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(Some Remarks on Alternating Context-Free Grammars)

— An Extended Abstract —

BMEXE £F - BNt <2 $i8 (Etsuro Moriya)

Abstract

R4 CFG (ACFG) i, XBREEXHE: (CFG) DIEMIRATHIC alternation ZANB T
LItk D [Mor89) TEAZHhiz. [MHHOO05] Ti, CFG IC (alternation 2&T3) RAE%E A
N3 T LIk D IRERZRHE CFG (SACFG) 2 BAL, RREFvvasdlrytr—rvhy
(APDA) ORBTII 2D TEX . £/ —FTiE, A& Y7 IEEIC alternation % A=
PDA &, ACFG IC (alternation D&\ KABZMA L7z EACFG ICDWTHEL, ACFG
& sACFG DM (132 5% 5. %7, ACFG*® sACFG DILEOERRENTOVTES
k9B,

The first attempt to introduce ‘alternation’ into the CFG to define the ACFG was pro-
posed in [Mor89]. Another alternating CFG called the state-alternating CFG (sACFG)
was introduced recently in [MHHOQS5], where characterizations of the alternating push-
down automaton (APDA) by means of ACFGs were established. In this note we introduce
further new variants of alternating CFG and PDA to obtain characterizations of ACFG
and sACFG. We also investigate relationships among some extensions of the grammars.

0 Introduction

SREIRE B30E (ACFG) OBBRIIRARE T v a9 A4 — < b > (APDA) 258
T2 ENT [Mor89] IcBWTEAE iz, ACFG(alternating context-free grammar) I 5 FiiH
G=(V,U,%, P,S) TEDENBH, CCT, V RIHEREF LT 7Ry b, UCV &eH
B (universal) JEMEIRACSOME, V \U BTFER (existential) IEEMILEORE, ¥ XK
BEB7LV77Xy Lk, SeV IIHRERE, PIRXREBETOA Y3 VY ORBEATH3.

G IK BT 2 WHOBE THEAERIEREIRSILER O CFG I 51} 3 IERHINE L RAMICE
EMINMTHEDONEY, 2HEOIERRIESICR, TOREZELIFEO>TaFyya TN
TERARCGEAT % (FOBR, HBEOXERVFERICERENS). 5L T, BHRXE
RO 1 TR D TRk, XERESAINVELTHHITFONTREES. RBEBw NG IC
BOWTERE N HRENBDIE, FOKIBEEOKR T TRORKGZ2HlT L OEE
TEBRETHS .

() T DRBICIXHREEE § BINVUFTEN T3S,
(i) T DEDEICE w BSNUFFERTNES.

LITTid, ACFGDZ5 A% ACFG THbDL, ACFGIC K-> TERINZER/DY S5 A%
L(ACFG) TEDLT. &, «7/uA o vayi2flAACFGIC& > TERENBEHDY S
A% L(c-free-ACFG) T&DL, BB ACFGIKKH>TEBENBZIRDY T A% L(linear-ACFG)
THEDYT. 5, BREBHICEEE LT ACFGILE>THRENSZEH/DY 5 A% Lim(ACFG)
BEKY Lim(e-free-ACFG) THRDT.



[Mor89] Tid APDA DIHEIH BB V- Tk, Z0M%, ACFG ICHIT 2 FBEE RaR
AN OMIERENT WS, FIRIE, [ChTo90] TiE, Lim(linear-ACFG) & Ly (&-free-ACFG)
LWt ACFGEBD IV SALHERY 5 XD OB BR

P = LOG(Lim(linear-ACFG)), PSPACE = LOG(Ly(e-free-ACFG))

ARENTVS. TTT, LOG(L) REBOI IR L ONBBEHBTOTTOMEEEDT.
I ACFG IZARNICREBH LA E0DT, BRIIDORLS P = LOG(L(linear-ACFG)) 28
bh3.

RiC, [IJW92] TiE, L(APDA) = L(linear-erasing-ACFG) &\ 5 T X BIIRAT BT &iC
&b, RE2AMNE L(APDA) DGENRFBMA I 25X T3, TTT, ACFG G MiEHE
B (linear erasing) THB LIE, HEAEH c BEELT, CEBOVTERENZEE n DED
BLEIVHEL c-n THAXFEALH IV E LTRATHENE S kBHAREOZ 2 TH
3. UL, [IW92] THWASN TV ACFG Tid, #iiFR w ISR (endmarker) § 21
O $Sw$ LW BOBEFEERZZ LickhBHOOY -V EFX>TWADTHEIE
D ACFG Tid7&\ . EPE, L(linear-erasing-ACFG) C L(APDA) MWD IO T L IXARICAEA
TEZN, BOIFRHRDRY ILDOHE S HMidbh > T

