢,|0™*!) and a bad state |y,).
The function y checks only whether the state is [0™*!) or
not; therefore, it is implemented easily. By Lemma §,
Par.Est.Phase((')}x,Ml) maps

M-1
1DI0Y0)10) > 12)® D" 6,10z, )NB, IO,
=0

where Z

18— x.jls ﬁolx—)
vx,;) are mutually orthonormal vectors for any i, j. This
state has the good estimations of 6y in the third register
with high probability. The fourth register |0) remains large
enough to perform the following steps.

The remaining steps basically perform amplitude am-
plification by using the estimated values 8, ;, which can
realize a phase (lip oracle. Note that in the following steps
a pair of Hadmard transformations are used to convert the
phase flip oracle into our targeted oracle.

Based on the de-randomization idea as in [8], we cal-

culate m}, ; = B (-zt - 1)], 6= 4,,,-"7, py; = sinz(a;'j)

and py,; = sin?(8y) in the superposition, and apply an
Hadmard transformation to the last qubit. Thus we have

165,17 2 % for any x, and |vy,;) and

M-1
""(; 61,1, MBx,ms, D6 NP3 NPy

1
1 —_ +
eo™hioye G 10) |1))).

Let R : [0) — [ 5:4/0) + 41 = 24/1) be a rotation and let
O = 0% ® R be a new oracle. We apply O followed by



Awy(Q), where M, = [4(2E +1)] and Q = -0 ®
S0)O™'(I® S, ); S and S, are defined appropriately. Ay,
is controlled by the register Im7 ), and Q is applied to
the registers |x) and |0™*1)|0) if the last qubit is {1). Let
O, denote the unitary operator such that O]x)|0”*1)|0) =
[x)O,]0™*1)|0). Then we have the state (From here, we
write only the last three registers.)
Ml
> v (Io™1)1010y + Q04 (l0™HiY) 1)), (3)
= V2
where Q, = -0,800;'S, and m,; = min(m , My) for
any x, j. We will show that the phase flip oracle is sim-
ulated if the third register |8,,;) has the good estimation

of 8, and the last register has |1). Equation (3) can be
rewritten as

M-1 :

é i
2 (07,0000 + (-1 Dy 071,00 + ko p) 1)
=0
where |, ;) is orthogonal to |0™*!,0) and its norm is
,/1 — % ;- Suppose that the third register has [8,,;) such
that 6, — 8,1 < 5%7;. It can be seen that m,; < M, if

6, — 8,51 < Wfil_)' Therefore, Q; is applied for m} ; times,
i.e., the number specified by the fourth register. Like the

analysis of Lemma 2 in [8], it is shown that y, ; > ,/1 -1

Finally, applying an Hadmard transformation to the last
qubit again, we have the state

M-1 (5,1
o —2'—((1 + (=1 @y, DI0™2)(0)
i=0

+ (1= (=1)Y/®y, H0™2)1) + g, ;)(10) - |1>)).

If we measure the last qubit, we have |f(x)) with proba-

bility
2
S ||t v, Sxiy1 =73,
o 2 2
1 , 2
= 5 Z |6x.j| (1 +7x,j) 2 3.
filgx'ax.jlsm%)

Thus, the final quantum statc can bc rewritten as
IxXexlwo ) f(x)) + Belw} ) f(x)), where lax[? 2 2/3 for any

X.
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The query complexity of this algorithm is the cost of
amplitude estimation M; and amplitude amplification M,
thus a total number of queries is O(3) = O(%). Therefore,
we can simulate a single query to 0}/ 6 using O( -}) queries
to OF. o

From Theorem 3 and Theorem 6 we can derive the fol-
lowing corollary directly.

Corollary 7 There exists a quantum algorithm which
outputs x such that f(x) = 1, if any, with probability at
least 2/3 using O( @) queries to a given oracle 0} ifwe
know €. Moreover, if we know &yin, the algorithm uses

(S} (g) queries.
For searching problems, lower bound Q (g) is proved by
Theorem 6 in [8] based on Ambainis’ method [2]. Thus,
we can see the above matching bound when & = gpjy.

S Upper bound without knowing

In Section 4, we described algorithms by using a given
oracle 0% when we know &. In this section, we assume
that there is no prior knowledge of &.

