
TOWARDS A MODULI THEORETIC
CHARACTERIZATION OF A RATIONAL PRIME

$\mathbb{Q}$-FANO 3-FOLD OF GENUS SIX WITH ONE
$\frac{1}{2}(1,1,1)$-SINGULARITY

高木寛通 (HIROMICHI TAKAGI)

1. DEFINITIONS, MOTIVATIONS, $\ldots$

Definition 1.1. A projective 3-fold $X$ is called a $\mathbb{Q}$ -Fano 3-fold, or
simply, Fano 3-fold if $X$ has only terminal singularities and the anti-
canonical $\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{s}\mathrm{o}\mathrm{r}-K_{X}$ is ample.

The genus $g(X)$ of a Fano 3-fold $X$ is defined to be $h^{0}(-K_{X})-2$ .
Note that, in case $X$ is smooth, $2g(X)-2=(-K_{X})^{3}$ by the Riemann-
Roch theorem and the Kodaira vanishing theorem.

A Fano 3-fold is called prime if the group of numerical equivalence
classes of $\mathbb{Q}$-Cartier Weil divisors is generated by the allti-canonical
class. A quartic hypersurface in $\mathrm{P}^{4}$ is a simple but interesting example
of a. prime Faaio 3-fold.

Aim 1.2. Find as many $\mathrm{a}_{\mathrm{t}}\mathrm{s}$ possible (prime) Fano 3-folds $X$ which can
be recovered from data on curves $C$, ‘characteristic’ for $X$ , ideally, as a
moduli space of some objects on $C$ .

S. Mukai found bealltiftll examples of smooth prime Fano 3-folds for
which such characterizaztions are possible. I will explain his discovery.
Before that, let me show how to find candidates of $C$ to recover $X$ . It
is done by $\mathrm{v}\mathrm{a}r$iallts of the Fano-Iskovskih double projection from a, line
on a prime Fano 3-fold (Fano, Iskovskih, Takeuchi).

Example 1.3. See [IP99] or [Take89] for details. Let $X$ be a smooth
prime Fano 3-fold with very $\mathrm{a},\mathrm{n}\mathrm{l}\mathrm{p}\mathrm{l}\mathrm{e}-K_{4\mathrm{x}}$ in this example. I embed $X$

in $\mathrm{P}^{g(X)+1}$ by the anti-callonical linear system.
(1) $(g(X)=7)$ Let, $q$ be a, general conic (with respect to the anti-

canonical embedding) on $X$ and consider the rational map defined
by the linear system $|-2K_{X}-3q|’$. the sublinear system of $|-2K_{d\mathrm{Y}’}|$

consisting of the members with multiplicities 3 along $q$ . The image
turns out to be $Q^{3}$ , a smooth quadric 3-fold. This rational map is

数理解析研究所講究録
1490巻 2006年 1-10 1



Hiromichi Takagi

the composite of the three elementary rational maps as follows:

$X———\succ Q^{3}\nearrow f=Y-\succ Y’\backslash ^{f’}\Phi_{|-2K\chi-3q|}$

’

where $f$ is the blow-up along $q,$ $Y–*Y’$ a flop, and $f’$ is $\mathrm{t}_{1}\mathrm{h}\mathrm{e}$

blow-up of $Q^{3}$ along a smooth curve $C_{g}$ of genus 7 and degree 10.
For this example, I will take $C_{q}$ as $C$ .

(2) $(g(X)=9)$ Let $l$ be a general line and consider the rational map
defined by the linear system $|-K_{X}-2l,|^{1}$. Similarly to the above
case, I obtain the following diagram:

$X—-=_{2l|}---\succ \mathrm{P}^{3}\nearrow f=Y-\succ \mathrm{Y}’\backslash ^{f’}\Phi_{|-K_{X}^{-}}$

’

where $f$ is the blow-up along $l,$ $Y–*Y’$ a flop, and $f’$ is the blow-
up of $\mathrm{P}^{3}$ along a smooth curve $C_{l}$ of genus 3 and degree 7. For this
example, I will take $C_{l}$ as $C$ .

