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Classification of projective manifolds containing
four-sheeted covers of projective space
as very ample divisors
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ABSTRACT

The aim of this talk is to report a classification result of complex projective manifolds which
contain finite covers of P” of degree d = 4 as their very ample divisors. In the case where d
is a small prime number, several classification results have been obtained by Lanteri-Palleschi-
Sommese (d = 2, 3) and the speaker (d = 5).

This report is a exposition of the speaker’s paper [2]. We first introduce our problem and
background. Secondly, we talk about new problems arising in the case where d is a composite
number, and state our result. Finally, we illustrate several key points of our proof.

1 Introduction

1.1 A problem in geometry of hyperplane sections

We consider a pair (X, L) consisting of a smooth projective variety X of dimen-
sion 7+ 1 and a very ample line bundle L on it. In what follows, we assume that
the ground field is the field of complex numbers C.

Geometry of hyperplane sections has attracted several authors. In the late of
19-th century, in the course of studies of projective surfaces, G. Castelnuovo [5]
classified the pairs (X, L) in the case where

“n =1 and |L| contains a smooth hyperelliptic curve,

which is a double cover of PL. _

It is known that topological nature of X is intensively imposed by that of a
member of |L|. In fact, A. J. Sommese expressed a philosophy of geometry of
hyperplane sections as follows :
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A projective manifold is at least as special as any of its ample divisors
(see [17, Introduction]).

Additionally, the revisions of the classification result made in 1987 ([16],
[18]) called new attention to the following generalized problem.

Problem 1.1 ([12, §1]) Fix an integer d 2 2. Classify the pairs (X, L) with the
following condition.

(¥)a There exists a smooth member A € |L| endowed with a finite morphism
n: A — P" of degree d. m]

From now on, we study this classification problem.

1.2 The settled cases
We begin with “obvious” examples of (X, L) with the condition (*),.

Examples 1.2 (Obvious pairs) (P"*!, Opwi(d)) and (H, Opri(1)), where

H*! c P2 is a smooth hypersurface of degree d, and « is a projection from a
point.

We are interested in what kind of “non-obvious” pairs show up. In the cases
where the covering degrees d are small prime numbers, several authors have
studied the classification problems of (X, L) with (x),:

e For the case of (n,d) = (1,2), F. Serrano [16], A. J. Sommese-A. Van de
Ven [18] classified the pairs (X, L) with (*)4, completely. These are the
revisions of Castelnuovo’s classification result as mentioned above.

e For the case of (n,d) = (1,3), M. L. Fania [6] studied the structure of the
pairs (X, L).

e As to the cases where (i) (n > 2,d = 2) and (ii) (» 2 4,d = 3), A. Lanteri-
M. Palleschi-A. J. Sommese (L-P-S for short) classified the pairs (X, L) in
[12] and [13].

e For the case of (n > 6,d = 5), Y. Amitani gave a complete classification of
X, L)in [1].

We wish to solve the problem for any » and 4. But it seems to be difficult. So,
in what follows, we assume that n > d. Under this assumption, a Barth-type
theorem for branched coverings of P” by R. Lazarsfeld [14, Theorem 1] asserts
that
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Pic(4) = Pic(P") = Z and h'(&,) = 0.

Note that 7* Opn(1) is ample due to the finiteness of 7. Taking the self-intersection
number of the line bundle, we see that it is the ample generator of Pic(4). And,
by the Lefschetz hyperplane section theorem, we have

Pic(X) = Pic(4) = Z[n* Gp:(1)] and 4! (O) = 0.

Let J# € Pic(X) be its ample generator. Then, by easy calculations, we also see
that

Hy =" Opi(1).
In the cases where n > d = 2 and 3, the classification results are quite simple.

Theorem 1.3 (Lanteri-Palleschi-Sommese) Let X be a smooth projective va-
riety with dimX = n + | and L a line bundle on it. Suppose that n > d for
d € {2,3). Then the following hold.

(1) There exists a very ample L with the condition (x)4=2 if and only if (X, L) is
an “obvious” pair.

(2) There exists a very ample L with (¥)4-3 if and only if (X, L) is an “obvious”

pair or (Y,3%L), where (Y, &) is a Del Pezzo manifold of degree one. =

For proofs, we refer to [12, (1.5)] and [13, (2.5)].

