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TOWARDS A MODULI THEORETIC
CHARACTERIZATION OF A RATIONAL PRIME
Q-FANO 3-FOLD OF GENUS SIX WITH ONE
%(1, 1,1)-SINGULARITY

# A& (HIROMICHI TAKAGI)

1. DEFINITIONS, MOTIVATIONS,. . .

. Definition 1.1. A projective 3-fold X is called a Q-Fano 3-fold, or
simply, Fano 3-fold if X has only terminal singularities and the anti-
canonical divisor — Ky is ample.

The genus g(X) of a Fano 3-fold X is defined to be h%(—Ky) — 2.
Note that, in case X is smooth, 2g(X) —2 = (—Kx)? by the Riemann-
Roch theorem and the Kodaira vanishing theorem.

A Fano 3-fold is called prime if the group of numerical equivalence
classes of Q-Cartier Weil divisors is generated by the anti-canonical
class. A quartic hypersurface in P? is a simple but interesting example
of a prime Fano 3-fold.

Aim 1.2. Find as many as possible (prime) Fano 3-folds X which can
be recovered from data on curves C ‘characteristic’ for X, ideally, as a
moduli space of some objects on C.

S. Mukai found beautiful examples of smooth prime Fano 3-folds for
which such characterizaztions are possible. I will explain his discovery.
Before that, let me show how to find candidates of C to recover X. It
is done by variants of the Fano-Iskovskih double projection from a. line
on a prime Fano 3-fold (Fano, Iskovskih, Takeuchi).

Example 1.3. See [IP99] or [Take89] for details. Let X be a smooth
prime Fano 3-fold with very ample — Ky in this example. I embed X
in P9X)+! by the anti-canonical linear system.

(1) (g(X) = 7) Let q be a general conic (with respect to the anti-
canonical embedding) on X and consider the rational map defined
by the linear system | — 2K x — 3g|, the sublinear system of | —2Kx
consisting of the members with multiplicities 3 along q. The image
turns out to be @*, a smooth quadric 3-fold. This rational map is
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the composite of the three elementary rational maps as follows:

e &
__________ > ()3
X ®|_2k x —3g] @

where f is the blow-up along ¢, Y --+ Y’ a flop, and f’ is the
blow-up of @3 along a smooth curve C, of genus 7 and degree 10.
For this example, I will take Cj as C.

(2) (g(X) = 9) Let [ be a general line and consider the rational map
defined by the linear system | — Kx — 2I|.} Similarly to the above
case, I obtain the following diagram:

Y-->Y
;// \\i
__________ > |p3
X P x5 -2 P,

where f is the blow-up along I, Y --+ Y’ a flop, and f’ is the blow-
up of P along a smooth curve C; of genus 3 and degree 7. For this
example, I will take Cj as C.

(3) (9(X) = 12) In this example, I consider also the rational map
defined by the linear system | — Kx — 2| for a general line [ and I
obtain the following diagram:

Y-->Y
VN
Xl B

where f is the blow-up along I, Y --» Y’ a flop, Bj is a smooth
quintic del Pezzo 3-fold, * and f’ is the blow-up of B; along a
smooth curve C; of genus 0 and degree 5.2 For this example, I will
not take C; as C. Instead I will take the Hilbert scheme of lines
on X, which I can compute by the diagram noting general lines are
transformed to general lines on By intersecting C. Consequently,
C is a plane quartic curve and is smooth if X is general in the
moduli.

1This rational map is the so-called double projection from a line.

2A quintic del Pezzo 3-fold is a Fano 3-fold such that —Kx = 2H, where H €
Pic X and H® = 5.

3The degree is with respect to H.
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Keep in mind the notation of Example 1.3. Mukai’s theorem (with
comments) is the following (see [Muk01]):

Theorem 1.4. (1) (g(X) =7)

X ~ {[€] | € is a rank 2 semi-stable vector bundle on C
with det £ = K¢ and h°(€) > 5}.

This is an example of non-abelian Brill-Noether locus.

(2) (9(X) = 9) In this case, X cannot be recovered from C because
the moduli number of X is 12 * and the moduli number of C is 6.
Thus some data on C is needed. Mukai showed the following and

used it as a data. to recover X:
The Hilbert scheme of conics on X is the smooth surface P(F),
where F is a Nagata stable vector bundle of rank 2.°

X ~ {[€] | € is a rank 2 semi-stable vector bundle on C
with det £ = det F + K¢ and dim Hom(F, &) > 3}.

