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1 Introduction

A cellular automaton (CA for short) is a uniformly structured information processing system defined
on a regular discrete space $S$, which is typically presented by a Caylcy graph of a finitely generated
group. The same finite automaton (cell) is placed at cvery point of the space. Every cell simultaneously
changes its state following the local function defined on the neighboring cells. The neighborhood $N$ is
also spatially uniform. Most studies on CA assume the standard neighborhoods after John von Neumann
and E. F. Moorc.

Changing the view point, however, we posed an algebraic theory ofneighborhoods ofCA for clarifying
the signiflcance of the neighborhood itself, where the neighborhood $N$ can be an arbitrary finite subset
of $S$, see Nishio&Margcnstcrn (2004) $[9, 8]$ .
Based on such a setting, we ask here a question ”How does (or does not) the $\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{b}\mathrm{o}\iota \mathrm{h}\infty \mathrm{d}$ affect the
global behavior of a $\mathrm{C}\mathrm{A}?$

” In this paper, two CAs are given such that the neighborhood does not affect
the global behavior.

2 $\mathrm{C}\mathrm{e}\mathrm{U}\mathrm{p}\mathrm{l}\mathrm{a}\mathrm{r}$ Automaton CA

A CA is defined by a 4-tuple $(\Gamma(S), N, Q, f)$ .. Cellular space $\Gamma(S)$ is a Cayley graph ofa flnitely generated group $S=\langle G|R\rangle$ with generators $G$

and rclators $R$ . If $G=\{g_{1},g_{2}, \ldots,g_{f}\}$ , every element of $S$ is presented by aword $x\in(G\cup G^{-1})^{*}$ ,
whcre $G^{-1}=\{g^{-1}|g\cdot g^{-1}=1, g\in G\}$. Thc set $R$ ofrclators is writtcn as

$R=\{w_{\dot{*}}=w_{*}’. |w_{i}, w_{*}’$. $\in(G\cup G^{-1}),i=1, \ldots, n\}$ . (1)

For $x,y\in\Gamma(S)$ , if $y=xg$, where $g\in G\cup G^{-1}$ , then an edge labelled by $g$ is drawn from vcrtcx
$x$ to vertex $y$ . In the sequel $\Gamma(S)$ and $S$ are not distinguished.

$\circ$ Neighborhood $N=\{n_{1},n_{2}, \ldots,n_{*}\}$ is a flnite subset of $S$ . The set ofall neighborhoods is denoted
by N. The cardinality $\#(N)$ is called the neighborhood size ofCA. The set ofthe neighborhoods
of size $s$ is denoted by $\mathrm{N}_{*}$ . For any cell $x\in S$, the information of cell $xn$: reaches $x$ in a unit of
time.

$\bullet$ Set ofcell states $Q=GF(q)$ where $q=p^{n}$ with prime $p$ and positive integer $n$ . $Q=\mathrm{Z}/m\mathrm{Z}$ is
also considered.

iA preliminary vcrsion was prcscntcd at thc 11th Wor$cshop on Cellular Automata at Gdansk University, September 3-5.
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. Local map $f$ : $Q^{N}arrow Q$ , where an element of $Q^{N}$ is called alocal configuration.

. Global map $F$ : $Carrow C$, where an element of $C=Q^{S}$ is called a global configuration. $F$ is
uniquely defined by $f$ and $N$ as follows.

$F(c)(x)=f(c(xn_{1}), c(xn_{2}),$ $\cdots,c(xn_{*}))$ , (2)

where $c(x)$ is the state of cell $x\in S$ for any $c\in C$ .

When starting with a configuration $c$, the behavior (trajectory) ofCA is given by

$F^{t+1}(c)=F(F^{t}(c))$ for any $t\geq 0$ , where $F^{0}(c)=c$. (3)

3 Neighborhood and Neighbors

Given a neighborhoodN $=\{n_{1},n_{2}, \ldots,n_{s}\}\subset S$ for a cellular space $S=\langle G|R\rangle$ , we recursively deflne
the neighbors of $\mathrm{C}\mathrm{A}$ . Let $p\in S$ .