Definition and terminology We introduce the definitions of polarized mani-
folds and their important invariants.

® A polarized manifold is a pair (M, D) of a smooth projective variety M and
an ample line bundle D on it.

e The 4-genus of (M, D) is defined by 4(M, D) := dim M+ D4™M —pO(M, D),
where we call the self-intersection number D4™¥ the degree of a polarized
manifold (M, D).

e The sectional genus of (M, D) is defined by
1 . dim M-1
g(M, D) :=1+§(KM+(d1mM—1)D)~D ,

where K, denotes the canonical bundle of M.

® A Del Pezzo manifold (M, D) of degree b is a polarized manifold of degree
b satisfying one of the following equivalent conditions.

(1) 4(M, D) = g(M,D) = 1; or

13



14

(2) =Ky = (dim M — 1)D.

It is known that 1 < b < 8. Del Pezzo manifolds are classified completely
(cf. [9, (8.11)]).

» A weighted projective space P(ey, . . ., ey) is of the form Proj(C[sy, . . ., sx]),
where each weight wt(s;) = e;. In general, it is known that P(ey, . .., ey) is
irreducible, normal, Cohen-Macaulay, and has at most cyclic quotient sin-
in general (cf. [3,3D 3]). If one sets § = Uye(s; = 0| k 1 ¢;), then

ex)(1) is always invertible on P(ey, ...,en) \ S.

.....

o A weighted complete intersection (w.c.i. for short) V of type (ay,...,a.)
in P(eg, . .., ey) is of the form V = V.(F,,...,F.), where (F,...,F.)is a
regular sequence of C[s, ..., sy] with a; = deg F; foreach 1 < i < ¢, and
VNS =0. When c = 1, we call it a weighted hypersurface of degree a;.

2 Result

2.1 Problems arising in the case where d is composite

In the small prime degree cases where d = 2,3 and 5 ([12], [13] and [1], resp.),
the following plays a key role in the classification problems although the proof
is simple.

Key fact 2.1 Let g be the morphism associated to n* Op:(1), and assume t =
h°(4,7*6p:(1)) — n— 1 > 0. Then we have a factorization of 7 as follows :

A _‘?,q(A) c P
b
PH’

where p is a projection from a P! in P™*" with g(4) N P = 0. In particular,
if d is a prime, then q is birational onto its image q(A), which is a variety of
degree d. . _ O

Remark 2.2 In the cases where d = 2,3 and 5, we can actually prove that g(4)
is isomorphic to 4, hence it is smooth.

When d is a composite number, one can immediately obtain the following
examples of (X, L).



Examples 2.3 If d = ¢, ---£,, where each integer ¢; > 1, then the following
pairs satisfy (¥),: (Hf:fq[e, (1)) and (Hi'}:}"[“_, O(lss1 - £.)), where H}’l“[ is
an (n + 1)-dimensional complete intersection of type (£1, ..., ;) in P"+1+s,

Here we mention new question and problem those we face in the cases where
d is composite. First, note that there might exist a pair (X,L) with a non-
birational morphism ¢. Studying these structures is quite significant for our
original problem. If we take into consideration Remark 2.2, it is natural to ask
‘the following.

Question 2.4 Is the image q(A) smooth for a non-birational morphism q? O
Next, for a polarized manifold (X, 5#) in question, we show the inequality
A(X, H) < A,

Indeed, from the definition of 4-genus, we have
A(A4, ) = n+d - h°(4, 7).

And, since the J4-genus of a polarized manifold is non-negative
(see [9, Chapter I, (4.2)]), we obtain that

n+1<hU4,)<n+d.
By using the Kodaira vanishing theorem, we obtain the inequality
AX, ) <n+ 1+ 3 - BO(36) < 71,

Now, reminding that Pic(X) = Z[J#], we can write L = £5# with some

¢ > 0. Therefore the following seems to be crucial for a solution of Problem
1.1.

Problem 2.5 Let (M, D) be an m-dimensional polarized manifold satisfying that
4(M, D) < D", Pic(M) = Z[D] and h'(€y) = 0.

(1) If the line bundle €D is very ample for a fixed £ > 1, then classify the
polarized manifolds (M, D).