This is an example of another kind of non-abelian Brill-Noether

locus.

(3) (9(X) = 12) Though the moduli numbers of X and C are the
same, X cannot be recovered from C. As a data to recover X,
Mukai obtained the following:

There exists a unique theta-characteristic 8 on C with h°(8) = 0
such that inside C x C, ©

{([), lf]) | 0 # I, Ny # 0} = {([L], [I2]) | A2 + [l] = [l2]) > 0}

A classic result of Scorza asserts that there exists a unique quartic
curve I' living in the same P? as C associated to the pair (C, 6) (see
[DK93)). Let F be a defining equation of T'.

X is isomorphic to the closure in HilbSP? of the following:

(B o) B4+ + 1= F),

where l; is a linear form on P? and [; is the point of P? corresponding
to lz

Remark. Mukai conjectured that there is a similar characterization of
a prime Fano 3-fold X of genus 10 (see [Mukb]). In this case, C is
a smooth curve of genus 2, which is the center of the blow-up of Q3

4This can be computed by the diagram in Example 1.3.

SA vector bundle F of rank 2 is called Nagata stable if 02 > 3 = 9(C) for any
section o of P(F).

SRecall that C is the Hilbert scheme of lines on X.
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appearing in the decomposition of the double projection from a general
line.

2. SINGULAR FANO 3-FOLDS

I am tempted to find more examples of Fano 3-folds with charac-
terzations as in Theorem 1.4 and more curves which are characteristic
for some Fano 3-folds. In my thesis [Taka02a] and [Taka02b}, I classi-
fied prime Fano 3-folds X with g(X) > 2 and with only %-singula.rities.
7 More precisely, I classified the type of the following diagram, which is
a variant of the double projection from a line as in the previous section.

Y---Y
,7 V{
X X'

where f is the blow-up at a ——qmgulantv, Y --» Y'is a flop or a
composite of a flop and a flip, f’ is a non-small extremal contraction.
I present two examples. I denote by N the number of -singularities.

Example 2.1. (1) (9(X) =8,N =2). The diagram is as follows:
Y-->Y

X;>/ \\QB

where Y --+ Y is a composite of a flop and a flip, and f’ is the
blow-up along C ~ P! with deg C = 6.

This diagram is very similar to the smooth prime Fano 3-
fold of genus 12 (Example 1.3 (3)). Actually there are more
similarities. I studied this case more in detail with Francesco
Zucconi in Udine. I briefly explain our results. Assume that X

is general in the moduli.
e The Hilbert scheme of ‘lines’® is isomorphic to a smooth
complete intersection of a smooth quadric and a cubic in
P3. I choose as C this curve of genus 4.

A —-smgula.rltv is, by definition, analytically isomorphic to the origin of

C3/(z,y, z) ~ (=z,—-y,—z), where (z,y,2) is the coordinate of C3. Usually this is
called a 2(1 1, 1)-bmgular1tv

8Here, by a line, I mean a curve with degree 1 with respect to —Kx and with
anthmetlc genus 0. There is a degenerate line, which is the union of two P’s with
degree with respect to —Kx.



genus six

e As in the case of the smooth prime Fano 3-fold of genus
12, there exists a unique theta-characteristic # on C' with
h%(#) = 0 such that inside C' x C,

{([u, []) | & # Loy i Nl # 0} = {([L]. [T2]) | 28 + [la]) = [l2]) > O}

A classic result of Scorza and complementary works by Dol-
gachev and Kanev assert that there exists a unique quartic
surface I" living in the same P? as C associated to the pair
(C,0). Let F be a defining equation of I'.

e The Hilbert scheme S of ‘conics’ is the smooth surface ob-
tained by blowing up P? at 6 points lying on a smooth
conic, and S is a weak del Pezzo surface of degree 3. De-
note by S the anti-canonical model of S.

e As a characterization of X, we conjecture the following:

Conjecture 2.2. ‘An explicit birational model’ of X can
be embedded in Hilb°S as the closure of the locus

(.. Loy | 1+ +18 = Fl; € S},

where I; is a linear form on P?® and [; is the point of P?
corresponding to ;.