Our overall approach is to estimate & (in precise &pin)
with appropriate accuracy in advance, which then can be
used in the simulating algorithm in Theorem 6. In the
following, we first describe an overview of our strategy to
estimate &,,,, rather informally, followed by rigorous and
detailed descriptions.

First, let us consider estimating &, in the same way
as in Theorem 6 in quantum parallelism. Then, let M*
denote the number of required oracle calls to achieve a
good estimation of &, for any x. (Here, good means ac-
curate enough to perform effective amplitude amplifica-
tion in Theorem 6.) Note that M* € Q(1/€mia), and if we
know the value of &, we can set @(1/g) as M*. However,
now & is unknown, we estimate M* as follows. First we
will construct an algorithm, Aenougn, Which receives an
input M and decides whether M is the number of oracle
calls to obtain a good estimation of &,. More precisely,
Aenough uses O(M) queries and returns 0 if the input M is
large enough to estimate &,, otherwise it returns 1 with a
more than constant probability, say, 9/10. Then, by using
Aenough in a superposition of |x) as in Lemma 8, we can
obtain the state 3, [x)®(@,|u )1} + Blu))0)). When M is
small, the condition Jx; |a,/2 > 9/10 holds, which means



there exists x such that the estimation of &, may be bad.
On the other hand, when M is sufficiently large, the con-
dition Vx; |e,|> < 1/10 holds, which means the estimation
is good for any x. Our remaining essential task, then, is
to know an input value of M at the verge of the above two
cases. Note that the value is @(1/&,,,), which can be used
as M*.

Next, we consider an algorithm, Acheck, Which can dis-
tinguish the above two cases with O(T) oracle queries
with a constant probability. Then, M* can be estimated by
O(T M* log log M*) queries by the following search tech-
nique and majority voting: We can find M* by trying
Rcneck along with exponentially increasing the input value
M until A, succeeds. Note that a loglog M* factor is
needed to boost the success probability of A, to close
to 1. It should be noted that we cannot use robust quan-
tum search algorithm [7] as HAcheck, since there may exist
x such that ja, > ~ 1/2, which cannot be dealt with by
their algorithm. Instead, in Lemma 9, we will describe
the algorithm Agp.cr, Which can distinguish the above
two cases by using amplitude estimation querying for
O(VNlog N) times. Then, the whole algorithm requires
O(TM'*loglog M*) = O ([”—ilm'!ﬁ loglog ;—_};) queries. In
Lemma 8, we present an algorithm Par_EstZero that acts
as Aenougn in a superposition of |x), and in Lemma 9, we
describe the algorithm Chk_Amp_Dn as Agpgcr. Finally,
the whole algorithm to estimate M* is presented in Theo-
rem 10.

Lemma 8 Let O be any quantum algorithm that uses no
measurements such that O|x)|0) = |X)|¥,) = [x)('¥L) +
¥9). Let x : Z — (0,1} be a Boolean function
that divides a state |¥,) into a good state |¥}) and a
bad state ¥0) such that sin®(6,) = (Y1|¥1) for any x
(0 < 8, < nf2). There exists a quantum algorithm
Par_EstZero(0, x, M) that changes states as follows:

x)0)I0) = 1x) ® (@xlu:)1) + B:lu0)),

sin2(Méy)
where |a,? = ———=>= for any x. It uses O and its
sl = ey
inverse for O(M) times.

The algorithm Par_EstZero can be implemented like
Par_Est_Phase in Lemma 5. We omit details.

Lemma9 Let O be any quantum oracle such that
OI)0)0) = |xMa w1} + Bxluc)0)). There exists a
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quantum algorithm Chk_Amp_Dn(O) that outputs b €
{0, 1} such that

1 if Anlesl 2 &
b=40 if Vxlonl < g5

don't care otherwise,

with probability at least 8/r% using O(VN log N) queries
to O.

Proof Sketch. Using O(log N) applications of O and ma-
jority voting, we have a new oracle & such that

O'10)10)/0) = |x) e wi)1) + BLlu )0},

where o2 2 1 - oy if leyl* 2 &, and |o}? < oy if
loy? < J5. Est_Phase can distinguish the two cases, i.e.,
3x;la? 2 & and Vx;les? < & by O(VN) queries to O’
with high probability.