(2) For each k 2 1, determine whether kD is very ample or not. O

Studies in composite degree cases seem to be more difficult than those in prime
degree cases. One of the reasons is as follows: Since

&%anﬂ.:L.jfn:ijn:d’
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both ¢ and S#"*! divide the covering degree d. Hence we see that the the pos-
sibilities of 4-genera in composite cases are more than those in prime cases by
the above inequality. And it seems to come with some technical difficulties to
determine the structures of polarized manifolds with large 4-genera. Thus we
realize that studies in composite cases are more complicated than those in prime
cases.

2.2 Classification of (X, L) in the degree four case

As stated above, we know that specific problems arise in the case where d is a
composite number. And now, in the degree d = 4 case, what kind of the pairs
(X, L) show up? What can we say about Question 2.4 or Problem 2.5 in this
case?

Our main result is a complete classification of (X, L) with (x)s.

Theorem 2.6 '([2, Theorem 1.1]) Let X be a smooth projective variety with
dimX = n+ 1 > 5. Then there exists a very ample line bundle L on X that
satisfies the condition ()4 if and only if (X, L) is one of the following

(i) (P, Opini(4));
(ii) (Q™1, Ogmi(2)), where Q™! is a smooth hyperquadric in P"*?;
(iii) (H}*', Oy (1));

(iv) (H3%, Or(1)), where H;’*;l is a smooth complete intersection of two hy-
perquadrics in P™3;

v) (Y,4.%), where (Y, £) is a Del Pezzo manifold of degree one;
(i) (Z,2.L), where (Z, L) is a Del Pezzo manifold of degree 2; or

(vii) (Wh2, Ow,,(4)), where Wy, is a smooth weighted hypersurface of degree 12
in the weighted projective space P(4, 3, 1"*1), m]

Remark 2.7 e The pairs (v)-(vii) show up newly. In particular, we see that
(vi) is a unique polarized manifold with a non-birational morphism g. We
deal with the structure of this pair in §2.3. And, for Question 2.4, it tumns
out that g(4) is smooth in the degree 4 case.

i After the speaker has written up [2], he found that Lanteri ([11, Theorem 3.4]) had obtained
a similar result, and had also proved Proposition 3.6 in this report. But the Lanteri’s result con-
tains one “doubtful” case. In fact, for the case (vii), it gives only some numerical invariants. In
contrast, our classification result is perfect because it reveals the structure of a unique polarized
manifold appearing in (vii).
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¢ Our basic strategy is to reduce to Fujita’s classification theory of polarized
manifolds. However, one needs other techniques different from those in
the theory in order to prove this theorem. In fact, we come across two
possibilities of numerical invariants:

(1) gX, 5#) =3, 4(X, 3¢) = 5" = 1; and
(2) g(X, ) =3, 4(X, ) = ™! =2,

In general, polarized manifolds with these invariants are yet to be classified.
We deal with these two possibilities in §3.2. Proposition 3.5 and 3.6 give
an answer of Problem 2.5 in the degree 4 case.

2.3 The special example (vi)

Here we focus on the structure of the pair (vi) in Theorem 2.6. According to
Fujita’s classification of Del Pezzo manifolds of degree 2 ([9, (8.11)]), we see
that (Z, £) is a weighted hypersurface of degree 4 in P(2,1"*2). Due to the
smoothness of Z, its defining equation is given by the form of

x2 +f(VOs---,yn+l):0

with (wt(x), wt(y;)) = (2,1) for each 0 < j < n + 1, where f is a homogenous
polynomial of degree 4 in Cl[yy,...,y,+1]. Thus we can regard Z as a double
covering of P"*! branched along a quartic hypersurface defined by the equation
f(yOr e Vne1) = 0.

Now, let g be the restriction of the morphism ¢, to a smooth member 4 of
|2.L]. As a matter of fact, 2.L is very ample as we will see in §3.1. Therefore we
obtain the following commutative diagram

VA _qu;_) Pn+l

,Ji - q(zJ‘I)
W
PII
and see that deg g = deg q(4) = 2. We see that g(4) is smooth: Were g(4) sin-
gular, then we would have dim g(4) < 3 (see [7, (4.1)-(4.4)]). This contradicts
our assumption n > d = 4.
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3 Proof of Theorem 2.6

3.1 The key point in proof of the ‘if” part

Proving the ‘if* part is to show that each L of the pairs (i)-(vii) is very ample
and that it satisfies the condition (%),. In the cases (i)-(iv), it is clear. In the

case (V), it is already proved in [13,(1.2)]. In the case of (vi), we use Laface’s
theorem below.

