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Abstract
For a graph $G$ , a $k$-disjoint path cover prvblem, is finding $k$ vertex-disjoint
paths joining $k$ distinct source-sink pairs that cover all vertices in the graph.
We call a set containing such $k$ disjoint paths k-DPC. For a reculanglar
grid graph(we call it mesh), it is known that there exists a necessary and
sufficient condition for the existence of 1-DPC in mesh of size $\geq 4\mathrm{x}4[3]$ . In
this paper, we treat a mesh-torus $M$ , which is obtained from mesh by adding
column- and row- wraparound edges, of size even $\mathrm{x}$ even. More precisely,
such $M$ is expressed by $M=(V=V_{1}\cup V_{2}, E)$ , since mesh-torus is bipartite.
For any 2 distinct source-sink pairs in $M$ of size $\geq 4\mathrm{x}4$ : $(s,t),$ $(u,v)$ , if
two of them are in $V_{1}$ , the others are in $V_{2}$ , we show the existence of 2-DPC
joining $s$ and $t,$ $u$ and $v$ .

1 Introduction

One of issues in various interconnection networks is finding node-disjoint paths. A node-disjoint
path can be used as parallel paths for efficient data routing among vertices. An interconnection
networks is modeled as a graph, in which vertices and edges corresponded to nodes and links,
respectively. In a graph, a node-disjoint path problem in interconnection networks is called
vertex-disjoint path problem(disjoint path problem, for short).

There are three categories of disjoint paths, i.e., one-to-one, one-to-many, and many-to-many.
One-to-one type has a single source $s$ and a single sink $t$ . The purpose is finding disjoint paths
joining $s$ and $t.$ One-to-many type deals with the disjoint paths joining a single source 8 and $k$

distinct sinks $t_{1},$ $t_{2},$ $\cdots,$ $t_{k}$ . $\mathrm{M}\mathrm{i}\mathrm{y}- \mathrm{t}\triangleright \mathrm{m}\mathrm{a}\mathrm{n}\mathrm{y}$ type deals with the disjoint paths joining $k$ distinct
sources $s_{1},$ $s_{2},$ $\cdots,$ $s_{k}$ and $k$ distinct sinks $t_{1},t_{2},$ $\cdots,$ $t_{k}$ . The works in many-to-many type have
a relative paucity because of its difficulty and some results can be found in [5, ?]. All of
three types of disjoint paths do not care whether it covers all vertices in the graph or not. A k-
disjoint path cover pmblem($k$-DPCP, for short) in a graph $G$ is finding disjoint paths containing
all vertices in $G$ . We denote a set containing such $k$ disjoint paths is k-DPC. If necessary, we
denote $k- \mathrm{D}\mathrm{P}\mathrm{C}[G, (s_{1},t_{1}), (s_{2}, t_{2}), \cdots, (s_{k}, t_{k})]$ . J.H.Park et al. [8] proposed a certain graph $G$

which has a $k$-DPC (more precisely, $f(\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{r}/\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}\mathrm{s})- \mathrm{f}\mathrm{a}\mathrm{u}\mathrm{l}\mathrm{t}$ -free $k$-DPC) for any source
and sink sets.

The case of $k=1$ , the problem corresponds to hamiltonian path problem in a graph $G$ ,
that is, the problem is to find a path joining given $s$ and $t$ covers all vertices in $G$ . For 1-
DPCP(hamiltonian path problem), there are some definitions in previous works$[6, 8]$ . A graph
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$G$ is hamiltonian(resp.hamiltonian-connected) if there exists a hamiltonian cycle (resp. if each
pair of vertices are joined by a hamiltonian path) in $G$ . Note that if a graph $G$ is hamltonian,
then $2\leq\delta(G)$ where $\delta(G)$ is minimum degree of vertices of $G$ . If $G$ is hamiltonian-connected,
then $3\leq\delta(G)$ . The bipartite graph $G=(V_{1}\cup V_{2},E)$ can not be hamilitonian-connected
because there is no hamiltonian path from $s$ to $t$ for $s,t\in V_{2}$ such that $|V_{1}|\geq|V_{2}|$ . A bipartite
graph $G$ with $|V_{1}|\geq|V_{2}|$ is bihamiltonian-conneced if one of following are satisfied:
(1) if $|V_{1}|=|V_{2}|$ , there is a hamiltonian path from $s$ to $t$ for all $s\in V_{1}$ and $t\in V_{2}$ .
(2) if $|V_{1}|=|V_{2}|+1$ , there is a hamiltonian path from 8 to $t$ for all $s,t\in V_{1}$ .
From the definition above, bihamiltonian-connected is defined, only at $|V_{1}-V_{2}|\leq 1$ .
For given a graph $G$ , it is difficult to determine whether $G$ is (bi)hamiltonian-connected or not.
Of course, almost of classes of graphs is $\mathrm{n}\mathrm{o}\mathrm{n}- \mathrm{h}\mathrm{a}\dot{\mathrm{u}}\mathrm{l}\mathrm{t}\mathrm{o}\mathrm{n}\mathrm{i}\mathrm{a}\mathrm{n}$ -connected. But a rectangular grid
graph(we $\mathrm{c}\mathrm{a}!^{\iota}$ it mesh) $R(m,n)$ of size $\geq 4\mathrm{x}4$ is bihamiltonian-connected[3].