#F& L& [MHHOO5] IKHW\T, [Kas70] Ic &k b A X nIIRRERF & CFG (BIF, ECFG &
B&ECd 3) DAL alternation DR L BT DT BT 2Tk Y, RD& S kikREfH ¥ ACFG
(sACFG) 28 AL, APDA OXENBMMAFICREIILT. TT T, sACFG(state-alternating
context-free grammar) £13 8 T

G= (Q,U)VaE,PﬂS'qu,F)

TREZVATLTHS. U C Q IZ2FIRM. (universal state) DIRE, F C Q IZZEIRRBD
RETHE. GIKBIBUERE (p,0) BBEON (peQ, ac (VUI)) Thb. p BEE
R, $hbbpe Q\U THABAIKE, o DRICHENZIHRHIEE A (= a1daz TH
Ary3)xTarvar (pA) - (¢,8) IK&>T (p,a) H5 (g, a1Pa;) X EHERHT S
LERTS. LiL, &L p B2HIRBTHD, ETN (p,A) THE/OF I aVHeRT

. (p)A)_' (QI,ﬂl), ey (P,A) - (%ﬂa)
Bibs- TSREIIC, (p, a1Aay) »oik

(‘Il’alﬂla2)7 rery (qs’alﬂQQQ)

EVI BRI THARICESBRHI NI LD L ERT S, 20O%, ThEDOXHERIEEN
FRRCFRICEERB 2 RIDNTRDATVE. CDX3IC, G lcBlr 28, BRE
A—bR P VRBIBHBEARDK S CBHENS. HOTIH (p,0) T, EOEDITANVE
(p,w), pe F, THEIEL S BBHARDEET R L E we X & G L& TERI NIV,
G BERT ARMBOREE L(G) THDY.

BBIC, BERHICOWTIRIBRZETELEVS, HERRARE (leftish derivation) 2RD
X3 ICTERT B, Thid [KasT0] KB THDTEBATNIRETHS. (p,A) — (g,0) B
adova THY, fOVHEBZTL T4y VAR p OFTCHATEE/0A vy
VRN E, HERH (p,f4Y) = (¢,8ay) RERBRETHI LS. ThbB, g ikIEK
MESZIATHOTEIVY, KRB p OTTRENEBZRIZT0L I a VHVEERT,
pDTTTOXY Y a VBT & 3BEDIHKIKILSH A TH3 L\ 5 DL HERBE DOFRE
THB. ACFGR e-7aHX I ¥ aYifFix ACFGICK > THEREBHO T CEREh
BEWMD IS A% Liy(ACFG) B&U Ly(e-free-ACFG) THEDT.
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1 Yet Another Variant of ACFG

We will consider yet another variant of ACFG. An extended alternating contert-free grammar,
EACFG for short, is a context-free grammar G = (Q, V, U, %, P, S, go, F) with states, in which
a subset U of the set of variables V is designated as universal variables, and a subset F of
the set of states Q is designated as final states. Let (p, A7) be a sentential form of G, where
peQ, B,ye(VUI), and A € V. If Ais an existential variable, that is, A € V \ U, then
we choose a production (p, A) — (g, &) and derive (g, Bory) from (p, BA7). If, however, A is a
universal variable, and if (p, A) — (i, &) (1 £ ¢ £ k) are all the productions with left-hand
side (p, A), then from (p, BAy) we obtain all the sentential forms (g, Bayy) (LS i S k) in
parallel, and following this step all these sentential forms are rewritten further, independently
of each other. In this way a derivation tree is obtained from G in analogy to the computation
tree that is associated with an alternating automaton and its input. The language L(G) that
is generated by G consists of all those words w € X* for which there exists a derivation tree
such that the root is labelled with the pair (go,S) and each leaf is labelled with a pair of
the form (p,w) with p € F. Here we remark that the labels of different leaves may differ
in the first component, that is, in the final state, but that they must agree in the second
component, that is, in the terminal string generated. Thus, the EACFGs are obtained from
the ACFGs by introducing states, that is, in just the same way as the ECFGs are obtained
from the context-free grammars. Also the EACFGs can be seen as being obtained from the
ECFGs by distingnishing between universal and existential variables, that is, in just the same
way as the ACFGs are obtained from the context-free grammars. Hence, the EACFGs unify
these two generalizations of the context-free grammars.
As we see below, the EACFGs are equivalent in expressive power to the sACFGs.

Theorem 1.1. The EACFG and the sACFG have ezactly the same ezpressive power.

Thus, in what follows we will mainly consider the sACFGs. Concerning the relationship
between ACFG and sACFG, the next theorem shows that sACFG is at least more powerful
than ACFG.