Lemma 3.1 (Laface) Ler (M,D) be a polarized manifold. Suppose that
h(M, D) > 0 and that the graded ring R(M, D) := @, H(M,iD) is gen-
erated in degrees < k. Then the map ¢p associated to the linear system |kD| is
an embedding outside the base locus Bs|D)|,

wkp: M\ Bs|D| < P(JkD)).
In particular, if |D| is free, then kD is very ample. ]

For a proof of the lemma, refer to [10, Theorem 2.2]. In fact, since we see that
R(Z, L) is generated in degrees < 2 and that | L] is free as observed in §2.3, the
lemma implies that 2L is very ample and that it satisfies (x)4.

The most important thing is to consider the case of (vii). Specifically, we
prove the following, which is the key.

Proposition 3.2 ([2, Lemma 2.1]) Let W), be a smooth weighted hypersurface
of degree 12 in P(4,3,1"*Y). Then Oy,,(4) is very ample. O

We explain that Oy ,(4) fulfills the condition (x), automatically. By easy
calculations (use [15, Proposition 3.2 and 3.3]), we have

A(le, ﬁwu(l)) = ﬁWn(l)'H'l - l
In general, as to a polarized manifold with these invariants, the following hold.
Fact 3.3 (Fujita [8, (13.1)]) For an m-dimensional polarized manifold (M, D)

of 4(M, D) = D™ = 1, the base locus Bs|D| consists of only one point, which we
denote by p. ]

Lemma 34 Let (M,D) be an m-dimensional polarized manifold of
4(M,D) = D" = 1. Assume that kD is very ample. Then the polarized manifold
(M, kD) satisfies the condition (x);. 0
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For a proof, we refer to [1, Proposition 3.2]. Thus it suffices to prove Proposition
3.2.

Sketch of proof of Proposition 3.2. Since R(W),, Op,,(1)) is generated in degrees
< 4, Lemma 3.1 and Fact 3.3 imply that ¢g,, (4) is an embedding outside p. So
we have to verify that g, ) gives an embedding at p. What we want to show
is the following.

(a) Bs|Ow,,(4)| = 0;
(b) The morphism ¢ := Py, 4) associated to Op,,(4) is injective;
(c) The linear system |0y, ,(4)| separates the tangent vectors.

We choose a coordinate system of P(4, 3, 17*!) to verify that (a)-(c) hold. For
details, refer to [2, Lemma 2.1].

(a) We see that Bs|&,,(4)] is contained in the singular locus of P(4, 3, 1™*1),
On the other hand, a weighted hypersurface does not meet the singular locus by
its definition. Thus (a) holds.

(b) This holds because Bs|&y,,(1)] is single point.

(c) We can show this by using that general members of | ,(1)| intersect at
p transversally, which follows from &,(1)"*! = 1. n

3.2 Two key points in proof of the ‘only if* part

Here we mention the key points in proof of the ‘only if” part. We begin with an
outline of the proof. By the arguments as in §2.1, we see that the p0551b111t1es
of pairs [£, #"*1] are as follows:

(p1) [1,4], (p2) [2,2], (p3) [4,1].
And we have the following table.

K(H) | 44, )
n+4 0
n+3 1
n+2 2
n+1 3

Table 1.

We proceed with probf of the ‘only if” part case by case. We apply Fujita’s
classification results of polarized manifolds of 4-genera zero, one and two (see
[9, Chapter1, (5.10), (8.11) and (10.8.1), resp.]), and investigate the types (p;) —
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(p3). As a matter of fact, if A°(#%) = n + 4, then we can immediately show that
there does not exist any pair (4, .5%;) by taking the self-intersection number of
.

If W%(5#) = n + 3, then we can prove that g(4, 5#) = 1, hence (4, /%))
is a Del Pezzo manifold of degree 4. Thus, by using Fujita’s classification
([9, (8.11)]), we are enable to show that (ii) and (iv) exactly appear in our clas-
sification.

