goooboooobgon
1489 0 2006 O 174-180

Single Vehicle Scheduling Problem for Processing a Maximum
Benefit Subset of Jobs on a Line

Takaharu Ohnishi (K#EME}S), Hiroshi Nagamochi (%k#{Z)
Department of Applied Mathematics and Physics
Graduate School of Informatics, Kyoto University
Sakyo, Kyoto 606-8501, Japan

Abstract
In this paper, we study a problem of finding a scheduling for a single vehicle to process jobs located on a single line, where

each job has a handling time, a time window (2 pair of a release time and a deadline), and a benefit. The objective is to

maximize the total benefit from jobs processed by the vehicle. We present an O(yn(3+#)) time 2-approximation algorithm

for the scheduling problem, where n is the number of jobs, v is the ratio of the maximum length of a time window to

the minimum handling time, and p is the maximum number of jobs that can be processed during the time period after

processing a job j and before visiting the job j again by the deadline of j.

1 Introduction

Vehicle Routing Scheduling Problem (VSP) has
been studied as one of the most important schedul-
ing problems [3, 4]. We are given a set J of n jobs
(such as items to be picked up or facilities to be
inspected). Each job is characterized by a release
time, a handling time, a deadline and a benefit. For
a job, the time interval between its release time and
deadline may be called its time window. A handling
time means the time required for processing its job,
where no interruption is allowed during a process
of any job. The problem asks to find a schedule
which minimizes (or maximizes) an objective func-
tion such as the completion time of processing all
jobs, the maximum lateness from deadlines, and so
on. The tour version of the VSP requires each ve-
hicle to return to its initial position at the end of a
schedule while the path version allows each vehicle
to stay at any position at the end of a schedule.

We consider a single vehicle scheduling problem
such that all jobs are located on a single line and
each job has a handling time, a time window, and
a benefit. We call this problem VSP-PATH (resp.,
MAX-VSP-PATH) if the objective is to minimize
the makespan (resp., to maximize the total ben-
efit from jobs processed by the vehicle). These
problems have important applications such as ship
scheduling, where a ship picks up cargoes along a
shoreline [9], and truck scheduling, where a truck

Table 1: Results on special cases of the VSP-
PATH.

174

time window (r(j): release time, d(j): deadline)
arbitrary r(§) < d(G)| _ r(j) =0 d(j) = oo
32
f; S’ strongly NP-hard open NP-hard {10]
El5 (path version) (path version)
5|2 15
g8
|
gle o(n?) 9]
£ jl‘\ strongly NP-hard om?) [10] (path version)
5| (path version) . O(n) 9]
= [10) (path version) | (. .+ version)

delivers goods to customers along a highway [6].
Cargoes along a shoreline or customers along a
highway can be regarded as jobs on a straight line.
Tables 1 and 2 show a summary of the known re-
sults on several special cases of the VSP-PATH and
the MAX-VSP-PATH, respectively.

In this paper, we consider the path version of
the MAX-VSP-PATH with general time windows,
nonzero handling times, and general benefits. We
denote by 4 the ratio of the maximum length of a
time window to the minimum handling time and
by p the maximum number of jobs that can be
processed during the time period after processing

Table 2: Results on speciai cases of the MAX.-VSP-
PATH.

time window (r(j): release time, d(j): deadline)
arbitrary 7(7) < d(j) r(j) = d(j)
- strongly NP-hard weakly Nf)’-hard
=0
A ..
R 2-approximable open
;_E“r Z| in O(yn®*+?) time in O(yn?) time
g (p=0)
£[3
® =
= E’ strongly NP-hard (5] open
-
2z
8
° strongly NP-hard [10]
[et e I S LI A LELLEEL IS O(nlo 1
ol .. Oflog Li-approximetle 3 (gl
|8-approximable (d(7) — r(4): uniform) [2] (unit benefit)