(3) $(g(X)=12)$ In this exanlple, I consider also the rational map
defined by the linear system $|-K_{X}-2l|$ for a general line $l$ and I
obtain the following diagram:

$X———\succ B_{5}\nearrow f=\mathrm{Y}-\succ Y’\backslash ^{f’}\Phi_{|-K_{X}-2l|}$

.

where $f$ is the blow-up along $l,$ $Y–*Y’$ a flop, $B_{5}$ is a smooth
quintic del Pezzo 3-fold, 2 and $f’$ is the blow-up of $B_{5}$ along a,

smooth curve $C’\iota$ of genus $0$ and degree $5^{3}$. For this example, I will
not take $C_{l}\mathrm{a}_{\iota}\mathrm{s}C$ . Instead I will ta,ke the Hilbert scheme of lines
on $X$ , which I can compute by the diagraln noting general lines are
transformed to general lines on $B_{5}$ intersecting $C$ . Consequently,
$C$ is a plane quartic curve and is smooth if $X$ is general in the
moduli.

$1_{\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{t};}$ rational map is the so-called double projection from a line.
$2\mathrm{A}$ quintic del Pezzo -fold is a Fano 3-fold such that $-K_{X}=2H$ , where $H\in$

Pic $X$ and $H^{3}=5$ .
$3_{\mathrm{T}\mathrm{h}\mathrm{e}}$ degree is with respect to $H$ .
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genus six

Keep in mind the notation of Example 1.3. $\mathrm{M}\iota 1\mathrm{k}\mathrm{a},\mathrm{i}_{\iota}’ \mathrm{s}$ theorem (with
coinments) is the following (see $[\mathrm{M}\iota 1\mathrm{k}01]$ ):

Theorem 1.4. (1) $(g(X)=7)$

$X\simeq\{[\mathcal{E}]|\mathcal{E}$ is a rank 2 semi-stable vector bundle on $C$

$wi,th\det \mathcal{E}=I\mathrm{f}_{C}$ and $h^{0}(\mathcal{E})\geq 5\}$ .
This is an exanlple of non-abelian Brill-Noether locus.

(2) $(g(X)=9)$ In this case, $X$ cannot be recovered from $C$ because
the moduli number of $X$ is 12 4 and the moduli number of $C$ is 6.
Thus some data on $C$ is needed. Mukai showed the following and
used it as a, data to recover $X$ :
The Hilbert scheme of conics on $X$ is the smooth surface $\mathrm{P}(\mathcal{F})$ ,

where $F$ is a Nagata stable vector bundle of rank $2^{5}$.
$X\simeq\{[\mathcal{E}]|\mathcal{E}$ is a rank 2 semi-stable vector bundle on $C$

with $\det \mathcal{E}=\det F+K_{C}$ and $\dim Hom(\mathcal{F}, \mathcal{E})\geq 3\}$ .
This is an example of another kind of non-abelial] Brill-Noether
locus.

(3) $(g(X)=12)$ Though the moduli numbers of $X$ and $C$ are the
saane, $X$ cannot, be recovered from $C,$ . As a data to recover $X_{J}$.
Mukai obtained the following:
There $ex\iota^{t}sts$ a unique theta-characteristic $\theta$ on $Cu’ ithl\iota^{0}(\theta)=0$

such that inside $C\cross C,$
$6$

$\{([l_{1}], [l_{2},])|l_{1}\neq l_{2}, l_{1}\cap l_{2}\neq\emptyset\}=\{([l_{1},], [l_{2},])|h^{0},(\theta+[l_{1}]-[l_{2}])>0\}$ .
A classic result of Scorza asserts $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}$ there exists a, unique quartic
curve $\Gamma$ living in the same $\mathrm{P}^{2}$ as $C$, associated to the pair $(C, \theta)$ (see
[DK93] $)$ . Let $F$ be a defining equation of $\Gamma$ .
$X$ is isomorphic to the closure in $\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}^{6}\check{\mathrm{P}}^{2}$ of the following:

$\{\langle l_{1}^{\vee},, \ldots l_{6}^{\vee}\rangle|l_{1}^{4}+\cdots+l_{6}^{4}=F\}$ ,

where $l_{i}$, is a linear form on $\mathrm{P}^{2}$ and $l_{i}^{\vee}$ is the point of $\check{\mathrm{P}}^{2}$ corresponding
to $l_{t}’$ .