(1) The 1-neighbors of$p$, denoted as $pN^{1}$ , is the set

$pN^{1}=\{pn_{1},pn_{2}, \ldots,pn_{*}\}$ . (4)

(2) The $m$-neighbors of$p$, denoted as $pN^{m}$ , are given as

$pN^{m}=pN^{m-1}\cdot N,$ $m\geq 1$ , (5)

where $pN^{0}=\{p\}$ . Note that the computation of $P^{n}$: has to comply with the relations $R$ defining
$S=(G|R\rangle$ .

We may say that the information containcd in the ceUs of$pN^{m}$ reaches the cell $p$ after $m$ time steps.
(3) $\infty$-neighbors of$p$, denoted as $pN^{\infty}$ , is defined by

$\mathrm{p}N^{\infty}=\bigcup_{m\approx 0}^{\infty}pN^{m}$ . (6)

Without loss of generality, we can concentrate on the $m$-neighbors ofthe identity element 1 of$S$, which
is called $m$-neighbors ofCA and denoted by $N^{m}$ . Then

(4) $\infty$-neighbors $\mathrm{o}\mathrm{f}1$ , denoted as $N^{\infty}$ and called the neighbors of$CA$ , is given by

$N^{\infty}= \bigcup_{m=0}^{\infty}N^{m}$ . (7)

The intrinsic $m$-neighbors $[N^{m}]=N^{m}\backslash N^{m-1}$ are the cells whose information can reach the origin in
exactly $m$ steps. Obviously, $N^{\infty}= \bigcup_{m\approx 0}^{\infty}[N^{m}]$ .

Now we have an algebraic result, which is proved by the fact that the procedure to generate a subsemi-
group is the same as the above mentioned recursive definition of $N^{\infty}$ .
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Proposition 1
$N^{\infty}=\langle N|R\rangle_{sg}$ , (8)

where $\langle N|R\rangle_{\epsilon g}$ means the semigmup obtained by concatenating the wordsfrom $N$ with constraints of
$R$.
We also have the following easily proved proposition.

Proposition 2
$\langle N|R\rangle_{\mathit{9}}=\langle N\cup N^{-1}|R\rangle_{\epsilon g}$ , (9)

where $\langle N|R\rangle_{g}$ is the smallest subgroup $ofS$ which contains $N$.

If $N=G$, then we have the following lemma as a corollary to Proposition 2.

Lemmm 1
$\langle g_{1},g_{2}, \ldots, g_{\mathrm{r}}|R\rangle_{\mathit{9}}=\langle g_{1},g_{2}, \ldots,g_{f},g_{1}^{-1},g_{2}^{-1}, \ldots,g_{f}^{-1}|R\rangle_{*g}$. (10)

Example: $\mathrm{Z}^{2}=\langle a,$ $b|$ $ab=ba)_{g}=\langle a, b, a^{-1},b^{-1}| ab=ba\rangle_{\epsilon g}$

4 Two CAs where the neighborhood does not affects the global behavior.

The neighborhood is usually crucial for the global behavior of a $\mathrm{C}\mathrm{A}$ . For example, the Game of Life
[?] has been formulated assuming binary states and the Moore neighborhood in $\mathrm{Z}^{2}$ . The local rule is
cleverly chosen and many interesting behaviors like construction- and computation-universality have
been proved to emerge. It would not have been so successful, if it were defined assuming the von
Neumann neighborhood.

Contrary to that, in this section, we give two cases where the neighborhood does not affect the global
behavior of $\mathrm{C}\mathrm{A}$ . A brief study on the growth function of $y\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{s}/\mathrm{n}\mathrm{e}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{b}\mathrm{o}\mathrm{r}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{d}\mathrm{s}$ and the Garden ofEden
theorem are also given.

(I) Parity function preserves the parity of configurations for any neighborhood.
(II) $\mathrm{S}\mathrm{u}\dot{\mathrm{q}}\epsilon \mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{t}\mathrm{y}$and injectivity oflinear CAs are independent from the neighborhood.