a job j and before visiting the job j again by the
deadline of j. The results obtained in this paper
are as follows. We first prove that the MAX-VSP-
PATH with nonzero handling times is weakly NP-
complete even if no two jobs j and j' are located
at close positions on the line in the sense that j
cannot be visited by the vehicle by its deadline
once j and j' are processed in this order. Such
an instance is called sparse, where p of a sparse in-
stance is 0. Next, we present an O(yn(+#)) time 2-
approximation algorithm. Moreover, we present an
O(yn?) time 2-approximation algorithm for sparse
instances. To derive these results, we first con-
vert the MAX-VSP-PATH into a problem of find-
ing a monotone curve in the z,y-plane, where a
time window and a schedule for a vehicle are repre-
sented as a line segment of gradient 1 and a mono-
tone curve, respectively. Processing a job j is rep-
resented as a curve in the z, y-plane that intersects
the segment of the time window of j. To find a
monotone curve that intersects 8 maximum benefit
set of line segments, we construct a digraph, called
a chart graph, such that each directed path in the
digraph is a monotone curve. We prove that there
exists a digraph with size O(yn?) that contains a
2-approximate solution.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the MAX-VSP-PATH
and reduces this to a problem of finding a mono-
tone curve that intersects a maximum benefit set
of segments in the z,y-plane. Section 3 defines a
chart graph, in order to find an approximate solu-
tion to the problem of finding an optimal mono-
tone curve. Section 4 proves that there exists a
chart graph that has a 2-approximate monotone
curve. Section 5 proposes an approximation algo-

175

rithm by using dynamic programming. Section 6
makes some concluding remarks.

2 Problem Description

In this section, we first formulate the MAX-
VSP-PATH, a problem of finding a single vehicle
scheduling to process jobs so as to maximize the
total benefit from the processed jobs. Let R and
R, be the sets of reals and nonnegative reals, re-
spectively. An instance I = (J,r,d, h,b,l) of the
MAX-VSP-PATH consists of a set J of n jobs, &
release time r(j) € Ry, a deadline d(j) € Ry, a
handling time h(j) € R, a benefit b(j) € Ry, and
a position I(j) € R for each job j € J, where time
interval [r(7), d()] is called the time window of job
JjeJ.

We are given a single vehicle which is initially
situated at position 0 and time 0. A job j € J can
be processed if it is visited by the vehicle during the
time window [r(j),d(j)], and cannot be processed
otherwise. It takes h(j) time to finish a process of
a job j. The travel time for the vehicle to travel
from a job j € J to a job j' € J is by |I(§) —
1(j")]. Moreover, the vehicle gets benefit b(j) if it
processes job j. A schedule o for a subset J' C J
of jobs is a bijection o : {1,...,|J'|} — J', and
is called feasible if all jobs can be processed by a
single vehicle which starts from position 0 at time 0
and visits J in the order of o(1),0(2),...,0(|J|).
In other words, a schedule o for J' C J is feasible
if it admits arrival times t(o(i)) at jobs o(i), i =
1,...,]J7}, such that

t(o(3) € [r(o(2)),d(o(3)), and
Ho(@) 2 Holi~D) + h(oli~1))
+ i(a(i=1)) — (o)),

where t(0(0)) = h(c(0)) = 0. The objective of this
problem is to find a feasible schedule o for a subset
J' € J with the maximum benefit ;e s b(j).

Throughout the paper, we assume that J # 0
and

h(3) >0, b(7) > 0, r(j) 2 i(j)] for all j € J. (1)

Note that the vehicle starting from position 0 at
time 0 cannot reach position () earlier than time
[2(7)|. Let hmin = minjes h(j). Define

() — (i
y= lmnjeJ%ifj (]))} +1. (2)
Moreover, let p be the maximum number of jobs

that can be processed during the time period af-
ter processing a job j before visiting the job j by

deadline of j. We call an instance I sparse if p = 0,
i.e., no two jobs j and j’ are located at close po-
sitions on the line in the sense that j cannot be
visited by the vehicle by its deadline once j and 5’
are processed in this order.