(2) (9(X) = 6,N = 1) There are two type of Fano 3-folds with
these invariants, one of which is birational to a smooth cubic
3-fold, another is rational. I only describe the latter case. The
diagram is as follows:

Y-->Y
;7/ \\i
X | Q3

where Y --+ Y’ is a flop, and f’ is the blow-up along a smooth
curve C' with g(X) = 6 and degC = 9. I will choose as a
characteristic curve for X this C' and I will go back to this case
in the next section.

By looking at the list of Fano 3-folds with ¢g(X) > 2 and with only
%—singularities, I obtain the following range of genus of curves as the
genus of characteric curves:

9(C)=1,2,3,4,5,6,7,8,9.

Thus I hope that Fano 3-folds are useful for the study of curves with
small genus.
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3. RATIONAL FANO 3-FOLD WITH GENUS 6 AND WITH ONE
1-SINGULARITY

From now on, let X be
1
a rational Fano 3-fold of genus 6 and with one é—singularity.

Assume that X is general in the moduli.
First I describe the diagram in Example 2.1 (2) more in detail. It is
easy to show the following: '

e The composite of the embedding C — @Q* — P* is defined by
the linear system |K¢ — p|, where p is a point of C.

e There exists a pencil of quadrics in P* containing C. The in-
terection of the quadrics in the pencil is a smooth del Pezzo sur-
face S of degree 4. S is the strict transform of the f-exceptional
divisor.

e There exist 5 tri-secants lines of C, which are contained in S.
These are the images of flopping curves for Y’ --» Y.

e C is isomorphic to a complete intersection in G(5, 2) defined by
4 hyperplanes and 1 quadric hypersurface. By [Muk93], this is
equivalent to that C has no g}, g2 and C is not bi-elliptic.

The following is the main result of this article with comments:

Proposition 3.1. (A) In this case, X cannot be recovered from C
because the moduli number of X is 17 ® and the moduli number
of C is 15. Thus some data on C is needed as in the case of the
smooth prime Fano 3-fold of genus nine. ,
(A1) The Hilbert scheme Hssz of 3-curves ' on X is the smooth

surface P(F), where F is a stable and globally generated vec-
tor bundle of rank 2 obtained as follows: let Fy be the re-
striction of the universal quotient bundle on G(5,2) (now [
consider that C is embedded in G(5,2)). F fits into the exact
sequence

0> F — Fo—k(p)— 0.

(A2) X can be recovered from F.
Unfortunately in (A2), I did not succeed in recovering X as a
moduli.
(B) As for the recovery as a moduli of X, I have the following weaker
result than expected.
9This can be computed by the diagram in Example 2.1 (2).
10hy 4 %-curve, I mean a curve with degree % with respect to —Kx and with
arithmetic genus 0.
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Let g: P4 — P* be the blow-up of P! along C, and h: P* — Z
the anti-flipping contraction of the strict transforms of 5 tri-secant
lines of C. Let

M = {[€] | € is a rank 3 semi-stable vector bundle on C
with det £ = K¢ — p and h°(€) > 4}.

There exists a finite birational morphism Z — M. :
Once I can prove M is normal, I have Z ~ M. Since the anti-
canonical model Y of Y is contained in Z, I belive that ¥ can be
characterized as a moduli by using F.

4. QOUTLINE OF THE PROOF OF PROPOSITION 3.1

For (A), it suffices to prove the following: _
Let C be a general smooth curve of genus 6. In particular, C has no g}
and g2 and C is not bi-elliptic. Let p be a general point of C. Finally
let F be a stable and globally generated bundle of rank 2 on C' obtained
as in the statement of Proposition 3.1 (A). Then there is an embedding
C — @® such that by blowing up Q3 along C, @3 can be biratinally
transformed to a Fano 3-fold of genus 6 as in the diagram in Example
2.1 (2). '

I only show the following diagram, from which the assertion is easily
verified: :

¢ — G(H°(F),2)
@K c-»l 1 lPli’lcker
pt —— P,
where C — G(H®(F),2) ~ G(4,2) is defined by
z— C — (HYF) = F,) € G(H°(F),2).