Theorem 1.2. For each ACFG G, we can construct an sSACFG G’ such that Lm(G) = Lm(G’)
holds for each derivation mode m, m € {leftmost, rightmost, leftish, unrestricted}. Moreover,
if G is &-free and/or (right-) linear, then so is G'.

2 A Machine Characterization

The original purpose for introducing the ACFGs in [Mor89] was to give a characterization for
the language class L(APDA), the class of languages accepted by alternating pushdown au-
tomata. The following characterization of APDA in terms of sSACFG was shown in [MHHOO5].

Theorem 2.1. Lim(sACFG) = L(APDA).

We will next derive a characterization of the language class £)n(ACFG) in terms of a
variant of the alternating pushdown automata, the so-called stack-alternating pushdown au-
tomaton, abbreviated as stackAPDA. A stackAPDA is a pushdown automaton which has a
single state only and whose pushdown symbols are divided into two types, universal and
ezistential ones. Further, a stackAPDA accepts by empty pushdown. Thus, a stackAPDA is
denoted by a 5-tuple M = (X, T, U, 4, Z;), where ¥ and I' are the finite sets of input and push-
down symbols, respectively, U C T' is the set of universal pushdown symbols, and Zy € T' is
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the initial pushdown symbol. The transition relation J is a partial function from (XU{e})xT
into the finite subsets of I'*. A configuration (z, Za) € X.* x I'T* of M represents the current
content x on the input tape and the current content Za on the pushdown store, where the
input head is on the leftmost symbol of 2 and Z is the topmost symbol on the pushdown
store. The initial configuration on input z is (z, Zy). For a given input z, a computation
tree for M is a finite rooted tree the nodes of which are labelled with configurations. It is
defined in the same way as that for an ordinary alternating pushdown automaton, except
that the pushdown symbol on the top of the pushdown store of M plays the counterpart to
the universal or existential states of an ordinary alternating pushdown automaton. Thus, an
input z is accepted by the stackAPDA M, if there is a computation tree for M such that the
root is labelled with (z, Zp), and each leaf is labelled with the pair (g, €). Such a computation
tree is called an accepting computation tree for the input z.

It is important to note that if a is an input symbol and Z is a universal stack symbol
of a stackAPDA M, and if M contains the transitions §(a,Z) = {B1,...,Bp} as well as
0(e,Z) = {m1,...,7}, then a node m of a computation tree of M that is labelled with
a configuration of the form (ax, Za) has either p sons labelled with (z, Bia), ..., (z, Bpa),
respectively, or ¢ sons labelled with (az,y1a),.. ., (az,y4a), respectively. That is, we have
to choose nondeterministically whether to apply the a-transitions or the &-transitions, and
we cannot apply both simultaneously. If we relax that condition, requiring that in the above
situation both the a- and the e-transitions must be applied, then we say that the stackAPDA
M works in relazed mode. By Lyejaxed(M) we denote the language that is accepted by M in
relaxed mode, and Lyejaxed (stackAPDA) denotes the class of all languages that are accepted
in this way.

Lemma 2.2. L(stackAPDA) = Lielaxed(stackAPDA).

Hence, we see that for stackAPDAs, it does not matter whether we consider the standard
mode or the relaxed mode of operation. Based on the normal form result for ACFGs and the
above result on stackAPDAs we can derive the following characterization.

Theorem 2.3. Lim(ACFG) = L(stackAPDA).

3 Extensions of Alternating CFGs

It should be natural to apply the notion of alternation to each type of grammars in the
Chomsky hierarchy. For the purpose, we will consider in this note alternating variants of the
type i grammar in the Chomsky hierarchy.

A string of variables and terminal symbols is said to be universal if the leftmost occurrence
among occurrences of variables is a universal variable, otherwise it is ezistential. Accordingly
a production is said to be universal if its lefthand side is universal, otherwise it is existential,
Without loss of generality, we may assume that each production of a type 0 grammar is of
the following form:

a—f,

where « is a string of variables and 3 is a string of terminal symbols and variables.

Now, derivation trees for a given type 0 grammar can be defined similarly as those for
ACFGs. To be precise, let us restate how productions are to be applied universally (Ex-
istential application of a production is defined similarly). Let n be a node of a derivation
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tree labelled with a sentential form a8y. If 8 — m,...,3 — n are the productions in P
each of whose lefthand sides is 3, then these productions must be applied simultaneously to
the same occurrence of B in the sentential form afy to yield k sons of n, with respective
labels amy, . .., anyy. If, in addition, the restriction that o is a terminal string is imposed,
then this derivation step is said to be leftmost. By Lim(X) we denote the class of languages
generated by grammars of type X with respect to the leftmost derivation mode.