2.1 NP-hardness of the MAX-VSP-
PATH

In this section, we prove the NP-hardness of spe-
cial cases of the MAX-VSP-PATH.

Theorem 2.1 The MAX-VSP-PATH is strongly
NP-hard even if all jobs have the same length of
time windows and the same benefit.

PROOF: We can show a polynomial reduction from
the 3-PARTITION (5] to the problem (the detail is
omitted due to space limitation). [

Theorem 2.2 The MAX-VSP-PATH is weakly
NP-hard even for sparse instances.

PROOF: We can show a polynomial reduction from
the Knapsack problem [5] to the problem (the de-
tail is omitted due to space limitation). 2

2.2 Monotone Curves in the Plane

‘We represent a problem instance I of the MAX-
VSP-PATH in the z,y-plane as follows. We con-
sider the z,y-plane RZ with nonnegative coordi-
nates, where the origin of the z, y-plane, denoted
by 3o, represents position 0 at time 0. A pair of po-
sition [on the line and time ¢t is mapped to point
((t+1)/v2,(t - 1)/V2) in the z,y-plane. For each
job j € J, define points

a(g) = ((r(4) + 1))/ V2 (r(G) = 1))/ V2),

and
a'(4) = ((d(5) + 1(5))/V2, () - 1(5))/V?2)

and a line segment 7(j) = [a(j), ¢/ (j)] of gradient 1
in the z, y-plane. A pair of time window [r(5), d(5))
and position I(5) is mapped to 7(j) in the z, y-plane
(see Fig. 1), where we may also denote by 7(j) the
set of points on the line segment. For each j € J,
let h; denote the vector (h(j)/v2,h(5)/V2) and
let h* denote the vector (Rmin/ V2, hmin/V2) in the
z,y-plane.
For a point ¢ = (cz,¢y) € RZ, let

R(c)={c = (c:ImC;;) lex <y oy < c;;}»

176

DO 1), U o' (5)

a(j)

‘ M
EN) '(.Z'E*"!.z'l d(z‘2+zgz')
2

Figure 1: Time window 7(j) = [a(j), a’(j)] of job j
in the x,y-coordinate.

L'(e) ={(czsey) | &z S 3},
L*(c) = {(cascy) | ey < ¢}

Note that L"(c) (resp., L*%(c)) denotes the half line
starting from point ¢ in the rightward (resp., up-
ward) direction. We define a transitive relation <
by

cXdedeR(c for ¢ eR:.

Let II(sp) be the set of all monotone curves start-
ing from the origin sy in the z,y-plane. We say
that a curve m € II(sg) visits 7(j) if # contains
a line segment # of gradient 1 and of length h(j)
that intersects 7(j) (see Fig. 2), where 7 is not nec-
essarily contained in 7(j) completely. Although a
monotone curve 7 € II(sp) may have more than
one such line segment 7, we say that m collects
7(j) and gets benefit b(j) when it visits 7(j) for
the first time, and denote by g.(j) and fr(j) the
beginning point and finishing point of such 7, i.e.,
7 = [gn(4), fx(4)]- Note that, for the same j, 7(j)
is not collected more than once.

We easily obtain the following observation.

Lemma 2.8 Let J' be a subset of jobs. There is
a monotone curve © € II(sg) that visits segments
7(j5), 5 € J' if and only if there is a feasible schedule
o’ that can process all jobs in J'. [

By this lemma, the problem is now to find a
monotone curve that collects a maximum benefit
set of segments 7(j).

3 Chart Graph .

In this section, we define an edge-weighted
acyclic digraph, called a chart graph, such that

Figure 2: A monotone curve 7 visiting 7(j).

each directed path in a chart graph corresponds
to a monotone curve p € I1(sp). We assume that a
given instance I = (J,r,d, h,b,l) is represented as
a set of segments 7(j) for all j € J in the z, y-plane.