I define Q* := G(HO(F),2) NP4

[ will explain why P(F) >~ Hs/. By the diagram in Example 2.1 (2),
I can show that a general %-curve on X is a birational transform of a
general line on Q3 intersecting C. Thus I explain how to attach to a
point s € P(F) a line I, on @3 intersecting C. For a point s € P(F),
set

Ve i= {0 € H(Op5)(1)) | s € (0)0} C H(Or(z)(1)) = H(F).
Note that dim V, = 3 since F is globally generated. Set
I, :=G(2,V,)n Q% c G(2,H°(F)) = GH(F),2),
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which is a line since G(2,V;) ~ P? and @® does not contain a plane.

Let u := m(s), where n: P(F) — C is the natural projection. Note

that u = ker(H°(F) — F,) in G(2, H%(F)). Thus u € [, N C since
ker(H*(F) — Fu) = {0 € H*(Op)(1)) | 771 (1) C (0)o} C Vs.

Now I explain the proof of Proposition 3.1 (B), which depends on
the two propositions.

I start from the preparation for the first proposition. Let U; be
the 4-dimensional subspace of H’(K — p) corresponding to ¢t € P* =
P*H°(K — p). Define &' by

0—-& - U;®0c— K —p.
Ift ¢ C, then Uy ® O¢ — K — p is surjective, thus det & = K¢ —p. If
t € C, then Im (U;®0O¢ — K —p) = K—p—t,thusdet & = Kc—p—t.
Actually, Mukai constructs in [Muka] the vector bundle EonPxC
such that for t/ € ﬁ“, if t ;== g(t') € C, then Ev ~ &, orift € C, then
&y fits into the exact sequence

0——>£t->§t,-+k(t)—>0,
Thus det £ = K¢ — p for any t' € P
Proposition 4.1. &y is semi-stable for any t' € P4, and &y is strictly

semi-stable if and only if one of the following equivalent condition hold:
(1) there ezists an exact sequence as follows:
06—-p—E& —G—0,
where & is a g} and G is a stable vector bundle of rank 2 uniquely
determined by
056" > HYK-6)@0c— K—-§—0.
(2) t' is on the strict transform of a tri-secant line of C'.

The correspondence between a gj in (1) and a tri-secant line in (2)
is given as follows: for & in (1), the unique member |6 — p| lies on a
tri-secant line, and vice versa. _

In particular, the S-equivalent classes of €y is constant on the strict
transform of a tri-secant line.

Proposition 4.2. Let £ € M¢(3, K —p, 1),
eve := HY(E) ® O¢c — &€ and &, := Imeug.

Then dim H°(C, ) = 4 and 1k &; = 3. Moreover one of the following
holds:

(1) evg is surjective. In this case, £ defines a point of P\ C.
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(2) tk & = 3, h°(EY) = 0 and there exists an ezact sequence as follows:
0-& -0 > Ke—-p—2—0

for a point x € C.
(3) tk& = 3 and hO(EY) > 0, and there exists an exact sequence as
follows:
0-G—-E&—-0—-p—0,
where § is a g} and G is a stable vector bundle of rank 2 uniquely
determined by

0-G - HY(K-0)®0c— K—-6—0.

I omit the proof of these propositions. I just mention that the proof
are based on the so-called Castelnuovo’s trick of the following type.

Lemma 4.3. Let £ be a rank 2 vector bundle on a smooth curve. Set
r = hO(€) and s := dimIm (A2HO(E) — H°(A%E)). If dimG(2,r) =
2(r — 2) > s, then there exists a 2-dimensional subaspace V of H(E)
such that Im (V @ O¢ — &) is invertible.

reference??

I continue the outline of the proof of Proposition 3.1 (B). The vector
bundles in the cases (1) and (2) of Proposition 4.2 appear as & for
some t'. The vector bundles in the case (3) are new but S-equivalent to

strictly semi-sﬁa.ble &y in Proposition 4.1. Hence we have the surjective
morphism ¢: P4 — M. The fact h°(€) = 4 for [€] € M (Proposition
4.2) implies that &, # &,, for two points t;,t2 on P4\ C since U, can
be recovered by &, as Uy, = H°(&;,)V. Thus ¢ is birational. Moreover
strictly semi-stable bundle in M are parameterized by the points on
the strict transforms of tri-secants and their S-equivalence classes are
constant on each strict transform, ¢ descends on Z. Since p(Z) = 1,
the morphism ¢ is finite.
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