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ABSTRACT
The aim of this talk is to report a classification result of complex projective manifolds which
contain finite covers of $\mathrm{P}^{n}$ of degree $d=4$ as their very ample divisors. In the case where $d$

is a small prime number, several classification results have been obtained by Lanteri-Palleschi-
Sommese $(d=2,3)$ and the speaker $(d=5\rangle$.

This report is a exposition of the sPeaker $\mathrm{s}$ paper [2]. We first introduce our problem and
background. Secondly, we talk about new problenls arising in the case where $d$ is a composite
number, and state our result. Finally, we illustrate several key points of our proof.

1 Introduction

1.1 A problem in geometry of hyperplane sections

We consider a pair (X, $L$) consisting of a smooth projective variety $X$ of dimen-
sion $n+1$ and a very ample line bundle $L$ on it. In what follows, we assume that
the ground field is the field of complex nulnbers C.

Geometry ofhyperplane sections has attracted several authors. In the late of
19-th century, in the course of studies ofprojective surfaces, G. Castelnuovo [5]
classified the pairs (X, $L$) in the case where

$n=1$ and $|L|$ contains a smooth hyperelliptic curve,

which is a double cover of $\mathrm{P}^{1}$ .
It is known that topological nature of $X$ is intensively imposed by that of a

member $\mathrm{o}\mathrm{f}|L|$ . In fact, A. J. Sommese expressed a philosophy of geometry of
hyperplane sections as follows:
$\overline{(|\mathrm{E}\mathrm{E}\frac{-}{}\mathrm{n}\mathrm{m}\mathrm{l}\mathrm{a}\mathrm{a}\mathrm{i}\mathrm{i}\mathrm{l}1:\mathrm{a}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{i}\copyright \mathrm{t}\mathrm{o}\mathrm{k}\mathrm{i}.\mathrm{w}\mathrm{a}\mathrm{s}\mathrm{e}\mathrm{d}\mathrm{a},\mathrm{j}\mathrm{p}}$
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A projective manifold is at least as special as any ofits ample divisors
(see [17, Introduction]).

Additionally, the revisions of the classification result made in 1987 ([16],
[18] $)$ called new attention to the following generalized problem.

Problem 1.1 ([12, \S 1]) Fix an integer $d\geq 2.$ Classiff thepairs (X, $L$) with the
following condition.
$(*)_{d}$ There exists a smooth member $A\in|L|$ endowed with a finite morphism

$\pi:Aarrow \mathrm{P}^{n}$ ofdegree $d$. $\square$

From now on, we study this classification problem.

1.2 The settled cases

We begin with “obvious” examples of (X, $L$) with the condition $(*)_{d}$ .

Examples 1.2 (Obvious pairs) $(\mathrm{P}^{n+1}, a_{\mathrm{P}^{n+\iota}}(\phi)$ and $(H_{d}^{7+1}, a_{H_{d}^{n+}}\downarrow(1))$ , where
$H_{d}^{n+1}\subset \mathrm{P}^{n+2}$ is a smooth hypersurface of degree $d$, and $\pi$ is a projection from a
point.

We are interested in what kind of “non-obvious” pairs show up. In the cases
where the covering degrees $d$ are small prime numbers, several authors have
studied tlhe classification problems of (X, $L$) with $(*)_{d}$ :

$\bullet$ For the case of $(n,d)=(1,2)$, F. Serrano [16], A. J. Sommese-A. Van de
Ven [18] classified the pairs (X, $L$) with $(*)_{d}$, completely. These are the
revisions ofCastelnuovo’s classification result as mentioned above.

$\bullet$ For the case of $(n,d)=(1,3)$, M. L. Fania [6] studied the structure of the
pairs (X, $L$).

$\bullet$ As to the cases where (i) $(n\geq 2,d=2)$ and (ii) $(n\geq 4,d=3)$, A. Lanteri-
M. Palleschi-A. J. Sommese (L-P-S for short) classified the pairs(X, $L$) in
[12] and [13].