A chart graph is a digraph G = (V, E) such that
its vertex set V is a finite subset of R(sg) with
8p € V and its edge set E is a set of some ordered
pairs (u,v) with u,v € V and v € R(u) — {u}.

For each job j, let £ = {(q,9+ R;) | ¢ € 7(4)},
which we regard as a set of edges from point ¢ to
g+ hj for all g € 7(j). Edge set E of a chart graph
G = (V, E) is partitioned into two subsets

E=EOU£j, E=E—U£j
jeJ jedJ

(see Fig. 3). Edge set E of a chart graph G = (V, E)
may be denoted by E = EU E. We easily see that
any chart graph is acyclic.

Since each edge (¢,¢') € E satisfies ¢ € R(g),
any directed path starting from the origin sg in G
is a monotone curve starting from the origin so. Let
IIg(so) denote the set of all directed path starting
from the origin sg in G, where we may treat a path
p € Ilg(s0) as a monotone curve in the z,y-plane,
i.e., IIg(so) € II(sp). A directed path in G visits
segment 7(j) by using an edge (g,9 + h;) € E.

Let x(7) denote the total benefit of the segments
collected by a monotone curve 7 € II(sp). Let
v(m) denote the number of segments collected by a
monotone curve w € II(sp). Let n* denote a curve
that collects a maximum benefit set of segments of
time windows over all monotone curves in II(sp).
Such a curve 7* is called an optimal curve. Let
p* denote a directed path in IIg(sp) that collects a
maximum benefit set of segments over all directed
paths in G. Such a path p* is called an optimal path
in IIg(so). Note that (p*) > 0 by assumption (1)

177

Y
e : verticesin V
e ~so : edges in E
— : edgesin E
: ' z
S0

Figure 3: Illustration for a chart graph G =
(V,E=FEUE).

and J # 0. Define

_ k(")

r(p*)
To find a path Ilg(so) that visits many segments,
we assign weight O for each edge e € E and weight
b(j) for each edge e € ENEj, j € J, and we define

the weight w(p) of a directed path p as the total
weight of edges in p. Define

a(G@)

B(G) =max{t:—((g | p € Ia(30), &(p) > 0}.

By definition of v, we easily observe the following
property.

Lemma 3.1 Any directed path in G wvisits the
same segment of a time window at most v times
(hence B(G) <). 1

The approximation ratio of a maximum weight
path to an optimal curve is bounded as follows.

Theorem 3.2 Let p € llg(so) denote a mazimum
weight directed path in a chart graph G, and n* €
II(so) be an optimal curve. Then wx(n*)/k(p) <
a(G)B(G)-

PROOF: Let p* € llg(so) be an optimal path.
Since p is a maximum weight path, we have w(p) >
w(p*), and since w(p*) > k(p*), we have w(p) >
k(p*). On the other hand, from definition of a(G),
we have x(p*) = s(7*)/a(G). Hence, we have
w(p) > k(7r*)/a(G). Moreover, from definition of
B(G), we have k() > w(p)/B(G). Therefore, it
holds x(p) > x(m*)/(G)B(G))- 1

4 - 2-Approximate Path

This section gives how to construct from a given
instance I a chart graph G with a moderate size
that contains a 2-approximate path p € g(so) for
an optimal curve 7* € II(sg). Formally we will
prove the next theorem.