In this paper, we discuss about the case of $k=2.$ For reviewing the problem, we define the
2-disjoint path cover problem formally. $V(P_{1})$ means a set of vertices included in the path $P_{1}$ .

2-Disjoint Path Cover Problem(2-DPCP)
Instance: graph $G=(V,E)$ and $s,t,\mathrm{u},v\in V$ .
Question: Find 2 paths $P_{1},P_{2}$ such that

(i) $P_{1}$ connects 8 and $t,$ $P_{2}$ connects $\mathrm{u}$ and $v$ .
(ii) $P_{1}$ and $P_{2}\cdot \mathrm{a}\mathrm{r}\mathrm{e}$ disjoint.
$(\mathrm{i}\mathrm{i}\mathrm{i})V(P_{1})\cup V(P_{2})=V$ .

Like a 1-DPCP, we define some new definitions for 2-DPCP. We call the given four ver-
tices $(\epsilon,t, u,v)$ endpoint. Given $G$ and four endpoints, $[G, (\mathit{8},t), (u,v)]$ is solvable if there is a
$2- \mathrm{D}\mathrm{P}\mathrm{C}[G, (\mathit{8},t), (\mathrm{u},v)]$ . A graph $G$ is coverable if $[G, (s,t), (u,v)]$ is solvable for any pairs of
vertices: $(\mathit{8}, t)$ , $(u,v)$ . Note that if a graph $G$ is coverable, then $3\leq\delta(G)$ . A bipartite graph $G$

is $bi$-coveroble if one the followings conditions are satisfied:
(A) if $|V_{1}|=|V_{2}|,$ $[G, (\mathit{8},t), (u,v)]$ is solvable for any $s,t,u,v$ such that two endpoints of
$\{\epsilon,t,u,v\}$ are in $V_{1}$ , the rest are in $V_{2}$ .
(B) if $|V_{1}|=|V_{2}|+1,$ $[G, (s,t), (u,v)]$ is solvable for any $\epsilon,t,u,v$ such that three endpoints of
$\{\mathit{8},t,u,v\}$ are in $V_{1}$ , the rest is in $V_{2}$ .

In this paper, we consider a given graph $G$ is a mesh-torus $M(m,n)$ , which is obtained from
$R(m,n)$ by adding column- and row-wraparound edges. Note that $M(m,n)$ is not bipartite if
$m$ or $n$ is odd. Therefore, when $m$ and $n$ is even, we can discuss about whether mesh-torus is
$\mathrm{b}\mathrm{i}$-coverable or not. In addition, $|V_{1}|=|V_{2}|$ is true since $m$ and $n$ is even. So if a graph $G$ is
mesh-torus, the only case we consider is the condition (A) of $\mathrm{b}\mathrm{i}$-coverable. And our result is
following:

Theorem 1.1. If $n$ and $m$ are $even\geq 4,$ $M(n,m)$ is bi-coverable.

For showing the Theorem 1.1, we introduce a certain operation (roughly speaking, insert
two columns or rows to mesh-torus) for creating any instance of 2-DPCP from some “

$p\dot{n}m\epsilon$
”

instance. We show that the $\mathrm{e}\mathrm{x}\mathrm{i}_{8}\mathrm{t}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}$ of 2-DPC is retained after this operation. Then, our
claim is proved if all “prime” instance is all bi-coverable.