$\bullet$ For the case of $(n\geq 6,d=5),$ $\mathrm{Y}$ Amitani gave a complete classification of
(X, $L$) in [1].

We wish to solve the problem for any $n$ and $d$. But it seems to be difficult. So,
in what follows, we assume that $n\succ d$. Under this assumption, a Barth-type
theorem for branched coverings of $\mathrm{P}^{\dagger 1}$ by R. Lazarsfeld [14, Theorem 1] asserts
that
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$\mathrm{P}\mathrm{i}\mathrm{c}(A)\cong \mathrm{P}\mathrm{i}\mathrm{c}(\mathrm{P}^{l2})\cong \mathrm{Z}$ and $h^{1}(\theta_{A})=0$ .

Note that $\pi^{*}\rho_{\mathrm{P}^{n}}(1)$ is ample due to the finiteness ofrr. Taking the self-intersection
number of the line bundle, we see that it is the ample generator of $\mathrm{P}\mathrm{i}\mathrm{c}(A)$. And,
by the Lefschetz hyperplane section theorem, we have

$\mathrm{P}\mathrm{i}\mathrm{c}(X)\cong \mathrm{P}\mathrm{i}\mathrm{c}(A)=\mathrm{Z}[\pi^{*}a_{\mathrm{P}^{n}}(1)]$ and $h^{1}(a_{X})=0$ .
Let rw $\in \mathrm{P}\mathrm{i}\mathrm{c}(X)$ be its ample generator. Then, by easy calculations, we also see
that

$\mathscr{J}_{A}=\pi^{*}\mathit{9}_{\mathrm{P}^{n}}(1)$ .
In the cases where $n>d=2$ and 3, the classification results are quite simple.

Theorem 1.3 (Lanteri-Palleschi-Sommese) Let $X$ be a smooth projective va-
riety with $\dim X=n+1$ andL a line bundle on it. Suppose that $n>dfor$
$d\in\{2,3\}$ . Then thefollowing hold.

(1) There exists a very ample $L$ with the condition $(*)_{d=2}$ ifand only if(X, $L$) is
$an$ “obvious” pair.

(2) There exists a $ve\eta$ ample $L$ with $(*)_{d=3}$ ifand only if(X, $L$) is an “obvious ”

pair or $(\mathrm{Y}, 3\ovalbox{\tt\small REJECT})$ , where $(\mathrm{Y}, \ovalbox{\tt\small REJECT})$ is a $Del$ Pezzo manfold ofdegree one. $\square$

For proofs, we refer to [12, (1.5)] and [13, (2.5)].

Definition and terminology We introduce the definitions of polarized mani-
folds and their important invariants.

$\bullet$ Apolarized manfold is a pair $(M,D)$ of a smooth projective variety $M$ and
an ample line bundle $D$ on it.

$\bullet$ The $\Delta$ -genus of$(M,D)$ is defined by $\Delta(M,D):=\dim M+D^{\dim M}-h^{0}(M,D)$,
where we call the self-intersection number $D^{\dim M}$ the degree of a polarized
manifold $(M,D)$ .

$\bullet$ The sectional genus of$(M,D)$ is defined by

$g(M,D):=1+ \frac{1}{2}(K_{M}+(\dim M-1)D)\cdot D^{\dim M-1}$ ,

where $K_{M}$ denotes the canonical bundle of $M$.
$\bullet$ A $Del$ Pezzo manifold $(M,D)$ of degree $b$ is a polarized manifold of degree

$b$ satisfying one of the following equivalent conditions.

(1) $\Delta(M,D)=g(M,D)=1$ ; or
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(2) $-K_{M}=(\dim M-1)D$ .
It is known that $1\leq b\leq 8$ . Del Pezzo manifolds are classified completely
(cf [9, (8.11)]).

