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Abstract

Let $r$ be a positive integer such that $r\geq 2,$ $G$ be a $2r$-regular graph of odd
order and $G$ be connected. Then, there is some $x\in V(G)$ such that $G-x$ has a
2-factor.

1 Introduction
We consider finite undirected graphs which may have loops and multiple edges. Let $G$

be a graph. For $x\in V(G)$ , we denote by $\deg_{G}(x)$ the degree of $x$ in $G$ . The set of
neighbours of $x\in V(G)$ is denoted by $N_{G}(x)$ . If $\deg_{G}(x)=r$ for any $x\in V(G)$ , we call
the graph r-fwular. For subsets $S$ and $T$ of $V(G)$ , we denote by $e_{G}(S, T)$ the number
of the edges joining $S$ and $T$ . If $S\cap T\neq\emptyset$ , the edges of $S\cap T$ are counted twice. If $S$

is a singleton $\{x\}$ , we write $S=x$ instead of $S=\{x\}$ . For example, we write $e_{G}(x,T)$

instead of $e_{G}(\{x\},T)$ . Let $k$ be a constant. A spanning subgraph $F$ of $G$ such that
$\deg_{\Gamma}(x)=k$ for each $x\in V(G)$ is called a $k$-factor of $G$ . When no fear of $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{f}|\mathrm{L}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}$

arises, we often identify a $k$-factor with its edge set.
Petersen proved the next theorem in 1891.

Theorem A (Petersen [1]) Every $2r$-regular graph can be decomposed into $r$ disjoint
2-factors.

This theorem implies that if $G$ is a $2r$-reguler graph, then $G$ has a $k$-factor for every
even integer $k,$ $\mathit{2}\leq k\leq \mathit{2}r$ .

Katerinis showed the next theorem in 1985.

Theorem $\mathrm{B}$ (Katerinis [2]) Let $G$ be a cormected graph of even order, and let a, $b$ ,
and $c$ be odd integers such that $1\leq a<b<c$ . If $Gh$as both a-factor and $c$-factor, then
$G$ has a b-factor.

If a $\mathit{2}r$-regular graph $G$ has a 1-factor, we can obtain a $(\mathit{2}r-1)$-factor by excluding
the 1-factor from $G$ . By the 1-factor and the $(\mathit{2}r-1)$-factor of $G$ and by $\mathrm{T}\mathrm{h}\infty \mathrm{r}\mathrm{e}\mathrm{m}$

$\mathrm{B},$ $G$ has a $k$-factor for any odd integer $k,$ $1\leq k\leq \mathit{2}r-1$ . Thus, by the above two
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theore$m\mathrm{s}$ , if a 2$r$-regular graph $G$ has a 1-factor, then $G$ has a $k$-factor for every integer
$k,$ $1\leq k\leq 2r-1$ . Note that the order of $G$ is even. For the case that the order of $G$ is
odd, Katerinis proved the next theorem in 1994.

Theorem $\mathrm{C}$ (Katerinis [3]) Let $Gbc$ a $2r$-regular, $2r-\alpha fg$ -connected graph of odd
order, and $k$ be an integer $su\mathrm{c}h$ that $1\leq k\leq r$ . Then for every $x\in V(G)$ , the graph
$G-x$ has a k-factor.

Let us focus our attention that the condition “2$r- \mathrm{e}\mathrm{d}\mathrm{g}\triangleright \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}\mathrm{r}\mathrm{t}\mathrm{e}\mathrm{d}$
” of Theorem $\mathrm{C}$ is

replaced by “connected”. What resulet can be obtained under the weakered condition?
Now we will present our main theorem.

Theorem 1 Let $r$ be a positive integer $su$ch that $r\geq \mathit{2},$ $G$ be a $\mathit{2}r$-regular graph of
odd order and $G$ be connected. Then, there is some $x\in V(G)$ such that $G-x$ has a
2-factor.

We believe that following conjecture.

$\mathrm{C}\mathrm{o}_{\dot{0}}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}1$ Let $r$ be a positive integer such that $r\geq \mathit{2},$ $G$ be a $2r$-regular graph
of odd order. an$dG$ be connected. Then for any $e\mathrm{v}\mathrm{e}\mathrm{n}k,$ $\mathit{2}\leq k\leq r$ , there is some
$x\in V(G)s\mathrm{u}cb$ that $G-x$ has a k-factor.

In order to prove Theorem 1, we use the following btte’s Theorem. Let $G$ be a
graph. For disjoint subsets $S$ and $T$ of $V(G)$ , we define $\delta_{G}(S,T;k)$ by

$\delta_{G}(S,T;k)=k|S|+\sum_{y\in T}\deg_{G-S}(y)-k|T|-h_{G}(S,T;k)$,

where $h_{G}(S,T;k)$ is the number of components $C$ of $G-(S\cup T)$ such that $k|V(C)|+$
$e_{G},(V(C),T)$ is odd. These components are called odd components. We denote by
$H_{G}(S,T;k)$ the set of the odd components. That is $|f\ell_{G}(S,T;k)|=h_{G}(S,T)$ . If
$\delta_{G}(S,T;k)=\delta_{G}(T, S;k)$ , then we say that $S$ and $T$ are symmetric.