If h%(5%)) = n + 2, then we can also prove that (i), (iii) and (vi) appear in our
classification, exactly.

In the case of K°(J%;) = n+ 1, we consider the pair (X, 5#) instead of (4, %)
since polarized manifolds with 4-genera 3 are not still classified completely.
Noting that £ # 1, we obtain the following possibilities :

1 for "1 = 1;
2 for st =2

In fact, we can show that g(X, ) = 1 or 3. If g(X, 5#) = 1, then we apply a
classification result of polarized manifolds of sectional genera one ([9, (12.3)]).
In this way, it turns out that (v) actually shows up.

AX, ) ={

The difficulty arise in the case of g(X %) = 3. There are two keys in proof
of the ‘only if” part.

One is to determine the structure of a certain polarized manifold with
AX, ) = ™! = | and g(X, /) = 3. Strictly speaking, we show the
proposition below. In general, polarized manifolds with these invariants are yet
to be classified for no less than two decades (cf. [9, (6.18)]).

Proposition 3.5 ([2, Proposition 3.1}) Let (X, 5) be a polarized manifold with
A(X, ) = ™ = 1 and g(X, ) = 3. Suppose that 43¢ is very ample and
that dim X > 5. Then (X, %) is a smooth weighted hypersurface of degree 12
inP(4,3,1™), O

The other is to rule out the possibilities of 4(X, #) = #™! = 2 and
g(X, ##) = 3. In general, polarized manifolds with these invariants are still
difficult to study, and also have not been classified (cf. [9,(10.10)]). We prove
the following in § 3.4.

Proposition 3.6 (2, Proposition 3.2]) Let (X, 5°) be a polarized manifold with
A(X, ) = ™! = 2. Suppose that g(X, 7€) = 3 and that dim X > 5. Then
the line bundle 2.5¥ cannot be very ample. ]
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3.3 Sketch of proof of Proposition 3.5

We fix our notation. Let X, := N, <<, Vi, where each V; € |#] is a general
member. Due to J#™! = 1, we see that X, is an r-dimensional submanifold
of X,,1 by setting X,,;; := X. Hence, for every 1 < r < n + 1, we see that the
adjunction formula implies g(X,, 7% ) = 3 and that Hy =1

First, note that X is isomorphic to a plane quartic curve since g(X;) =
g(X, 5#) = 3. Next, we are showing that

(A) R(Xy, 5%,) = Clx,y,2]/(F12), where wt(x,y,z) = (4,3,1) and Fj, = x* +
»* + ziy) for some homogeneous polynomial ¥; € C[x,y,z] of degree 11;
and

(B) The restriction map p: R(Xz, #%,) — R(X1, 7%4,) is surjective.

As a matter of fact, (A) and (B) imply the assertion. To explain this implica-
tion, we quote results by S. Mori.

Fact 3.7 (Mori) Let D be an effective ample divisor of an m (= 3)-dimensional
smooth projective variety M. Suppose that D is a w.c.i. of type (a,...,a.) in
P(ey,...,exn). Assume that

(1) there exists a positive integer a such that €,/(D) ® Op = Op(a).

Then Mis aw.c.i. of type(ay, . ..,a.) inP(ey, ... ey, a). In particular, if m > 4,
then the assumption (1) is satisfied. ]

For a proof, see [15, Proposition 3.10]. Now, by combining (A) and (B), we see
that X; is a weighted hypersurface of degree 12 in P(4,3, 12). And, by using
Fact 3.7, we obtain that X3 is a weighted hypersurface of the same degree in
P(4,3, 1%) since a = 1. Iterating to use Fact 3.7, we get the assertion.

From now on, we are going to outline the proofs of (A) and (B). For details
to [2, Proposition 3.1].

(A) We find the generators of the graded algebra R(X, ##%,) and the relations
among them.

The sectional genus g(X, ##) = 3 implies that Ky = 4.5%%,. Therefore, by
the Riemann-Roch theorem for X;, we obtain the formula

i) = KO((4 - DA +i = 2.

For all i > 5, we see h%(io#%%,) = i — 2. Fori < 4, we get the following table
because a smooth plane quartic has no g :
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i W) | i (i)

1 1 3 2

2 1 4 3
Table 2.