$\bullet$ A weightedprojective space $\mathrm{P}(e_{0}, \ldots, e_{N})$ is ofthe form Proj $(\mathrm{C}[s_{0}, \ldots, s_{N}])$ ,
where each weight $\mathrm{w}\mathrm{t}(s_{i})=e_{i}$ . In general, it is known that $\mathrm{P}(e_{0}, \ldots, e_{N})$ is
irreducible, nornal, Cohen-Macaulay, and has at most cyclic quotient sin-
gularities (see [3, Theorem $3\mathrm{A}.1]$ ). And $\theta_{\mathrm{P}(e_{0},\ldots,e_{N})}(1)$ may not be invertible
in general (cf. [3, $3\mathrm{D}3]$). If one sets $S= \bigcup_{1<k}(s_{j}=0|k \dagger e_{j})$, then
$\theta_{\mathrm{P}(e_{0},\ldots,e_{N})}(1)$ is always invertible on $\mathrm{P}(e_{0}, \ldots, e_{N})\backslash S$ .

$\bullet$ A weighted complete intersection (w.c.i. for short) $V$ of type $(a_{1}, \ldots, a_{c})$

in $\mathrm{P}(e_{0}, \ldots, e_{N})$ is of the form $V=V_{+}(F_{1}, \ldots,F_{c})$ , where $(F_{1}, \ldots,F_{c})$ is a
regular sequence of $\mathrm{C}[s_{0}, \ldots, s_{N}]$ with $a_{i}=\deg F_{i}$ for each $1\leq i\leq c$ , and
$V\cap S=\emptyset$ . When $c=1$ , we call it a weighted hypersurface ofdegree $a_{1}$ .

2 Result

2.1 Problems arising in the case where $d$ is composite

In the small prime degree cases where $d=2,3$ and 5 ([12], [13] and [1], resp.),
the following plays a key role in the classification problems although the proof
is simple.

Key fact 2.1 Let $q$ be the morphism associated to $\pi^{*}ff_{\mathrm{P}},,(1)$ , and assume $t$ $:=$

$h^{0}(A, \pi^{*}\theta_{\mathrm{P}’’}(1))-n-1>0$ . Then we have afactorization $of\pi$ asfollows:
$Aq(A)\subset \mathrm{P}^{Jt+t}\underline{q}$

$\backslash _{\pi}\downarrow p$

$\mathrm{P}^{\prime 1}$ ,

where $p$ is a projection from a $\mathrm{P}^{\prime-1}$ in $\mathrm{P}^{n+f}$ with $q(\mathrm{A})\cap \mathrm{P}^{t-[}=\emptyset$ . In particular
if $d$ is a prime, then $q$ is birational onto its image $q(A)$, which is a variety

$of\square$

degree $d$.

Remark 2.2 In the cases where $d=2,3$ and 5, we can actually prove that $q(A)$

is isomorphic to $A$ , hence it is smooth.

When $d$ is a composite number, one can immediately obtain the following
examples of (X, $L$).
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Examples 2.3 If $d=\ell_{1}\cdots\ell_{e}$ , where each integer $f_{i}>1$ , then the following
pairs $\mathrm{S}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{S}\mathfrak{h}’(*)_{d}$ : $(H_{t_{1},..,l_{e}}^{\prime 7+.1}, \theta(1))$ and $(H_{C_{1},..,t_{s}}^{\prime l+.1}, \theta(f_{\sigma+1}‘\cdots f_{e}))$ , where $H^{1+1}$ is
an $(n+1)$-dimensional complete intersection of type $(f_{1}, \ldots, f_{s})$ in

$\mathrm{P}^{\prime t+1+\nabla}i_{1}‘’$

.
$’ l$ ,

Here we mention new question and problem those we face in the cases where
$d$ is composite. First, note that there might exist a pair (X, $L$) with a non-
birational morphism $q$ . Studying these $\mathrm{s}\mathrm{f}\mathrm{f}\mathrm{u}\mathrm{c}\mathrm{t}n\mathrm{r}\mathrm{e}\mathrm{s}$ is quite $\mathrm{s}\mathrm{i}\mathrm{g}\dot{\mathrm{p}}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{n}\mathrm{t}$ for our
original problem. Ifwe take into consideration Remark 2.2, it is natural to ask
the following.