Remark. Mukai conjectured that there is a similar characterization of
$\mathrm{a}_{1}$ prime $\mathrm{F}\mathrm{t}\mathrm{l}\mathrm{O}3$-fold $X$ of genus 10 (see [Mukb]). In this case, $C$, is
$\mathrm{a}$ , smooth curve of genus 2, which is the center of the blow-up of $Q^{3}$

$4_{\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}}$ can be computed by the diagram in Example 1.3.
$5\mathrm{A}$ vector bundle $\mathcal{F}$ of rank 2 is called Nagata stable if $\sigma^{2}\geq 3=g(C)$ for any

section $\sigma$ of $\mathrm{p}(\mathcal{F})$ .
$0_{\mathrm{R}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{l}1}$ that $C$ is the Hilbert scheme of lines on $X$ .
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appearing in the decomposition of the double projection from a general
line.

2. SINGULAR FANO $3$-FOLDS

I am tempted to find more examples of Fano 3-folds with charac-
terzations as in Theorem 1.4 and more curves which are characteristic
for some Fano 3-folds. In my thesis $[\mathrm{T}\mathrm{a}\mathrm{k}\mathrm{a}02\mathrm{a}]$ and $[\mathrm{T}\mathrm{a}\mathrm{k}\mathrm{a}02\mathrm{b}]$ , I classi-
fied prime Fano 3-folds $X$ with $g(X)\geq 2$ and with only $\frac{1}{2}$ -singularities.
7 More precisely, I classified the typ$e$ of the following $\mathrm{d}\mathrm{i}\mathrm{a}$,grrn, which is
a variaiit of the double projection from a line as in the previous section.

$X\nearrow^{Y--\succ Y’}f\backslash _{X’}^{f’}$

,

where $f$ is the blow-up at a, $\frac{1}{2}$ -singularity, $Y–*Y^{l}$ is a flop or a
composite of a flop and a flip, $f’$ is a, non-small extremal contraction.
I present two examples. I denote b.y $N$ the number of $\frac{1}{2}$ -singularities.

Example 2.1. (1) $(g(X)=8, N=2)$ . The diagram is as follows:

$X\nearrow^{Y--\succ Y’}f\backslash _{B_{5}}^{f’}$

,

where $Y–*Y’$ is a composite of a flop and a flip, and $f’$ is the
blow-up along $C\simeq \mathrm{P}^{1}$ with $\deg C=6$ .

This diagram is very similar to the smooth prime Fano 3-
fold of genus 12 (Example 1.3 (3)). Actually there are more
similarities. I studied this case more in detail with Francesco
Zucconi in Udine. I briefly explain our results. Assume that $X$

is general in the moduli.
$\bullet$ The Hilbert scheme of (

$1\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{s}^{8}’$ is isomorphic to a smooth
complete intersection of a $\mathrm{s}\iota \mathrm{n}\mathrm{o}\mathrm{o}\mathrm{t}\mathrm{h}$ quadric and a cubic in
$\mathrm{P}^{3}$ . I choose as $C$ this curve of genus 4.

$7 \mathrm{A}\frac{1}{2}$-singularity is, bv definition, analytically isomorphic to the origin of
$\mathbb{C}^{3}/(x, y, z)\sim(-x, -y, -z)$ , where $(x, y, z)$ is the coordinate of $\mathbb{C}^{3}$ . Usually this is
called a $\frac{1}{2}(1,1,1)$-singularity.

$8\mathrm{H}\mathrm{e}\mathrm{r}\mathrm{e}$ , by a line, I mean a curve with degree 1 with respect to $-K_{X}$ and with
arithmetic genus $0$ . There is a degenerate line, which is the union of two $\mathrm{P}^{1}’ \mathrm{s}$ with
degree - with respect to $-Kx$ .
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$\bullet$ As in the case of the smooth $\mathrm{p}\mathrm{r}\mathrm{i}\iota \mathrm{n}\mathrm{e}$ Fano 3-fold of genus
12, there exists $\mathrm{a}$ unique $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{t}\mathrm{a}$-characteristic $\theta$ on $c$, with
$h^{0}(\theta)=0$ such that inside $C\cross C_{l}$.

$\{([l_{1},], [l_{2}\rfloor)|l_{1}\neq l_{2},, l_{1}\cap l_{2}\neq\emptyset\}=\{([l_{1}], [l_{2}])|h_{\text{ノ}^{}0}(\theta+[l_{1}]-[l_{2}])>0\}$ .
A classic result of Scorza and complementary works by Dol-
gachev and Kanev assert that there exists a unique quartic
surface $\Gamma$ living in the same $\mathrm{P}^{3}$ as $C\mathrm{a}_{\mathrm{A}}\mathrm{s}\mathrm{s}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ to the $\mathrm{p}\mathrm{a}$,ir
$(C, \theta)$ . Let $F$ be a defining equation of $\Gamma$ .