This paper is organized as follows. In section 2, we explain the definitions and essential facts
in previous papers. Next section, we provide the operation and its properties. Then, Theorem
1.1 is showed in section 4. In the final section, we conclude our result again. This paper, some
proofs are omitted because of page constraint.
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2 Preliminaries
Here we prepare necessary notions and notations, and review some important facts on l-disjoint
path cover problem.

A mesh $R(m,n)$ , more simply $R$ if $m$ and $n$ are fixed, is a graph of $m\mathrm{x}n$ vertices such
that (i) each vertex $v$ corresponds to a grid point $(x,y),$ $x\in\{1,2, \ldots,m\}$ and $y\in\{1,2, \ldots,n\}$ ,
and (ii) each edge corresponds to an edge between a pair of adjacent grid points. We consider
that a mesh is identical to its corresponding rectangular subgrid on $\mathrm{R}^{2}$ ; vertices and edges are
regarded as corresponding grid points and edges. For each vertex $v$ in $R(m,n)$ , we use $v_{x}$ and
$v_{y}$ to denote its x- and $y$-coordinate respectively. A vertex $v$ is called even if $(v_{x}+v_{y})$ is even,
and odd otherwise. For our explanation, we assume that all vertices are colored either black or
white in the $\mathrm{f}\mathrm{o}\mathrm{u}\dot{\mathrm{o}}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$: color every even vertex by white, and odd vertex by black. We denote
$V_{1}$ is a set of white vertices, $V_{2}$ is $V\backslash V_{1}$ .

A column-toru8 $T_{\mathrm{c}}(m,n)$ is $R(m,n)$ with $m$ column-wraparound edges; $((i,n),$ $(i, 1))(1\leq$

$i\leq m)$ . $\mathrm{A}\cdot me\mathit{8}h- tom\mathit{8}M(n,m)$ is obtained $\mathrm{k}\mathrm{o}\mathrm{m}T_{\mathrm{c}}(m,n)$ by adding $n$ row-wraparound edges;
$((m,i),$ $(1,l)’)(1\leq i\leq n)$ . Note that $M(m,n)$ is bipartite graph ff $m$ and $n$ is even, $T_{\mathrm{c}}(m,n)$

is bipartite iff $n$ is even. We assume that all vertices in column- and mesh-torus are colored by
same way at mesh. In the follwing, four endpoints are satified that two endpoints are in $V_{1}$ ,
the others are in $V_{2}$ .
Fact 1. $Ifm,n\geq 4$ , or $m=3$ and $n$ is odd, $R(m,n)\dot{\mathrm{u}}bihamiltonian- connected[SJ$.
Fact 2. $R(2,n)$ is bihamiltonian-connected exoept that two endpoints are in same non-boundary
$mw[\mathit{3}J$ .
Lemma 2.1. Given a $T_{\mathrm{c}}(1,n)(n\geq 4)$ and a source $\epsilon$ , there are two sinks $t\mathit{8}uch$ that there ts
a $hamilton|an^{-}$

’

$path$ joining $s$ and $t$ .
Lemma 2.2. $T_{\mathrm{C}}(2,n)$ is bihamiltonian-connected.

Remark. Given $T_{\mathrm{c}}(2,n)(n\geq 4)$ and a source 8, the number of candidates of sink $t$ such that
there exists a hamiltonian path joining $\epsilon$ and $t$ and $t_{x}=i(i=1,2)$ is at least 2.

Lemma 2.3. Given a $T_{\mathrm{c}}(1,n)(n\geq 4)$ and two $\mathit{8}ou|oe\mathit{8}S=(1,\mathit{8}_{y}),u=(1,u_{y})(u_{y}>s_{y})$ , there
are two pair8 $(t_{1},v_{1}),$ $(t_{2},v_{2})$ such that $2- DPC\beta_{\mathrm{c}}’(1,n),$ $(s,t_{1}’),$ $(u,v_{1})Jex|\epsilon t\mathit{8}(i=1,2)$ .

3 Unit Insertion and Its Properties

For proving our theorem, we introduce an operation for expanding a mesh-torus of a given
2-DPCP instance. A unit $|n\mathit{8}e\hslash ion$ is inserting two columns or rows to a mesh-torus $M$ . Then,
the following two lemmas are essential for our theorem..