Question 2.4 Is the image $q(A)$ smoothfor a non-birational morphism $q$ ? $\square$

Next, for a polarized manifold (X, $\ovalbox{\tt\small REJECT}$) in question, we show the inequality
$\Delta(X, \ovalbox{\tt\small REJECT})\leq\ovalbox{\tt\small REJECT}^{n+1}$ .

Indeed, $\theta \mathrm{o}\mathrm{m}$ the definition $\mathrm{o}\mathrm{f}\Delta$ -genus, we have

$\Delta(A, \mathscr{J}_{A},)=n+d-h^{0}(A, \mathscr{J}_{A})$ .
And, since the $\Delta$ -genus of a polarized manifold is non-negative
(see [9, Chapter I, (4.2)]), we obtain that

$n+1\leq h^{0}(A,\ovalbox{\tt\small REJECT}_{A})\leq n+d$ .
By using the Kodaira vanishing theorem, we obtain the inequality

$\Delta(X, \ovalbox{\tt\small REJECT})\leq n+1+\ovalbox{\tt\small REJECT}^{n+1}-h^{0}(\ovalbox{\tt\small REJECT}_{A})\leq\ovalbox{\tt\small REJECT}^{n+1}$ .
Now, reminding that Pic(X) $=\mathrm{Z}[\mathscr{J}]$ , we can write $L=f\ovalbox{\tt\small REJECT}$ with some

$f>0$ . Therefore the following seems to be crucial for a solution of Problem
1.1.

Problem 2.5 Let $(M,D)$ be an $m$-dimensionalpolarizedmanifoldsatisfying that
$\Delta(M., D)\leq D^{nl},\mathrm{P}\mathrm{i}\mathrm{c}(M)=\mathrm{Z}[D]$ and $h^{1}(\mathit{9}_{M})=0$ .
(1) If the line bundle $fD$ is veiy ample for a.fixed $\ell\geq 1$ , then $classi.\beta$ the

polarized manifolds $(M,D)$.
(2) For each $k\geq 1$ , determine whether $kD$ is very ample or not. $\square$

Studies in composite degree cases seem to be more difficult than those in prime
degree cases. One of the reasons is as follows: Since

$\ell \mathscr{J}^{\prime l+1}=L\cdot \mathscr{J}^{n}=\mathscr{J}_{A}^{\prime t}=d$,

15



both $p$ and $\mathscr{J}^{\prime?+1}$ divide the covering degree $d$. Hence we see that the the pos-
sibilities of $\Delta$-genera in composite cases are more than those in prime cases by
the above inequality. And it seems to come with some technical difficulties to
determine the structures of polarized manifolds with large $\Delta$ -genera. Thus we
realize that studies in composite cases are more complicated than those in prime
cases.

2.2 Classification of (X, $L$) in the degree four case

As stated above, we know that specific problems arise in the case where $d$ is a
composite number. And now, in the degree $d=4$ case, what kind of the pairs
(X, $L$) show up? What can we say about Question 2.4 or Problem 2.5 in this
case?

Our main result is a complete classification of (X, $L$) with $(*)_{4}$ .

Theorem 2.6 $\iota_{([2}$, Theorem 1.1]) Let $X$ be a smooth projective variety with
$\dim X=n+1>5$ . Then there exists a very ample line bundle $L$ on $X$ that
satis.fies the condition $(*)_{4}$ fand only if (X, $L$) is one ofthefollowing:

(i) $(\mathrm{P}^{n+1}, \sigma_{\mathrm{P}^{\prime\prime*\downarrow}}(4))$ ;

(ii) $(\mathrm{Q}^{\prime f+1}, O_{\mathrm{Q}^{l+\downarrow}},(2))$ , where $\mathrm{Q}^{\prime I+1}$ is a smooth hyperquadric in $\mathrm{P}^{n+2}$ ;

(iii) $(H_{4}^{l+1}, \theta_{H_{4}^{\mathfrak{l}+1}}(1))$;