$\bullet$ The Hilbert scheme $S$ of ‘conics’ is the $\mathrm{S}\mathrm{l}\mathrm{m}\mathrm{o}\mathrm{o}\mathrm{t}_{1}\mathrm{h}$ surface ob-
tained by blowing up $\mathrm{P}^{2}$ at 6 points lying on a smooth
conic, and $S$ is a weak del Pezzo surface of degree 3. De-
note by $\overline{S}$ the anti-canonical model of $S$ .

$\bullet$ As a characteriza,tion of $X$ , we conjecture the following:

Conjecture 2.2. ‘An explicit birational model’ of $X$ can
be embedded in $\mathrm{H}\mathrm{i}\mathrm{l}\mathrm{b}^{10}S$ as the closure of the locus

$\{\langle l_{1}^{\vee}, \ldots l_{10}^{\vee}\rangle|l_{1}^{4}+\cdots+l_{10}^{4}=F, l_{i}.\in S\}$ ,

where $l_{l}$, is a linear form on $\mathrm{P}^{3}$ and $l_{i}^{\vee}$ is the point of $\check{\mathrm{P}}^{3}$

corresponding to $l_{i}$ .
(2) $(g(X)=6, N=1)$ There are two type of Fano 3-folds with

these invariants, one of which is birational to a smooth cubic
3-fold, another is $\mathrm{r}\mathrm{a}$,tional. I only describe the latter case. The
diagram is $\mathrm{a}_{\mathrm{A}}\mathrm{s}$ follows:

$XQ^{3}\nearrow^{Y--\succ Y’}f\backslash ^{f’}$

,

where $Y–*Y’$ is a flop, and $f’$ is the blow-up along a smooth
curve $C$ with $g(X)=6$ and $\deg C=9$ . I will choose as a
characteristic curve for $X$ this $C$ and I will go back to this case
in the next section.

By looking at the list of Fano 3-folds with $g(X)\geq 2$ and with only
$\frac{1}{2}$-singularities, I obtain the following range of genus of curves as the
genus of characteric curves:

$g(c,)=1,2,3,4,5,6,7,8.9$ .
Thus I hope that Faluo 3-folds are useful for the study of curves with
small genus.
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3. RATIONAL FANO 3-FOLD WITH GENUS 6 AND WITH ONE
$\frac{1}{2}$ -SINGULARITY

From now on, let $X$ be

a rational Fano 3-fold of genus 6 and with one $\frac{1}{2}$ -singularity.

Assume that $X$ is general in the moduli.
First I describe the diagranl in Example 2.1 (2) more in detail. It is

easy to show the following:
$\bullet$ The composite of the embedding $Crightarrow Q^{3}arrow \mathrm{P}^{4}$ is defined by

the linear system $|K_{C}-p|$ , where $p$ is a point of $C$ .
$\bullet$ There exists a pencil of quadrics in $\mathrm{P}^{4}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}C\text{ノ}$. Th$e$ in-

terection of the quadrics in the pencil is a smooth del Pezzo sur-
face $S$ of degree 4. $S$ is the strict trallsform of the $f$-exceptional
divisor.

$\bullet$ There exist 5 $\mathrm{t}\mathrm{r}\mathrm{i}$-secants lines of $C$ , which are conta,ined in $S$ .
These are the images of flopping curves for $1”–*Y$ .

$\bullet$ $C$, is isomorphic to a complete intersection in $G(5,2)$ defined by
4 hyperplanes and 1 quadric hypersurface. By [Muk93], this is
equivalent to that $C$ has no $g_{4}^{1},$ $g_{5}^{2}$ and $C$ is not bi-elliptic.