Let z be a basis of the vector space H(%;,). Choose y € H°(3.%,) such that
H'(35%,) = (y,2°). Similarly, choose x € H°(45%,) such that H'(4.%%,) =
(x,yz,2z*). Here we proceed in two steps.

- Step 1 We show that R(X;, %,) is generated by three elements x, y, z. Indeed,
it suffices to show that there exist some monomials in x, y, z which form a basis
of H%(is#,) for each i = 5.

The proof of Step1 needs the following fact in elementary number theory.

Let a, b be coprime positive integers and | an integer. Suppose that
> (a = 1)(b = 1). Then the equation ai + bj = | has at least one
solution (i, j) of non-negative integers.

We apply this fact to our proof by letting (a, b)) = (4,3) and / > 6.

Due to the result of Step 1, we have a surjective homomorphism

®: Clx,y,z] = R(X;, 5t%).

Step 2 We show that there exists an irreducible homogeneous polynomial F;,
of degree 12 in C[x, y, z] such that Ker(®) = (F}3). Indeed, here we compare
h°(12.5%,) with the number of monomials in x, y, z of degree 12 to find a relation
among generators of H°(125%,). We can conclude that there exist a unique
generator of Ker(®) from that ht(Ker(®)) < dim Clx, y, z]—dim R(X;, %(,) =1.

In this way, (A) is proved.

(B) We prove that R(X>, #,) is Cohen-Macaulay. By doing so, we obtain the
surjectivity of p because the Cohen-Macaulayness yields H'(i.#%,) = 0 for each
i. In fact, we find a regular sequence of length dim R(X>, .74) = 3 contained in
R(X;, #53,)4 = @i>0 HO(XQ_,Z'%XZ).

We fix our notation: Lets = {so,..., sy} be a minimal set of generators of
the graded algebra R(X,, #%,). Then one has an isomorphism

R, #,) = Clso. ... s/,

where I; denotes the (homogeneous) defining ideal of X;.
First, we find a regular sequence of length 2 contained in R(X;, #%,)+. In
fact, if we take sections s, t € H%(J4,) such that

22



HO(A) = (s5,1) with p(s) = z and (7)o = Xi,

we can easily prove that s,  form the regular sequence. We may assume that s
contains these two elements.

Next, we find an R(X;, #%4,)/(1, s)-regular element. One needs some infor-
mation about generators of /;. For every i > 0, let

pi: H(io,) » HY(ix,)/(t) — H(ix%).
denote the restriction map. We proceed in two steps.

Step 1 We show that the ideal /; has no generators in degrees < 4.
The crucial point is to show that

Im(ps) = H(4565).
In order to show this, we need the following:
e The very ampleness of 4.5#; and
* X) is embedded by @44 , and its image is a plane quartic curve.

By using the restriction maps p;, we argue whether there exist relations among
fixed generators of H°(i.4,) for each i < 4.

Step 2 We claim that there exists an R(X, 5#%,)/(t, s)-regular element. Let
u denote a section of H°(4.5%,) such that py(u) = x. We assert that u is
R(X,, 54,)/(t, s)-regular. Indeed, Proj(R(Xz, H#,)/(t, 5)) is an integral scheme
p because of the assumption ,9?}27 = 1. Thus we see that (R(X3, #%%,)/(t, 5))+ has
no zero-divisors. Moreover, by Step 1, u is (R(Xa, #4,)/(t, 5)),-regular. Thu
we get the claim. ‘

Consequently, since we obtain (A) and (B), Proposition 3.5 is proved. (]

3.4 Sketch of proof of Proposition 3.6

In this case, note that Ky = (2 — n).%#. We prove by contradiction. We are able
to regard X, as a surface in P* as follows: We can obtain that

h(X%,256,) = KX, 2565,) + 2 = 5

by using the fact that H'(X3, i.9#%,) = 0 for all i. Here we assume that L = 25¢
is very ample. Then we see that Ly, gives an embedding of X, into P*,
We use the double point formula for surfaces (see [4, Lemma 8.2.1])

L3 (L%, - 5) - 10(g(Xa, Ly,) - 1) + 12x(6x,) - 2K% = 0.
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Note that Ky, = #%,. Thus the formula implies that =7 + 3 p,(X>) = 0, which is
absurd. [

Therefore we see that this case cannot occur, which completes the proof of
Theorem 3.6.
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