4.1 Parity function

Let $Q=\{0,1, \ldots,p-1, \ldots\}=GF(p^{n})$ with prime $p$ and positive integer $n$ . Considcr a CA (called a
parity $\mathrm{C}\mathrm{A}$), which has an $s$-ary local fhnction called a (generalized) parityfunction $f_{P,N}$ defined by

$f_{P,N}(n_{1},n_{2}, \ldots,n_{*})=\sum_{:=1}^{*}c(n:)$ mod $p$ , (11)

whcre $c(n:)$ is the state of cell $n_{i}$ . Note that if $Q=\{0,1\}$ then $f_{P,N}$ is the ordinary (binary) parity
function.

The global map $F_{P,N}$ ofa parity CA is defined as usual and also called a (global) parity function.

Since $f_{P,N}(0, , , , 0)=0$ , $0\in Q$ is a quiescent state. A configuration $c\in Q^{S}$ is $\mathrm{c}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{d}$ fnite if
$\#\{i|c(i)\neq 0, i\in S\}<\infty$ . For a finite configuration $c$, a finite subset $\{i|c(i)\neq 0, i\in S\}$ of $S$ is
called a support of $c$ and denoted by $s\mathrm{u}w(c)$ .
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Since the finiteness of configurations is preserved by $F_{P,N}$ , in the sequel we treat only finite configura-
tions.

The (generalized) parity $P(c)$ of a configuration $c$ is defined by

$P(c)= \sum_{x\in S}c(x)$ mod p. (12)

Then we have the following theorem.

Theorem 1
$P(F_{P,N}(c))=P(c),$ $c\in Q^{S}$ , (13)

fand only $ifN\in \mathrm{N}_{s}$ , where $s=kp+1,$ $k\geq 0$.
Proof.

$P(F_{P,N}(c))$ $=$
$\sum_{x\in S}F_{P,N}(c)(x_{\text{ノ}^{}1}=\sum_{x\in S}f_{P,N}(xn_{1}, \ldots, xn_{*})$

(14)

$=$ $\sum_{x\in S}\sum_{1=1}^{l}c(xn:)=\sum_{i=1}^{*}\sum_{x\in S}c(xn_{i})$ . (15)

We note here, since the neighborhood is spatially uniform,

$\sum_{x\epsilon S}c(xn:)=\sum_{x\in S}c(x)$
, for any $1\leq i\leq s$ . (16)

Then, if $s=kp+1$ , from (15) we have

$P(F_{P,N}(c))= \sum_{1=1}^{*}a\sum_{e\in S}c(xn_{j})=\sum_{x\in S}c(x)=P(c)$. (17)

For the necessity of condition $s=kp+1$, we can consider a binary parity CA $(p=2)$ having a
neighborhood of size $s=2$. Such a CA maps all configurations into those of parity $0$ and does not
preserve the Parity. $\blacksquare$

Note that a binaryparityfunction is not number conserving.

Example 1 Consider binary parity CAs in $\mathrm{Z}=\langle a|\emptyset\rangle$ with a neighborhood ofsize 3 such as $N_{3}=$

$\{a^{-1},1, a\},$ $N_{3}’=\{a^{-2},1, a^{2}\}$ and $N_{3}’’=\{0, a, a^{2}\}$ . $n_{\varphi preserves}$ the parity. but a $CA$ with a
neighborhoodofsize 2 $N_{2}=\{1, a\}$ does not. The theorem holdsforfinite spaces like $\mathrm{Z}_{m}=\langle a|a^{m}=1\rangle$.

4.2 Linear $\mathrm{C}\mathrm{A}$ over $\mathrm{Z}_{m}$

We consider the linear local function $f$ of arity $s$ over $\mathrm{Z}_{m}=\mathbb{Z}/m\mathrm{Z}$;

$f(n_{1}, n_{2}, \ldots, n_{*})=\sum_{:=1}^{*}$ aini, $a_{\dot{*}}\in \mathrm{Z}_{m}$ , mod $m$ . (18)

Then we have the following theorem.