Theorem $\mathrm{D}$ (Tutte [4]) Let $G$ be a graph, and let $k$ be a positive integer. Then

(1) $\delta_{G}(S,T;k)\equiv k|V(G)|$ (mod 2) for each disjoint subsets $S$ and $T$ of $V(G)$ , and

(2) $Gh$as a $k$-factor if and only if $\delta_{G}(S,T;k)\geq 0$ for each pair of disjoint subsets $S$

and $T$ of $V(G)$ .

2 Proof of Theorem 1
We apply induction on $|V(G)|$ . For $|V(G)|=1$ the assertion is true. Now let $\mathrm{G}$

be given with $|V(G)|\geq 3$ , and assume that the theorem holds for graphs with fewer
vertices. Assume on the contrary that $G-x$ has no 2-factor for any $x\in V(G)$ . Then,
there is some pair of disjoint subsets $S’,T’\subseteq V(G)-x$ for every $x\in V(G)$ such that
$\delta_{G-x}(S’, T’;\mathit{2})\leq-\mathit{2}$ by Theorem D. Let $S=S’\cup\{x\},$ $T=T’$, and $U=G-(S\cup T)$ .
Then,

$\delta_{G-x}(S-x,T;2)\leq-\mathit{2}$ . (1)
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Since $G$ is $\mathit{2}r$-regular,
$\delta_{G}(S,T;\mathit{2}r)\geq 0$ (2)

for each disjoint subsets $S$ and $T$ of $V(G)$ . By the definition of odd component, $h_{G-x}(S-$

$x,T;\mathit{2})=h_{G}(S, T;\mathit{2})$ holds. Let $h_{G}(S, T)=h_{G-x}(S-x,T;\mathit{2})=h_{G}(S, T;2)$ . Subtracting
(2) $\mathrm{h}\mathrm{o}\mathrm{m}(1)$ , we have

$(2-\mathit{2}r)|S|-2-(2-2r)|T|\leq-2$

$-(\mathit{2}-2r)|T|\leq-(2-\mathit{2}r)|S|$

$|T|\leq|S|$ . (3)

By (1) and (3),

$\sum_{y\in T}\deg_{G-S}(y)\leq h_{G}(S,T)$. (4)

On the other hand, by the definition of odd component,

$\sum_{y\in T}\deg_{G-S}(y)\geq e_{G}(T, U)\geq h_{G}(S,T)$ . (5)

By (4) and (5),

$\sum_{y\in T}\mathrm{d}_{\mathfrak{X}c-S}(y)=h_{G}(S,T)$. (6)

By (1) and (6),

$2|S|-2-\mathit{2}|T|\leq-2$

$\mathit{2}|S|\leq 2|T|$

$|S|\leq|T|$ . (7)

By (3) and (7),
$|S|=|T|$ . (8)

Since $\delta_{G}(S,T;\mathit{2})=\delta_{G}(T, S;2)$ by (8), $S$ and $T$ are symmetric. Moreover, $|U|$ is odd.
By (6),

$e_{G}(T,T)+e_{G}(T, U)=h_{G}(S, T)$ . (9)
By (5) and (9),

$e_{G}(T, T)=0$ and $e_{G}(T, U)=h_{G}(S,T)$ (10)
If there is no odd component of $U,$ $e_{G}(T, S)=\mathit{2}r|T|$ holds by (9). Then, since $e_{G}(S\cup$

$T,$ $U)=0$ holds, $G$ is disconnected. This is a contradiction. Thus, there is some odd
component of $U$ . Note that $e_{G}(V(C),T)=1$ for each odd component $C\in \mathcal{H}_{G}(S,T)$ . Let
$\mathcal{H}_{G}(S,T)=\{C_{1}, \ldots, C_{z}\}$ . Let $a:,b_{i}\in V(c_{:}),$ $S:\in S,$ $t:\in T$ for every odd component
$C_{i}$ $\in H_{G}(S,T),$ $1\leq i\leq z$ , such that $N_{G}(a_{i})$ A $\{t_{i}\}\neq\emptyset$ and $N_{G}(b:)\cap\{s:\}\neq\emptyset$.
We show that there is subgraph $H_{*}$. of $G$ such that $\deg_{H:}(S:)=\deg_{H_{i}}(t:)=1$ and
$\deg_{H_{i}}(x:)=2$ for any $x\in V(C_{i})$ for any odd component $C_{i}\in \mathcal{H}_{G}(S,T)$ . Now, for
every odd component $C_{*}$. $\in \mathcal{H}_{G}(S,T)\deg_{C_{l}}(x)=\mathit{2}r$ for every $x\in V(C_{i})-\{a_{*}., b_{i}\}$ and
$\deg_{c_{:}}(a_{i})=\deg_{c_{:}}(b_{i})=\mathit{2}r-1$ . Therefore, $C_{1}\cup\{a:b_{i}\}$ is 2$r$-regular for any odd component
$C_{1}\in \mathcal{H}_{G}(S,T)$ . $C_{i}\cup\{a_{i}b_{i}\}$ has $r$ disjoint 2-factors by Theorem A in $Ci\cup\{a_{i}b_{i}\}$ . Let
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$F_{C_{1}}$ be a 2-factor including new edge $\{a_{i}b:\}$ for each odd component $C_{i}\in \mathcal{H}_{G}(S,T)$ in
$C_{1}\cup\{a_{i}b_{i}\}$ . Then, $(F_{C_{i}}-\{a:b:\})\cup\{a_{i}i_{1}\}\cup\{b_{i^{S:}}\}$ is the desired subgraph $H_{1}$ of $G$ for
each odd component $C_{i}\in H_{G}(S, T)$ . On the other hand, there is also 2-factor $F_{C’}.\cdot$ not
to include new edge $\{a_{i}b_{1}\}$ for each odd component $C_{i}\in\prime H_{G}(S,T)$ in $C_{i}\cup\{a_{i}b_{i}\}$ , that
is, $C_{1}$ has a 2-factor for each odd component $C_{l}\in \mathcal{H}_{G}(S, T)$ in $C_{l}$ .