Theorem 10 Given a quantum biased oracle O%, there
exists a quantum algorithm Est_Eps_Min(O}) that out-
puts Bnin SUCh that Epin/ 57 < Bin < Emin With probabil-
ity at least 2/3. The query complexity of the algorithm is
expected to be O (—‘/’%“’"ﬂ loglog E'l..;)

Proof Let sin(6;) = 2&, and sin(Gpn) = 26mp such
that 0 < 6y,6mn < 5. Let x also be a Boolean
function that divides the state in Equation (2) into a
good state (—~1)/®2¢,|0™*!) and a bad state [/,). Thus
Par_Est.Zero(é;,X, M) in Lemma 8 makes the state

|%) ® (@zlux)|1) + Byl )I0)) such that || = %ﬁmﬁ. As
stated below, if M € o(1/6,), then |a,* = 9/10. We can
use Chk_Amp_Dn to check whether there exists x such
that |o,2 > 9/10. Based on these facts, we present the
whole algorithm Est_E ps.Min(O}).

Algorithm( Est_Eps.Min(O}) )
1. Start with £ = 0.
2. Increase { by 1.

3. Run Chk_Amp_Dn(Par.Est Zero(0%, x, 2ty  for
O(log £) times and use majority voting. If “1” is
output as the result of the majority voting, then
return to Step 2.

4. Output & = 4 sin (-5-127)



Now, we will show that the algorithm almost keeps run-
ning until £ > llogz 3-(;1,"-‘:] We assume ¢ < llogz ﬁj
Under this assumption, a proposition 3x; |a,[? > -19—0 holds
since the equation &,,, = min, &, guarantees that there
exists some x such that 8, = 6, and |a,* = %(:q%"—) >

cos’(}) > & when 2’ < g-. Therefore, a single

Chk.Amp_Dn run returns “1” with probability at least
8/m%. By O(log¢) repetitions and majority voting, the
probability that we obtain “1” increases to at least 1 - ;.
Consequently, the overall probability that we return from
Step 3 to Step 2 for any ¢ such that £ < [logz s_ai..‘J is
log; 5
at least HL,z F..I] (1 - 57‘;) > 2. This inequality can be
obtained by considering an infinite product expansion of
sin(x), i.e., sin(x) = x[1;; (1 - ﬁ) at x = x/V5. Thus
the algorithm keeps running until £ > |_log2 g,,‘:] i.e., out-
puts &pin such that Enix = 4 sin (35) < 4 sin(Gmin) = Emim,
with probability at least 2/3.

We can also show that the algorithm almost stops in

: in?(M6) x

t< [logziﬁ‘]. Since -'M%rl@ < Gug When0 <0 < g
lax? = %ﬂ%{% S 7 for any x if 2 > . Therefore,
in Step 3, “0” is returned with probability at least 8 /72
when £ > [logz ﬂ-] The algorithm, thus, outputs &, =
%8:21(3-127) 2 %sin('—fﬂ.‘;) > %m with probability at least
8/nl. .

Let ¢ satisfy |_log2 5—};] <?< |-log2 527_:"7]. If the algo-
rithm runs until € = &, its query complexity is

4
Z 02‘VNlog Nlog¢) = 02’ VNlog Nlog )
{=1 .

_ 0(‘/1716 19gN

m

log log EL) ,
min

since 2’ € ©® (3_1;_-) = ®(—1-) , o

Emin

6 Conclusion

We have shown an algorithm to simulate a single query to
an oracle 0}/ 6 by using O(1/€) queries to the given oracle
Of when £ is known. Since this algorithm is indepen-
dent of problems, overhead factors O(1/€?) by majority
can be replaced with new factors O(1/€) in general. As
a result, we can obtain an optimal algorithm for search-
ing problems in the quantum biased setting. We have also
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considered the situation in which no knowledge about the
oracle’s bias is given. Namely, we have presented a non-
trivial algorithm to estimate &p;,-

Future works. When ¢ is not given, there remains a
gap between the upper bound and the lower bound for
searching problems. To match their bounds is a next im-
portant topic. The algorithm to estimate &mi» Scems to
have room for improvements.

It is also interesting to find other matching bounds
for quantum biased oracles. An improvement for upper
bounds is one approach to do so. For example, it is chal-
lenging to find algorithms using a biased oracle 0}’ ¢ with-
out O(log T) overhead factor. The other is an improve-
ment for lower bounds. Since it is likely impossible to
improve the general lower bound Q(T /€), we should con-
sider lowcr bounds for specific problems.
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