Theorem 4.1 Given an instance I, there exists a
chart graph G = (V, E) with |V| = O(yn), |E| =
O(yn?) and o(G) < 2. 1

Given an instance I, a chart graph in Theo-
rem 4.1 can be constructed as follows. For each
JE€J, let

0(5) = [(d(F) — r(4))/hmin),
a() = a(f) + ik, i=0,1,...,60),
co(5)+1(3) = a'(9)-

Note that co(j) = a(j). For each j € J, let Q; =
{ct(J) |1’= 0,1,...,6(j) + 1}, QS = {q+hj g€
Qj} Let @ = U;e;Q; and Q' = U, Q;- For a
point z € R, let J(2) = {j € J | 7(j) N R(2) #
0}. Define the vertex and edge sets of chart graph
Gy = (W1, E1) by

‘G:{SO}UQUQ,a E]'—‘_E—UE,
where

E=J{(ga+h)a€Qs},

jeJ

E=J{(soaiV U {@eml@ |

jeJ i'€Jd(q)
g€ Q,m=min{i | a(j') = ¢}}.

Each edge (¢,q + h;) € E is weighted by b(j) and
each edge in Eis weighted by 0.

Figure 4 shows how an edge in E outgoing from
a vertex ¢ € @ on a segment 7(j) is constructed.
In this example, E hasno edges outgoing from g to
any point on segment 7(j5) since 7(j5) N R(q) = 0.
For J(q) = {j2,J3,Ja} with m = min{i | ci(j2) =
g}, 0 = min{i | ¢(js) = g}, and m' = min{i |
ci(js) = g}, three edges (g, cm(72)), (4, co(fs)) and
(g,ems(ja)) € E will be constructed.

We first consider the size of chart graph G;.

Lemma 4.2 For o chart graph Gi = (W4, E)),
[Vi| = ©(yn) and |E1| = ©(yn?).

PROOF: Since |Q;| = 1Q;] < 6() + 2
j € J, and mex;es0(j) = [maxjes(d(s) -

178

L*(q)

cm~1(Ja)

em(J2)

ee / em-1(J2) @
7(51)

7(j2)
7(js)

Figure 4: Tlustration of edges (g, cm(j)) € E out-
going from a point ¢ € Q' to a point ¢, (j) on a
segment 7(5), j € J(g).

r(j))/ minges h(j)] = 7 — 1, we have Q| = |@'] =
L;es(6(4) + 2) = O(ny). From this, we have
V1] = O(yn) and |E| = |Q'| = O(yn). Since G4
has at most one edge in E outgoing from each point
g€ Q toa point on a segment 7(j), Gy has at
most n edges in E outgoing from each ¢ € Q'.
Hence, |E| = O(n|Q’]) = O(yn?). Therefore,
|E1| = |E| + |E| = O(yn?).

We can construct an instance I such that chart
graph G; has |Vj| = §Q(yn) vertices and |E,| =
Q(yn?) edges (the detail is omitted due to space
limitation). 1

We next prove that a(G;) < 2.

Lemma 4.3 Let G, be a chart graph constructed
from an instance I in the above manner. For an ar-
bitrary curve 7 € I1(s¢), G1 has a path p € Ia(so)
such that k(p) > k(m)/2.

PRrOOF: Given an arbitrary curve = € II(sp), we
number the segments collected by 7 so that seg-
ment 7(z) denotes the ith segment collected by =.

We proceed by an induction on i. We assume
that, for the finishing point fr(7), G; has a path
p € Ig(so) such that

(Al) p reaches a point s’ € Q' with fr(i) > &',

(A2) s(p) > 1 T4, B(R).

Assumptions (Al) and (A2) hold for ¢ = 1 as
follows. Since G; has two edges (so,co(1)) € E
and (co(1),co(1) + h1) € E, a path consisting of
these two edges collects 7(1) and reaches point
co(1) + hy after collecting 7(1). Since this path

L(s")

179

L¥(s')

Figure 5: Case 2-(a) in the proof of Lemma 4.3.

starts to collect 7(1) from its endpoint co(1), we
have fr(1) > co(1)+hq. Moreover, co(1)+h; € Q.