(iv) $(H_{2,2}^{n+1}, \rho_{P\Gamma_{22}^{+1}},(1))$ , where $H_{2,2}^{n+1}$ is a smooth complete intersection oftwo hy-
perquadrics in $\mathrm{P}^{n+3}$ ;

(v) $(\mathrm{Y},4\mathscr{J})$ , where $(\mathrm{Y},\mathscr{J})$ is a $Del$ Pezzo manifold ofdegree one;

(vi) $(Z,2\mathcal{L})$, where $(Z,\mathcal{L})$ is a $Del$ Pezzo manifold ofdegree 2; $or$

(vii) $(W_{1_{-}},, a_{W_{12}}(4))$, where $W_{12}$ is a smooth weighted hypersurface ofdegree 12
in the weightedpmjective space $\mathrm{P}(4,3,1^{n+1})$ . $\square$

Remark 2.7 $\bullet$ The pairs $(\mathrm{v})-(\mathrm{v}\mathrm{i}\mathrm{i})$ show up newly. In particular, we see that
(vi) is a unique polarized manifold with a non-birational morphism $q$ . We
deal with the structure of this pair in \S 2.3. And, for Question 2.4, it tum$s$

out that $q(A)$ is smooth in the degree 4 case.
$|\mathrm{A}\mathrm{f}\mathrm{l}\mathrm{e}\mathrm{r}$ the $\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{k}\mathrm{e}\mathrm{r}$ has written up [2], he found that Lanteri ( $[1’1$ , Theorem 3.4]) had obtained

a similar result, and had also proved Proposition 3.6 in this report. But the Lanteri’s result con-
tains one $\iota$‘doubthl” case. In fact, for the case (vii), it gives only some numerical invariants. In
contrast, our classification result is perfect because it reveals the structure of a unique polarized
manifold appearing in (vii).
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$\bullet$ Our basic strategy is to reduce to Fujita’s classification tlneoIy of polarized
manifolds. However, one needs other techniques different from those in
the theory in order to prove this theorem. In fact, we come across two
possibilities of numerical invariants:
(1) $g(X,\ovalbox{\tt\small REJECT})=3,\Delta(X,\mathscr{J})=\mathscr{J}^{n+1}=1;$ and
(2) $g(X,\ovalbox{\tt\small REJECT})=3,$ $\Delta(X, \ovalbox{\tt\small REJECT})=\ovalbox{\tt\small REJECT}^{n+1}=2$.
In general, polarized manifolds with these invariants are yet to be classified.
We deal with these two possibilities in \S 3.2. Proposition 3.5 and 3.6 give
an answer ofProblem 2.5 in the degree 4 case.

2.3 The special example (vi)

Here we focus on the structure of the pair (vi) in Theorem 2.6. According to
Fujita’s classification of Del Pezzo manifolds of degree 2 ([9, (8.11)]), we see
that $(Z, \mathcal{L})$ is a weighted hypersurface of degree 4 in $\mathrm{P}(2,1^{n+2})$ . Due to the
smoothness of $Z$, its defining equation is given by the fonn of

$x^{2}+f(y_{0}, \ldots,y_{n+1})=0$

with $(\mathrm{w}\mathrm{t}(x), \mathrm{w}\mathrm{t}(\gamma_{j}))=(2,1)$ for each $0\leq j\leq n+1$ , where $f$ is a homogenous
polynomial of degree 4 in $\mathrm{C}[\gamma_{0}, \ldots,,v_{n+1}]$ . Thus we can regard $Z$ as a double
covering of $\mathrm{P}^{\prime f+1}$ branched along a quartic hypersurface defined by the equation
$\sim f(y_{0}\ldots.,y_{1+1},)=0$ .