Lemma 3.1. Let $\mathrm{Y}$ be an $imtan\alpha$ of 2-DPCP obtaind fivm some $X=[M(m,n), (s,t), (u,v)]$
($m,n$ are $even\geq 4$) by any unit $ime\hslash ion$ to M. If $Xi\mathit{8}$ solvable, so $\dot{u}$ Y.

In our argument, we define some notions for two column insertions; two row insertions are
treated in the same way. For any unit insertion, a inserted line –a betweenness of two adjacent
columns– is called chink, a inserted 2 $\mathrm{x}n$ component is called river. Now, $X$ has a 2-DPC.
For any unit insertion and a 2-DPC, an edge, is a part of 2-DPC, which moves across the chink
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is called bridge. Let $b$ be the number of bridges. And the lemma is proved by simple analysis
about $b,$ $\mathrm{i}.\mathrm{e}.,(1)b=0$ and (2) $b\neq 0$ . For each case, we can construct a 2-DPC of $\mathrm{Y}$ from
2-DPC of $X$ , easily. So the proof of this lemma is omitted.

The empty column is a column which has no endpoint.

Lemma 3.2. Let $X$ be any instance of 2-DPCP $[M(m,n), (\mathit{8},t), (u,v)]$ ($m,n$ are $even\geq 4$).
The $Xi\mathit{8}$ obtained flom one of the folloutng $in\mathit{8}tanoes$ of 2-DPCP by some unit insertion;
$(A)[M(4,4), (\mathit{8}’,t’), (u’,v’)]$

$(B)[M(6,l), (\mathit{8}’,t), (u’,v’)](l=4,6,8)$ and each $\mathit{8}ide$ of any empty column are non-empty.
$(C)[M(8,l), (\mathit{8}’,t), (u’,v’)]\beta=4,6,8)$ and each side of any empty column are non-empty.

This proof is easily by simple case analysis of distances of endpoints. So the proof is
omitted. An instance of 2-DPCP $X$ is prime, if $X$ is one of (A), (B), (C). The Figure 1
expresses a ambiguous shapes (i.e., almost rows are omitted) of (B) and (C). In this figure, a
column with circle(s) means that the column has endPoint(s).

In tihe next s..ection, we prove the primes’ solvality.

4 Prime Instances
In this section, we show the existence of -DPC for all prime instances. Let $S_{1}$ be a set of
all instances is categorized in (B) and (C) described in the Lemma 3.2, and $S_{2}$ be a set of all
instances of (A). We denote $[M(m,n), (c_{1}- c_{2} -... - c_{m})](\Sigma_{1\epsilon[1,m1^{\mathrm{q}}}=4, c_{i}\geq 0(\forall 1\leq i\leq m))$

is a set of instances of 2-DPCP such that column $i$ has a $c_{i}$ endpoint(s). For example, the
$(\mathrm{B})-(1)$ in the Figure 1 is an element of $[M(6,$ $l)$ , (1-0-1-0-2-0)$]$ . In the follwing, we often say
$[M(m,n), (c_{1}- c_{2} -... -c_{m})]$ is $\mathrm{b}\mathrm{i}$-coverable if for any four endpoints satisfying such condition
described as above, it is solvable.

Lemma 4.1. For any imtanoe of $S_{1}$ , it $become\mathit{8}$ to a $\mathit{8}om\epsilon$ element of [$T_{\mathrm{c}}(3,l),$ a-0-3)].

It is easily to show by using Facts and Lemmas in section 2. So it is omitted.

Lemma 4.2. $A[T_{c}(3,l), (1- 0- 3)]$ ($l$ is even) is bi-coverable.

The proof of the Lemma, is simple case analysis, is omitted.
Remark. If $l=4$ , there is only two case of the position of $r;r_{\nu}=2$ or 4. For each assignment
of endpoints, it is easy to show that there is a 2-DPC contains the edge $((3,3),(3,4))$ .

Lemma 4.3. A $M(4,4)$ is $bi$-covera$bl\epsilon$ .
proof. We prove the claim by case analysis. We divide all instance of 2-DPCP by the order
of a number of endpoints. That is, our cases are (1) $[M(4,4),(4- 0- 0- 0)],$ (2) $[M(4,4),(3- 1-0-$
$0)],$ (3) $[M(4,4),(3- 0- 1- 0)],$ (4) $[M(4,4),(2- 2- 0- 0)],$ (5) $[M(4,4),(2- 0- 2- 0)],$ (6) $[M(4,4),(2- 1- 1- 0)]$ ,
(7) $[M(4,4),(2- 1- 0- 1)]$ , and (8) $[M(4,4),(1- 1- 1- 1)]$ .