We now assume that (A1) and (A2) hold for some
i < v(r), and extend the endpoint s’ of path p in
G1 to another point s” € Q'. Since 7 collects all
segments in {7(k) | i +1 < k < v(n)}, we have
R(fx(i))N7(k) # @ for each i + 1 < k < v(7), and
since fr(i) = s, we have R(s') N 7(k) # 0.

Case 1 v(7) = i+ 1. Since s’ € Q' and
R(s")N7(i+1) # 0, Gy has an edge (s',cm(i+1)) €
E where m = min{i | ¢;(+ 1) = §'}. Moreover,
G has an edge (cm(i +1),cm(i + 1) + hiy1) € E.
The path p’ € IIg(so) obtained from p by adding
these two edges collects 7(¢ + 1). By induction hy-
pothesis, we have k(p') > 1 3" b(k), proving the
lemma.

Case 2 y(m) 2 i+2. Leti € {i+1,i+2} be
such that b(i") = max{b(i + 1),b(i + 2)}.

(a) 7(i") C R(s') (see Fig. 5). Since 7 collects
('), we have fr(i+2) > co(i') +hyr. Since ¢’ € Q,
G has two edges (s, ¢p(i')) € E and (co(?'), co(i')+
hi) € E. Then the path p' € Tlg(so) obtained
from p by adding these two edges reaches point
8" = co(i'} + his after collecting 7(i’). Hence the
resulting path p’ satisfies

it+2

K(B') 2 5 30 b(E) +5() 2 5 3 b(k),
k=1 k=1

implying that (A2) holds for i+2. Moreover, points
s" = ¢o(i')+hy € Q' and fr(i+2) satisfy condition
(A1) for + 2.

(b) 7(i') ¢ R(s") (see Fig. 6). In this case, seg-
ment 7(i') intersects L"(s') or L*(s') since R(s') N
7(i') # @; We assume without loss of general-
ity that 7(¢’) intersects L"(s’) at a point z. Let
m = min{i | ¢;(#) &= §'}. Since G; has two edges

Figure 6: Case 2-(b) in the proof of Lemma 4.3.

(s',em(i)) € E and (cm ('), cm(¥') + hy) € E, the
path p’ € IIg(so) obtained from p by adding these
two edges reaches point s” = ¢, (i') + hyir after col-
lecting 7(¢'). Hence the resulting path p' satisfies
K(F) 2 § ey 5(k) + (") 2 T2 £(K), imply-
ing that (A2) holds for i + 2. Since z is an in-
tersection point of segment 7(i’) with L"(s’) and
fx(2) = &', we have fr(i+2) = z+hiy1+hig2. On
the other hand, since 2 + Amin 2= cm(?’), we have
2+ hmin+hir = cm (i) + hi. Hence, we finally have
fx(i +2) = cm (i) + hiy = §”, implying condition
(A2) for i + 2. '

Lemmas 4.2 and 4.3 prove Theorem 4.1.

5 Computing a 2-approximate
Solution

In this section, we describe an algorithm for find-
ing a directed path in G; = (V4, E;) that visits a
maximum benefit set of segments 7(j). We call a
directed path which does not visit the same seg-
ment more than once a non-overlapping path.

We apply dynamic programming to compute a
maximum benefit non-overlapping path in G;. By
definition of p, we have the following lemma.

Lemma 5.1 Let 7 € II(sg) denote a monotone
curve, and let 7(i) denote the ith segment collected
by . Ifv(w) < p or (k) & {r(k — 1),7(k —
2),...,7(k — p—1)} for each p+1 < k < v(m),
then 7 is a non-overlapping path. 1

By Lemma 5.1, a dynamic programming al-
gorithm computes a maximum weight non-
overlapping path by maintaining lists of last p+ 1
segments collected by curves.

Theorem 5.2 For an instance I to the MAX-
VSP-PATH, a 2-approzimation solution can be ob-
tained in O(yn(3+2)) time. 1

For sparse instances, by modifying G;, we can
obtain a 2-approximation solution by computing
a maximum weight path p in the modified acyclic
digraph.