Next, we show that there is some $x\in V(C_{i})$ for some odd component $C_{1}\in \mathcal{H}_{G}(S,T)$

such that $C_{j}-x$ has a 2-factor, or there is a subgraph $H$ of $G$ including every vertices
of $C_{1}-x,$ $s_{i}\in S$ and $t_{j}\in T$ as above. Let $C$ be this odd component $C_{i},$ $s=s_{i},$ $t=t_{i}$ ,
$a=a_{i}$ and $b=b_{i}$ . By the induction hypothesis, for this odd component $C\in \mathcal{H}_{G}(S,T)$

there is some $x$ such that $(C\cup\{ab\})-x$ has a 2-factor $F_{C}$ since $C\cup\{ab\}$ is $2\mathrm{r}$-regular
and $|V(C)|<|V(G)|$ .

If $F_{C}\cap\{ab\}\neq\emptyset$ for this odd component $C\in \mathcal{H}_{G}(S,T),$ $(F_{C}-\{ab\})\cup\{at\}\cup\{bs\}$

is the desired subgraph $H$ . Then, there is a path $P$ from $s$ to $t$ such that $C\cap P\neq\emptyset$

for this odd component $C\in \mathcal{H}_{G}(S,T)$ . As well as this odd component $C\in \mathcal{H}_{G}(S,T)$ ,
we can obtain a path $P_{1}$ for every odd component $C_{i}\in \mathcal{H}_{G}(S,T)$ . Let $G’$ be a graph
obtained $\mathrm{h}\mathrm{o}\mathrm{m}G$ by contracting the path $P_{i}$ into a new edge $p:$ , and excluding $C_{i}-P$:
in $G-x$ for every odd component $\mathit{0}_{:}\in \mathcal{H}_{G}(S,T)$ . Let $p=p$: for $p:\in C$ for some odd
component $C\in \mathcal{H}_{G}(S,T)$ . Then, graph $G’$ becomes $\mathit{2}r$-regular graph. By Theorem $\mathrm{A}$ ,
$\mathrm{G}’$ has a 2-factor $F^{j}$ avoiding $p$ . If $F’\cap\{p_{\dot{*}}\}\neq\emptyset$ , we can use the subgraph $H_{:}$ of $G$ . If
$F’\cap\{p:\}=\emptyset$ , we can use the 2-factor $F_{C’}.\cdot$ in $C_{1}$ excluding new edge $a:b$: for any odd
component $C_{i}\in \mathcal{H}_{G}(S,T)-C$ . Thus, $G$ has a 2-factor.

If $F_{C}\cap\{ab\}=\emptyset,$ $C-x$ has a 2-factor. There is a path $P_{1}\mathrm{h}\mathrm{o}\mathrm{m}s$ to $t$ such that
$c_{:}\mathrm{n}P:=\emptyset$ for each odd component $C_{1}\in \mathcal{H}_{G}(S, T)-C$ . Let $G’$ be a gaph obtained from
$G$ by contracting the path $P_{i}$ into a new edge $\mathrm{p}_{1}$ , and excluding $C_{i}-P_{1}$ in $G-x$. Then,
$y\mathrm{a}\beta \mathrm{h}G’$ becomes $2r^{-}$-regular graph. Note that $\mathit{2}r^{-}$-regular graph is graph obtained
from $\mathit{2}r$-regular graph by excluding an edge. Since $G’\cup\{st\}\mathrm{i}8\mathit{2}r$-regular, $G’\cup\{st\}$ has
a 2-factor avoiding $\mathit{8}t$ by Theorem $\mathrm{A}$ , that is, $G’$ has a 2-factor $F’$ . If $F’\cap\{p:\}\neq\emptyset$,
we can use the subgraph $H_{i}$ of $G$ . If $F’\cap\{p_{1}\}=\emptyset$, we can use the 2-factor $F_{C’}.$

‘
in $C_{i}$

excluding new edge $a:b$: for any odd $\mathrm{c}\mathrm{o}\iota \mathrm{n}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}C_{i}\in \mathcal{H}_{G}(S,T)-C$. Thus, $G$ has a
2-factor.
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