Now, let $q$ be the restriction of the morphism $\varphi_{X}$ to a smooth member $A$ of
$|2\mathcal{L}|$ . As a matter of fact, $2l$ is very ample as we will see in \S 3.1. Therefore we
obtain the following commutative diagram

$A\mathrm{J}q=_{q}^{\varphi_{\mathcal{L}}}Z\mathrm{p}]_{A)}^{\prime l+1}$

$\backslash _{\pi}\mathrm{P}^{n}\downarrow p$

and see that $\deg q=\deg q(A)=2$ . We see that $q(A)$ is smooth: Were $q(A)$ sin-
gular, then we would have $\dim q(A)\leq 3$ (see $[7_{\backslash },$ $(4.1)-(4.4)]$). Thi $s$ contradicts
our assumption $n>d=4$ .
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3 Proof of Theorem 2.6

3.1 The key point in proof of the ‘if’ part

Proving the ‘if’ part is to show that each $L$ of the pairs $(\mathrm{i})-(\mathrm{v}\mathrm{i}\mathrm{i})$ is very ample
and that it satisfies the condition $(*)_{4}$ . In the cases $(\mathrm{i})-(\mathrm{i}\mathrm{v})$, it is clear. In the
case (v), it is already proved in [13, (1.2)]. In the case of (vi), we use Laface’s
theorem below.

Lemma 3.1 (Laface) Let $(M,D)$ be a polarized manifold. Suppose that
$h^{0}(M,D)>0$ and that the graded ring $R(M,D):=\oplus_{i>0}H^{0}(M, iD)$ is gen-
erated in degrees $\leq k’$. Then the map $\varphi_{kD}$ associated to the$\overline{l}inear$ $system|kD|$ is
an embedding outside the base locus $\mathrm{B}\mathrm{s}|D|$ .

$\varphi_{kD}$ : $M\backslash \mathrm{B}\mathrm{s}|D|^{\llcorner}\cdot,$ $\mathrm{P}(|kD|)$ .
In particular $f|D|$ isfree, then $k’D$ is $ve\iota \mathrm{y}$ ample. $\square$

For a proof of the lemma, refer to [10, Theorem 2.2]. In fact, since we see that
$R(Z, \mathcal{L})$ is generated in degrees $\leq 2$ and that $|\mathcal{L}|$ is $\mathrm{f}\mathrm{i}\cdot \mathrm{e}\mathrm{e}$ as observed in \S 2.3, the
lemma implies that $2\mathcal{L}$ is very ample and that it satisfies $(*)_{4}$ .

The most important thing is to consider tlle case of (vii). Specifically, we
prove the following, which is the key.

Proposition 3.2 ([2, Lemma 2.1]) Let $W_{12}$ be a smooth weighted hypersurface
ofdegree 12 in $\mathrm{P}(4,3.1^{n+1})$ . Then $\theta_{W_{1}}\underline,(4)$ is very ample. $\square$

We explain that $a_{W_{12}}(4)$ ffilfills tbe condition $(*)_{4}$ automatically. By easy
calculations (use [15, Proposition 3.2 and 3.3]), we have

$\Delta(W_{12}, \theta_{r_{12}},(1))=a_{W_{12}}(1)^{;l+1}=1$ .
In general, as to a polarized manifold with these invariants, the following hold.

Fact 3.3 (Fujita [8, (13.1)]) For an $m$-dimensional polarized manifold $(M,D)$

$of\Delta(M,D)=D^{rn}=1$ , the base locus $\mathrm{B}\mathrm{s}|D|consists$ ofonly onepoint, which we
denote by $p$. $\square$

Lemma 3.4 Let $(M,D)$ be an $m$-dimensional polarized manifold of
$\Delta(M,D)=D^{ll}=1$ . Assume that $k’D$ is $ve\prime \mathrm{y}$ ample. Then thepolarized manifold
(M,$\cdot$

$kD$) satisfies the condifion $(*)_{k}$ . $\square$
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For a proof, we refer to [1, Proposition 3.2]. Thu$s$ it suffices to prove Proposition
3.2.