In [MN97] the fact that £;m(ACSG) = L(APDA) holds was shown by a rather complicated
proof. Based on the equivalece Lin(sACFG) and L(APDA) established in [MHHOO05] we can
give a generalization of their result by a simpler proof.

Theorem 3.1. Lin(sACFG) = Lim(Atype0).

It should be natural and easy to introduce a ‘state-alternating’ vartiant of any type of
grammar in the Chomsky hierarchy. For each type of grammar X, let sAX denote the state-
alternating variant of X that is defined similarly as sACFG is defined from CFG.

We have the following equivalence.

Theorem 3.2. Lim(Atype0) = Lim(sAtype0) = Lim(SACFG).

Obviously we have Lim(ACSG) C Lim(Atype0) and thus we also obtain the following
corollary.

Corollary 3.3. £;n(ACSG) C Lim(SACFG) = L(APDA).

We don’t know at present whether or not the converse inclusion of Corollary 3.3 holds.

Now, let ALBA stand for ‘alternating linear bounded automaton.’ We would like to know
any relationship of Lim(sACFG) to L(ACSG), since it is known that L(APDA) = L(ALBA)
[CKS81) and L(APDA) = Lim(sACFG) [MHHOO05]. We have the following result.

Theorem 3.4. L(ACSG) = L(ALBA). .
Corollary 3.5. L(ACSG) = L(APDA) = Lin(sACFG).
Corollary 3.6. Lim(ACSG) C L(ACSG).

The remaining problem we have to consider is the converse of Corollary 3.6. By Corol-
lary 3.5, this is equivalent to the inclusion Lijn(SACFG) € Lim(ACSG). As far as we restrict
ourselves to &-free sSACFGs, this inclusion is in fact true.

Lemma 3.7. L, (¢-free SACFG) C L (ACSG).

On the other hand, by a similar method used in the proof of Theorem 3.1, we can prove
the following equivalence. B

Theorem 3.8. Lin(sACSG) = Lim(ACSG).

4 The leftish mode

Compared to the class Lim((s)ACFG) of languages generated by (s)ACFGs with respect to the
leftmost derivation mode, almost nothing is known about the corresponding class Ly ((s)ACFG)
of languages generated by (s)ACFGs with respect to the leftish derivation mode.

Obviously we have L, (e-free ACFG) C Li;(ACSG). In fact, we can prove a little bit more.
Note that Ly (e-free ACFG) C Ly (e-free SACFG) [MHHOO05]. Also note that it is not known
whether or not Ly(¢-free SACFG) C Ly (e-free ACFG) holds.

We can show the following interesting result:
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Theorem 4.1. Ly (e-free SACFG) = L, (s-free sACFG).
Theorem 4.2. L£;;(ACSG) = Lj(sACSG).

It is known that Ly(s-free SCFG) = £(CSG) [Mau73, Sal72]. Corresponding to this fact, it
should be interesting to know whether or not the equivalence Ly (e-free SACFG) = L(ACSG)
holds. It is already known that L(e-free ACFG) C Ly (e-free SACFG) [MHHOO5).

5 Problems to be considered further

In this note we have considered mostly several classes of languages generated by (state-) al-
ternating phrase-structure grammars with respect to leftmost derivation mode, as extensions
of (s)ACFG. The most important problem we have left open is the following.

Open Problem 1. Do the following equivalences hold?
(1) Lin(ACFG) = L (sACFG) ¢
(2) Does L{ACFG) = L(sACFG)?

As to the difference of leftmost and unrestricted modes of derivations, the following prob-
lem is to be considered.

Open Problem 2. Does Lim(ACSG) = L(ACSG) hold?

Among many known inclusions about alternating CFGs, the following one is interesting,
because it can be regarded as the corresponding variant of the fact that the language generated
by an arbitrary type O phrase structure grammar with respect to leftmost derivations is a
contex-free language [Mat64].

Open Problem 3. Does Lim(ACFG) = Lm(Atype0) hold?

Other important problems to be considered are to find some relationships between the
langauges classes generated by alternating grammars with respect to leftmost, leftish and
unrestricted derivation mode. For example,

Open Problem 4. Can we prove Ly(c-free sACFC) = L(ACSG) ¢

Note that for non-alternating grammars we have Ly (s-free sCFG) = £(CSG).

Taking the above result concerning the relationship between ACSGs and ACFGs (with
respect to either leftmost mode or unrestricted mode) into consideration, it seems meeningful
to consider alternating version of growing CSGs [BO98].

Acknowledgement. The author expresses his sincere thanks to Prof. F.Otto of Kassel
University, Germany, for many fruitful discussions on the results presented here.
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