The following is the main result of this article with colnments:

Proposition 3.1. $(A)$ In this cas$e,$ $X$ cannot be recovered from $C$,

because the moduli number of $X$ is 17 9 and the moduli number
of $C$ is 15. Thus some data on $C$ is needed as in $\mathrm{t}_{1}\mathrm{h}e$ cas$e$ of the
smooth prime Fano 3-fold of genus nine.
$(A1)$ The Hilbert scheme $\mathcal{H}_{5/2}$ of $\frac{5}{2}- cv,rves10$ on $X$ is the smooth

surface $\mathrm{p}(F)$ , where $F$ is a stable and globally generated vec-
$tor$ bundle of rank 2 obtained as follows: let $.1_{0}$ be the re-
striction of the universal quotient bundle on $G(5,2)$ (now $I$

consider that $C$ is embedded in $G(5,2))$ . $F$ fits into the exact
sequence

$0arrow Farrow F_{0}arrow k(p)arrow 0$ .
$(A2)X$ can be recovered from Jl‘.
Unfortunately in (A2), I did not succeed in recovering $X$ as a
moduli.

$(B)$ As for the recovery as a moduli of $X$ , I have the following weaker
result than expected.

$9\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ can be computed by the diagram in Example 2.1 (2).
$10_{\mathrm{b}\mathrm{y}}$ a $\mathrm{g}^{r}2$ -curve, I mean a curve with degree $\frac{\backslash r_{)}}{2}$ with respect to $-K_{X}$ and with

arithmetic genus $0$ .
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genus six

Let $g:\overline{\mathrm{P}}^{4}arrow \mathrm{P}^{4}$ be the blow-v,p of $\mathrm{P}^{4}$ along $C,$ , and $f\iota:\overline{\mathrm{P}}^{4}arrow Z$

the anti-flipping contraction of the strict transforms of 5 tri-secant
lines of C. Let

$M:=\{[\mathcal{E}]|\mathcal{E}$ is a rank 3 semi-stable vector bundle on $C$

with $\det \mathcal{E}=K_{C}-p$ and $h_{J}^{0}(\mathcal{E})\geq 4\}$ .

There exists a finite birational morphism $Zarrow M$ ,

Once I can prove $M$ is normal, I have $Z\simeq M$ . Since the anti-
canonical model $\overline{Y}$ of $Y$ is contained in $Z$ , I belive $\mathrm{t}\mathrm{h}\mathrm{a},\mathrm{t}\overline{\mathrm{Y}}$ can be
characterized as a moduli by using .1‘.

4. OUTLINE OF THE PROOF OF PROPOSITION 3. 1

For (A), it suffices to prove the following:
Let $C$ be a general smooth curve of genus 6. In particular. $C$ has no $g_{4}^{1}$

and $g_{5}^{2}$ and $C$ is not $\mathrm{b}\mathrm{i}$-elliptic. Let $p$ be a general point of $C$ . Finally
let X be a stable and globally generated bundle of rank 2 on $C$ obtained
as in the statement of Proposition 3.1 (A). Then there is an embedding
$Carrow Q^{3}$ such that by blowing up $Q^{3}$ along $C,$ $Q^{3}$ caii be biratinally
transformed to a Fano 3-fold of genus 6 as in the diagram in $\mathrm{E}_{\mathrm{X}\mathrm{a}\mathfrak{U}1}\mathrm{p}\mathrm{l}\mathrm{e}$

$2.1(2)$ .
I only show the following diagrain, from which the assertion is easily

verified:

$\Phi_{|K_{C^{-p1}\downarrow}}c,$

$rightarrow G(H^{0}(\mathcal{F}), 2)$

$\downarrow \mathrm{P}\mathrm{l}\ddot{\mathrm{u}}\mathrm{c}\mathrm{k}\mathrm{e}\mathrm{r}$

$\mathrm{P}^{4}$
$\mathrm{P}^{5}$ ,

where $Carrow G(H^{0}(\mathcal{F}^{-}), 2)\simeq G(4,2)$ is defined by

$x\mapsto Carrow(H^{0}(F)arrow F_{x})\in G(H^{0}(F), 2)$ .