Sketch ofproofofProposition 3.2. Since $R(W_{12}, \theta_{W_{12}}(1))$ is generated in degrees
$\leq 4$, Lemma 3.1 and Fact 3.3 imply that $\varphi_{\theta_{\pi_{12}}\cdot(4)}$ is an embedding outside $p$ . So
we have to verify that $\varphi_{\theta_{W_{12}}(4)}$ gives an embedding at $p$ . What we want to show
is the following.

(a) $\mathrm{B}\mathrm{s}|a_{\mathrm{f}_{12}’},(4)|=\emptyset$ ;

(b) The morphism $\varphi:=\varphi_{\mathit{6}_{||12}(4)}$, associated to $\sigma_{W_{12}}(4)$ is injective;

(c) The linear system $|a_{W_{12}}(4)|$ separates the tangent vectors.

We choose a coordinate system of $\mathrm{P}(4,3,1^{n+1})$ to verify that $(\mathrm{a})-(\mathrm{c})$ hold. For
details, refer to [2, Lemma 2.1].

(a) We see that $\mathrm{B}s|\theta_{ll^{r_{\downarrow 2}}}(4)|$ is contained in the singular locus of $\mathrm{P}(4,3,1^{n+\mathrm{l}})$ .
On the other hand, a weighted hypersurface does not meet the singular locus by
its definition. Thus (a) holds.

(b) This holds because $\mathrm{B}\mathrm{s}|\theta_{W_{12}}(1)|$ is single point.
(c) We can show this by using that general member$s$ of $|a_{W_{12}}(1)|$ intersect at

$p$ transversally, which follows $\theta \mathrm{o}\mathrm{m}\beta_{W_{12}}(1)^{\prime l+\mathrm{l}}=1$ . $\blacksquare$

3.2 Two key points in proof of the ‘only if’ part

Here we mention the key points in proof of the ‘only if’ part. We begin with an
outline of the proof. By the arguments as in \S 2.1, we see that the possibilities
ofpairs $[f, \ovalbox{\tt\small REJECT}^{n+1}]$ are as follows:

$(\mathrm{p}_{1})[1,4],$ $(\mathrm{p}_{2})[2,2],$ $(\mathrm{p}_{3})[4,1]$ .
And we have the following table.

Table 1.
We proceed with proof of the ‘only if’ part case by case. We apply Fujita’s

classification results of polarized manifolds of $\Delta$-genera zero, one and two (see
[9, Chapter I, (5.10), (8.11) and (10.8.1), resp.] $)$ , and investigate the types $(\mathrm{p}_{1})-$
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$(\mathrm{p}_{3})$ . As a matter of fact, if $h^{0}(\mathscr{J}_{A})=n+4$ , then we can immediately show that
there does not exist any pair $(\mathrm{A}, \mathscr{J}_{A})$ by taking the self-intersection number of
$\mathscr{J}_{A}$ .

If $h^{0}(\mathscr{J}_{A})=n+3$ , then we can prove that $g(\mathrm{A}, \mathscr{J}_{A})=1$ , hence $(\mathrm{A}, \mathscr{J}_{A})$

is a Del Pezzo manifold of degree 4. Thus, by using Fujita’s classification
([9, (8.11)]), we are enable to show that (ii) and (iv) exactly appear in our clas-
sification.

If $h^{0}(\mathscr{J}_{A})=n+2$, then we can also prove that (i), (iii) and (vi) appear in our
classification, exactly.

In the case of $h^{0}(\ovalbox{\tt\small REJECT}_{A})=n+1$ , we consider the pair (X, $\ovalbox{\tt\small REJECT}$) instead of $(A, \ovalbox{\tt\small REJECT}_{A})$

since polarized manifolds with $\Delta$-genera 3 are not still classified completely.
Noting that $\ell\neq 1$ , we obtain the following possibilities:

$\Delta(X, \mathscr{J})=\{$
1 for $\mathscr{J}^{n+1}=1$ ;
2 for $\ovalbox{\tt\small REJECT}^{\prime l+1}=2$ .