Theorem 5.3 For a sparse instance I to the
MAX-VSP-PATH, o 2-approzimate solution can be
obtained in O(yn?) time. '

6 Concluding Remarks

In this paper, we designed an approximation
algorithm for the MAX-VSP-PATH with general
time windows, nonzero handling times.and general
benefits. For this, we regarded the MAX-VSP-
PATH as the problem of finding a monotone curve
that collects a maximum benefit set of segments in
the z,y-plane. We then introduced a chart graph
to approximate an optimal monotone curve by a
directed path. Based on this chart graph, we in-
troduced approximation algorithms. We gave an
O(yn(3+P)) time 2-approximation algorithm, and
gave an O(yn?) time 2-approximation algorithm
for sparse instances. We proved that the MAX-
VSP-PATH is weakly NP-complete even for sparse
instances with nonzero handling times. It is left
as a remaining task to analyze the problem com-
plexity of the MAX-VSP-PATH when p is con-
stant. We remark that the idea of reducing the
problem to an monotone curve problem has been
used by Bar-Yehuda et al. [2] to design approxi-
mation algorithms for the MAX-VSP-PATH with
no handling time. However, our method of con-
structing a digraph that approximates an optimal
monotone curve is completely different from their
digraphs. In fact, our chart graph cannot handle
instances with zero handling time, and it is im-

portant to investigate a common generalization of

these two ways of approximating monotone curves
by digraphs.

References

[1] Y. Asahiro, T. Horiyama, K. Makino, H. Ono,
T. Sakuma and M. Yamashita, “How to col-
lect balls moving in the euclidean plane,” Proc.
Computing: The Australasian Theory Sympo-
sium (CATS), pp.1-16, Jan. 2004. (Electronic
Notes in Theoretical Computer Science, vol. 91,
pp. 229-245.)

180

[2] R. Bar-Yehuda, G. Even and S. Shahar,
“On approximating a geometric prize-collecting
traveling salesman problem with time win-
dows,” In Lecture Notes in Computer Science,
vol. 2832, pp. 55-66, Springer-Verlag, Sept.
2003.

{3] L. Bodin, B. Golden, A. Assad and M. Ball,
“Routing and scheduling of vehicles and crews:
the state of the art,” Computers & Operations
Research, vol. 10, pp. 62-212, 1983.

[4] L. D. Bodin, “Twenty years of routing and
scheduling,” Operations Research, vol. 39,
pp.571-579, 1990.

[5] M. R. Garey and D. S. Johnson, “Two-
processor scheduling with start times and dead-

lines,” SIAM Journal on Computing, vol. 6, pp.
416-426, 1977.

[6] Y. Karuno, H. Nagamochi and T. Ibaraki, “Bet-
ter approximation ratios for the single-vehicle
scheduling problems on line-shaped networks,”
Networks, vol. 39, no. 4, pp. 203-209, 2002.

[77Y. Karuno and H. Nagamochi, “2-
Approximation algorithms for the multi-
vehicle scheduling problem on a path with
release and handling times,” Discrete Applied
Mathematics, vol. 129, pp. 433-447, 2003.

[8] Y. Karuno and H. Nagamochi, “Scheduling ve-
hicles on trees,” Pacific Journal of Optimiza-
tion, vol. 1, pp. 527-543, 2005.

[9] H. Psaraftis, M. M. Solomon, L. Magnanti and
T .U. Kim, “Routing and scheduling on a shore-
line with release times,” Management Science,
vol. 36, pp.212-223, 1990.

[10] J. N. Tsitsiklis, “Special cases of traveling
salesman and repairman problems with time
windows,” Networks, vol. 22, pp. 263-282, 1992.

[11] G. Young and C. Chan, “Single-vehicle
scheduling with time window constraints,” J.
Scheduling, vol. 2, pp.175-187, 1999.