Theorem 2 Ifthe growthfunction of$S$ is $amenable^{2}$, then the surjectivity and the injectivity $ofa$ linear
$C\Lambda$ are independentfrom the neighborhood.

2A growth function is called amenable if it is less than cxponential. $\mathrm{C}\mathrm{o}\mathrm{n}\alpha \mathrm{a}\mathrm{r}\mathrm{y}$, a CA could be called amenable, whenever the
Garden ofEden theorem holds. See the following subsections.
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Proof. For such a CA that the Garden of Eden theorem holds, the theorem is proved owing to the fol-
lowing two theorems given for $\mathbb{Z}^{2}(\mathbb{Z}^{d})$ by Ito&Osato&Nasu (1983) [3], which completely characterize
the $\mathrm{s}\dot{\mathrm{r}}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{t}\mathrm{y}$ and the injectivity of a linear CA over $\mathbb{Z}_{m}$ , rcspectively, in terms of the coefficients
$a_{1},$ $a_{2},$ $\cdots,$ $a_{s}$ and the prime factors of $m$ . Note that their proofs assune the results ofRichardson$(1972)$

[11], which are based on the Garden of Eden theorem for $\mathbb{Z}^{d}$ . Obviously, the characterization is inde-
pendentfrom the neighborhood. For other spaces where the Garden of Eden theorem does not hold,

$\mathrm{s}\mathrm{e}\mathrm{e}-$

a discussion below.

Theorem 3 (Theorem 1 of [3]) A linear $CA$ over $\mathbb{Z}_{m}$ is surjective ifand only ifanyprimefactor of$m$

does not divide all ofthe coefficients $a_{1},$ $a_{2},$ $\cdots,$ $a_{s}$ .

Theorem 4 (Theorem 2 of [3]) A linear $CA$ over $\mathrm{Z}_{m}$ is injective ifand only iffor each primefactor $p$

$ofm$ there exists a unique coefficient $a_{g’}$ such that $p$ I $a_{j}$ and $p|a$: for $i\neq j$ .

4.3 Growth Function ofGroups and Netghborhoods

The growth function $\gamma_{S}$ of a finitely generated discrete group $S=\langle G|R\rangle$ is deflned by means of the
cardinality ofthe ball ofradius $n$ . That is

$\gamma_{S}(n)=\#\{w||w|\leq n, w\in S\}$ . (19)

Similarly we define the growthfinction $\delta_{(N,S)}$ ofneighborhood $N$ in $S$ of a CA by

$\delta_{(N,S)}(m)=\#\{w|w\in N^{m}\}$ , (20)

where $N^{m}$ is the set of $m$-neighbors. Obviously, if $N$ happens to be equal to $G\cup G^{-1}$ , then $\delta_{(N,S)}(m)=$

$\gamma s(m)$ .
The following definition of the growth rate of integer functions (groups) is due to L.Babai (1997) [1].

Two monotone non-decreasing functions $f_{1},$ $f_{2}$ : $\mathrm{N}arrow \mathrm{N}$ are said to be equivalent
$(f_{1}\sim f_{2})$ , if there exist constants $c_{1},$ $c_{2}$ , Ci, $C_{2},$ $n_{0}>0$ such that for all $n\geq n_{0}$ ,

Ci $f_{1}$ (ci $n$) $\leq f_{2}(n)\leq C_{2}f_{1}(c_{2}n)$ . (21)

The $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\sim \mathrm{i}\mathrm{s}$ an equivalence relation. An $\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}_{\sim}\prec$ is introduced among the equivalence classes; Let
$[f_{1}]$ and $[f_{2}]$ be the equivalence classes to which $f_{1}$ and $f_{2}$ belong, respectively. Then define $[f_{1}]\prec\sim[f_{2}]$

if $Cf_{1}(cn)\leq f_{2}(n)$ for constants $C,$ $c,$ $n_{0}\geq 0$ and for all $n\geq n_{0}$ .