Case 1 There are only two patterns of the combination of pairs. A 2-DPC for these
patterns are in the Figure 2.
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Case 2 We can deliver the three endpoints in the column 1 to the column 4 by covering
the all vertices in the column 1. Then, we obtain the instance of $[T_{c}(3,4),(1- 0- 3)]$ . By
Lemma 4.2, the all instance of this case is solvable.

Case 3 We reset a $\mathrm{y}$-coordinate of some white endpoint in the column 1 is 1. By the Lemma
4.2 (Remark), the left 3 $\mathrm{x}4$ column-torus has 2-DPC, and it contains a $((3,3)(3,4))$ .
Then, we cut the connection of that edge, and connect $(3, 3)$ to $(4, 3)$ , $(3, 4)$ to $(4, 4)$ . Next,
we connect $(3, 4)$ to $(4, 4)$ by a path crossing column-wraparound edge. In consequence,
we obtain a 2-DPC for $[M(4,4),(3- 0- 1- 0)]$ .

Case 4 We can deliver one endpoint in the column 2 to the column 1 and the other to
the column 3 by $\mathrm{c}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}\dot{\mathrm{i}}\mathrm{g}$ all vertices in the column 2. Then, we obtain a instance of
$[T_{\mathrm{c}}(3,4),(1- 0- 3)]$ . By the same argument of the case 2, all instance of this case is solvable.

Case 5 Without loss of generality, we can set the vertices in column 1 are (a) [$(1,1)$ and
$(1, 3)]$ , and $(\mathrm{b})$ [ $(1,1)$ and (1, 2)]. The case of (a), there are two patteas of the combination
of pairs. A 2-DPC for these patteas are in the Figure 3.
The case of (b), there are three further cases of location of the rest two endpoints.
We express such three cases in the Figure 4(upper side). Furthermore, we consider an
assignment of endpoints for all cases in the figure. A -DPC for these patterns are in the
Figure 4(under side). So, in the case of 4, all instance of this case is solvable.

Case 6 and 7 We can obtain an instance of $[T_{c}(3,4),(1- 0- 3)]$ from all instance of these cases
by sune argument in the case 2 or 4 (the delivered endpoints are in column 2 to column
1 in case 6, are in column 1 to column 2 in case 7).

Case 8 The rest cases which we have to consider is only one; i.e., each column and row
have just one endpoint. And there are only two patterns of combination of pairs. The
Figure 5 expresses a 2-DPC for these two patterns. $\mathrm{O}$

Therefore, we prove our main theorem.
Theorem 1.1. If $n$, and $m$ are even) 4, $M(n, m)i\mathit{8}$ bi-coverable.

5 Conclusion and Remarks
In this paper, we show a $\mathrm{b}\mathrm{i}$-coverability of even $\mathrm{x}$ even mesh-torus larger than 4 $\mathrm{x}4$. However,
there is no idea for another size cases; even $\mathrm{x}$ odd, odd $\mathrm{x}$ odd, since such mesh-torus is not
bipartite. But, some instance expressed by $X=$ [$M$ (odd, even),(s, $t),$ $(u,v)$] has 2-DPC. So
next problem is whether $M$(odd, even) is coverable or not. Furthermore, we are interested in
the class or property of graphs which is (bi-)coverability. By the way, in this paper, we treat
only 2-DPCP in mesh-torus. A mesh-torus is -regular bipartite graph with some restriction.
For $k$-DPCP, what is a minimum number $l$ such that a $l$-regular bipartite graph with some
restrict(as a mesh-torus) is (bi-)coverable (expanding the definition of coverability of 2-DPCP
to $k$-DPCP)? For example, a mesh-torus is not coverable for $3\mathrm{D}\mathrm{P}\mathrm{C}\mathrm{P}$ since $5\leq\delta$ is necessary
condition where 6 is minimun degree of the graph.
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Figure 2: 2-DPCs for the case 1

Figure 3: 2-DPC8 for the case 5-(a)
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Figure 4: 2-DPCs for the case 5-(b)

Figure 5: 2-DPCs for the case 8
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