I define $Q^{3}:=G(H^{0}(F), 2)\cap \mathrm{P}^{4}$ .
I will explain why $\mathrm{P}(F)\simeq \mathcal{H}_{5/2}$ . By the diagram in Example 2.1 (2),

I can show that a general $\frac{5}{2}$ -curve on $X$ is a birational transform of a
general line on $Q^{3}$ intersecting $C$ . Thus I explain how to attach to a
point $s\in \mathrm{P}(F)$ a line $l_{\epsilon}$ on $Q^{3}$ intersecting $C’$ . For a, point $s\in \mathrm{P}(F)$ ,
set

$V_{e}:=\{\sigma\in H^{0}(O_{\mathrm{P}(f)}(1))|s\in(\sigma)_{0}\}\subset H^{0}(O_{\mathrm{P}(f)}(1))\simeq H^{0}(F)$ .
Note that $\dim V_{s}=3$ since $F$ is globally generated. Set,

$l_{s}:=G(2, V_{s})\cap Q^{3}\subset G(2, H^{0}(F))=G(H^{0}(F)., 2)$ ,
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which is a line since $G(2, V_{\epsilon})\simeq \mathrm{P}^{2}$ and $Q^{3}$ does not contain a, plane.
Let $u:=\pi(s)$ , where $\pi:\mathrm{P}(\mathcal{F})arrow C$ is the natural projection. Note
that $u=\mathrm{k}\mathrm{e}\mathrm{r}(H^{0}(F)arrow \mathcal{F}_{u})$ in $G(2, H^{0}(F))$ . Thus $u\in l_{s}\cap C$ since

$\mathrm{k}\mathrm{e}\mathrm{r}(H^{0}(\mathcal{F})arrow.\mathcal{P}_{u})=\{\sigma\in H^{0}(\mathcal{O}_{\mathrm{P}(F)}(1))|\pi^{-1}(u)\subset(\sigma)_{0}\}\subset V_{s}$ .
Now I explain the proof of Proposition 3.1 (B), which depends on

the two propositions.
I start from the preparation for the first proposition. Let $U_{t}$ be

the 4-dimensional subspace of $H^{0}(K-p)$ corresponding to $t\in \mathrm{P}^{4}=$

$\mathrm{P}^{*}H^{0}(K-p)$ . Define $\mathcal{E}_{t}^{\vee}$ by
$0arrow \mathcal{E}_{t}^{\vee}arrow U_{t}\otimes O_{C}arrow K-p$ .

If $t\not\in C$ , then $U_{t}\otimes O_{C}arrow K-p$ is surjective, thus $\mathrm{d}\mathrm{e}1^{-},$ $\mathcal{E}_{t}=K_{C}-p$ . If
$t\in C$ , then ${\rm Im}(U_{t}\otimes O_{C}arrow K-p)=K-p-t,$ , thus $\det \mathcal{E}_{t}=R_{C}’-p-t$ .
Actually, Mukai constructs in [Muka] the vector bundle $\mathcal{E}\sim$ on $\overline{\mathrm{P}}^{4}\cross C$

such that for $t’.\in\overline{\mathrm{P}}^{4}$ , if $t$. $:=g(f’)$ gzl $C’$ , then $\overline{\mathcal{E}_{t’}}\simeq \mathcal{E}_{t}$ , or if $t\in C$ , then
$\tilde{\mathcal{E}_{t’}}$ fits into the exact sequence

$0arrow \mathcal{E}_{t}arrow\overline{\mathcal{E}}_{t’}arrow k(t)arrow 0$ .

Thus $\det\overline{\mathcal{E}_{t’}}=K_{C}-p$ for any $t’\in\overline{\mathrm{P}}^{4}$ .

Proposition 4.1. $\tilde{\mathcal{E}_{t’}}$ is semi-stable for any $t’\in\overline{\mathrm{P}}^{4}$ , and $\tilde{\mathcal{E}}_{t’}$ is st.rictly
semi-stable if and only if one of the following equivalent condition hold:
(1) there exists an $e\prime x$act sequence as follows:

$0arrow\delta-parrow\overline{\mathcal{E}_{t’}}arrow \mathcal{G}arrow 0$ ,

where 6 is a $g_{4}^{1}$ and $\mathcal{G}$ is a stable vector bundle of rank 2 $uniq^{l}u,ely$

determined by
$0arrow \mathcal{G}^{\vee}arrow H^{0}(K-\delta)\otimes O_{C}arrow K-\deltaarrow 0$ .

(2) $t’$ is on the stri $ct$ transform of a $tri$-secant line of $C,$ .
The correspondence between a $g_{4}^{1}$ in (1) and a $tri$-secant line in (2)
is given as follows: for 6 in (1), the unique member $|\delta-p|$ lies on a
$tr\iota’$-secant l\’ine, and $vi$ce versa.