Examples; $n^{2}\# n^{3}([n^{2}1_{\theta}^{\prec}[n^{3}]),$ $n^{a}\# b^{n}([a^{n}]_{\alpha\prime}\prec[n^{b}])$ and $a^{n}\sim b^{n}$ for any $n,$ $a,$ $b\geq 1$ .
The growth rate $[\gamma_{S}]$ of a group $S$ is an equivalence class to which $\gamma_{S}$ belongs. Note that in the $\mathrm{l}\mathrm{i}\mathrm{t}\alpha \mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$

the growth function often means the growth rate.

The growth rate $[\delta_{(N,S)}]$ of a neighborhood $N\subset S$ is similarly deflned. Then we have the following
thcorem.

Theorem 5 For a cellular space $S=\langle G|R\rangle_{g}$ and any neighborhood $N\subset S$,

$[\delta_{(N,S)}]\prec[\sim\gamma s]$ , (22)

where the equrvalence holds ifand only if $\langle N|R\rangle_{\iota g}=S$.
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4.4 Garden ofEden theorem

The Garden ofEden $(GOE)$ theorem is originally proved for $\mathbb{Z}^{2}$ by E.Moore(1962) [6] and J.Myhi11(1963)[7].
It is the earliest mathematical result proved about $\mathrm{C}\mathrm{A}$ .

Deflnition 1 $\Lambda$ finite configuration $\Phi anern$) is called a Garden ofuen $(GOE)$, ifit is not in the image
of$F$ (A $GOE$ has not an ancestor). Two distinctpatterns $p_{1}andp_{2}$ are called mutually erasable iftwo
configurations $c_{1},$ $c_{2}$ , which contain $P1$ and $p_{2}$. respectively and coincide outside of the supports of$p_{1}$

$andp_{2}$ , are mapped to the same configuration

Theorem 6 (Moore) Ifthere are mutually erasablepatterns, then there are GOEpattems.

Theorem 7 (MyhlU) Ifthere are $GOE$patterns, then there are mutually erasablepatterns.

If there is no GOE pattems then $F$ is surjective and if there is no mutually erasable pattems then $F$ is
injective when it is restricted to the $\mathrm{f}\mathrm{i}\dot{\mathrm{a}}\mathrm{t}\mathrm{e}$ configurations. Therefore these theorems together claim the
following.

Theorem 8 (GOE theorem) $F$ is surjective ifandonly ifF is injective when it is restricted to thefinite
configurations.

Idea of proof of Theorem 6: Let $\#(c(N^{m}))$ be the cardinality of different pattems contained by cells
in $m$-neighbors $N^{m}$ . For $S=\mathrm{Z}^{2}$ and Moore neighborhood, if there are mutually crasable patterns,
then $\#(c(N^{m-1}))$ becomes greater than $\#(c(N^{m}))$ when $m$ becomes large enough, which implies the
existence of GOE patterns. This proof is based on the fact that the growth of the boundary (intrinsic
neighbors) is not too fast. On the other hand, in case of a Cayley graph of free group $\langle a, b|\emptyset\rangle$ the
boundary grows exponentially.

Taking into account such an observation, group theorists reveal that the GOE theorem holds for groups of
polynomial and subexponcntial $y\mathrm{o}\mathrm{w}\mathrm{t}\mathrm{h}^{3}$ , but does not for exponential growth, see Machi&Mignosi(1993)
[5] and Gromov(1999) [2]. Note that group theorists usually discuss the GOE theorem assuming the
generators ofthe group as the neighborhood. This fact is one ofthe reasons why we are interested in the
growth function ofneighborhoods in general.

The dual hyperbolic plane {4, 5} of the pentagrid {5, 4} allows a Cayley graph presentation of a group
of exponential growth [10] and therefore the above discussion on linear CAs does not apply as it is.
However, there could be another proof for Theorem 2 which does not assume the GOE theorcm.

Many thanks arc due to Maurice Margenstem and Friedrich von Haeseler for their discussion on the
growth fmction ofgroups and the hyperbolic plane concerning thejoint work [10] and to Thomas Worsch
for his cooperation.
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