In particular, the $S$ -equivalent $cla_{-}$-sses of $\overline{\mathcal{E}_{t’}}$ is constant on the strict
transform of a $tri$-secant line.

Proposition 4.2. Let $\mathcal{E}\in\Lambda I_{C}(3, K-p, 1)$ ,

$ev_{\mathcal{E}}:=H^{0}(\mathcal{E})\otimes O_{C}arrow \mathcal{E}$ and $\mathcal{E}_{1}:={\rm Im} e\mathrm{t}_{\mathcal{E}}^{)}$ .
Then diln $H^{0}(C, \mathcal{E})=4$ and rk $\mathcal{E}_{1}=3$ . Moreover one of the following
holds:
(1) $e\uparrow)\mathcal{E}$ is surjective. In this case, $\mathcal{E}$ defines a point of $\mathrm{P}^{4}\backslash C$ .
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(2) rk $\mathcal{E}_{1}=3,$ $h^{0}(\mathcal{E}_{1}^{\vee})=0$ and there exists an exact sequence as follows.’
$0arrow \mathcal{E}_{1}^{\vee}arrow \mathcal{O}_{C}^{\oplus 4}arrow K_{C}-p-xarrow 0$

for a po\’int $x\in C$ .
(3) rk $\mathcal{E}_{1}=3$ and $h^{0}(\mathcal{E}_{1}^{\vee})>0$ , and t.here exists an exact sequence $\alpha \mathrm{s}$

follows:
$0arrow \mathcal{G}arrow \mathcal{E}arrow\delta-parrow 0$ ,

where 6 is a $g_{4}^{1}$ and $\mathcal{G}$ is a stable vector bundle of rank 2 uniquely
determined by

$0arrow \mathcal{G}^{\vee}arrow H^{0}(K-\delta)\otimes O_{C}arrow K-\deltaarrow 0$ .

I omit the proof of these propositions. I just mention that the proof
are $\mathrm{b}\mathrm{a}_{\sim}\mathrm{s}\mathrm{e}\mathrm{d}$ on the so-called Castelnuovo’s trick of the following type.

Lemma 4.3. Let $\mathcal{E}$ be a rank 2 vector bundle on a smooth $cv,rve$ . Set
$r:=h^{0}(\mathcal{E})$ and $s:=\dim \mathrm{I}\iota 11(\wedge^{2}H^{0}(\mathcal{E})arrow H^{0}(\wedge^{2}\mathcal{E}))$ . If diln $G(2,7’)=$
$2(r-2)\geq s$ , then there exists a 2-dimens\’ional subaspace $V$ of $H^{0}(\mathcal{E})$

$sv,ch$ that $\mathrm{I}m(V\otimes O_{C}arrow \mathcal{E})$ is invertible.

reference??
I continue the outline of the proof of Proposition 3.1 (B). The vector

bundles in the $\mathrm{c}\mathrm{a}_{\iota}\mathrm{s}\mathrm{e}\mathrm{s}(1)$ and (2) of Proposition 4.2 appear as $\overline{\mathcal{E}}_{t’}$ for
some $t’$ . The vector bundles in the case (3) are new but $S$-equivalent to
strictly semi-stable $\overline{\mathcal{E}_{t’}}$ in Proposition 4.1. Hence we have the surjective
morphism $\iota:\overline{\mathrm{P}}^{4}arrow M$ . The fact $h^{0}(\mathcal{E})=4$ for [S] $\in M$ (Proposition
4.2) implies that $\mathcal{E}_{t_{1}}\not\simeq \mathcal{E}_{t_{2}}$ for two points $t_{1},$ $t_{2}$ on $\mathrm{P}^{4}\backslash C$ since $U_{t_{i}}$ can
be recovered by $\mathcal{E}_{t_{i}}$ as $U_{t_{i}}=H^{0}(\mathcal{E}_{t_{\mathfrak{i}}})^{\vee}$ . Thus ’ is birational. Moreover
strictly semi-stable bundle in $M$ are parameterized by the points on
the strict transforms of $\mathrm{t}\mathrm{r}\mathrm{i}$-secants and their $S$-equivalence classes are
constaJlt on each strict transform, $l$, descends on $Z$ . Since $\rho(Z)=1$ ,

the morphism $\iota$ is Pnite.
Acknowledgment. I am grateful to Professor Shigeru Mukai for his
time and sstimulating discussion.
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