In fact, we can show that $g(X, \ovalbox{\tt\small REJECT})=1$ or 3. If $g(X, \ovalbox{\tt\small REJECT})=1$ , then we apply a
classification result ofpolarized manifolds of sectional genera one ([9, (12.3)]).
In this way, it turns out that (v) actually shows up.

The difficulty arise in the case of $g(X, \ovalbox{\tt\small REJECT})=3$ . There are two keys in proof
of the ‘only if’ part.

One is to determine the structure of a certain polarized manifold with
$\Delta(X, \mathscr{J})=\mathscr{J}^{\prime\iota+1}=1$ and $g(X,\mathscr{J})=3$ . Strictly speaking, we show the
proposition below. In general, polarized manifolds with these invariants are yet
to be classified for no less than two decades (cf. [9, (6.18)]).

Proposition 3.5 $\langle$ [$2$ , Proposition 3.1] $)$ Let (X, $\ovalbox{\tt\small REJECT}$) be apolarizedmanifoldwith
$\Delta(X, \ovalbox{\tt\small REJECT})=\ovalbox{\tt\small REJECT}^{t7+1}=1$ and $g(X, \ovalbox{\tt\small REJECT})=3$ . Suppose that $4\ovalbox{\tt\small REJECT}$ is very ample and
that $\dim X>5$ . Then (X, $\ovalbox{\tt\small REJECT}$) is a smooth weighted hypersurface ofdegree 12
in $\mathrm{P}(4,3,1^{\prime l+1})$ . $\square$

The other is to rule out the possibilities of $\Delta(X, \mathscr{J})=\ovalbox{\tt\small REJECT}^{n+\mathrm{l}}=2$ and
$g(X, \mathscr{J})=3$ . In general, polarized manifolds with these invariants are still
difficult to study, and also have not been classified (cf. [9, (10.10)]). We prove
the following in \S 3.4.

Proposition 3.6 ([2, Proposition 3.2]) Let (X, M) be apolarizedmanfoldwith
$\Delta(X, \mathscr{J})=\mathscr{J}^{n+1}=2$ . Suppose that $g(X, \ovalbox{\tt\small REJECT})=3$ and that $\dim X>5$ . Then
the line bundle $2\mathscr{J}_{d}$ cannot be $ve\prime \mathrm{y}$ ample. $\square$
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3.3 Sketch of proof of Proposition 3.5

We fix our notation. Let $X_{r}:= \bigcap_{r\leq i\leq\Pi}V_{i}$ , where each $V_{i}\in|\ovalbox{\tt\small REJECT}|$ is a general
member. Due to $\ovalbox{\tt\small REJECT}^{n+1}=1$ , we see that $X_{r}$ is an $r$-dimensional submanifold
$\mathrm{o}\mathrm{f}X_{r+1}$ by setting $X_{n+1}:=X$. Hence, for every $1\leq r\leq n+1$ , we see that the
adjunction formula implies $g(X,,, \ovalbox{\tt\small REJECT}_{X_{r}})=3$ and that $\mathscr{J}_{X_{l}}^{r}=1$ .

First, note that $X_{1}$ is isomorphic to a plane quartic curve since $g(X_{1})=$

$g(X, \ovalbox{\tt\small REJECT})=3$ . Next, we are showing that

(A) $R(X_{1}, \mathscr{J}_{X_{1}})\cong \mathrm{C}[x,y,z]/(F_{12})$ , where $\mathrm{w}\mathrm{t}(x,y,z)=(4,3,1)$ and $F_{12}=x^{3}+$

$y^{4}+z\psi_{11}$ for some homogeneous polynomial $\psi_{11}\in \mathrm{C}[x,y,z]$ of degree 11;
and

(B) The restriction map $\rho:R(X_{2}, \mathscr{J}_{X_{2}})arrow R(X_{1}, \mathscr{J}_{X_{1}})$ is surjective.

As a matter of fact, (A) and (B) imply the assertion. To explain this implica-
tion, we quote results by S. Mori.

Fact 3.7 (Mori) Let $D$ be an effective ample divisor ofan $m(\geq 3)$-dimensional
smooth projective variety M. Suppose that $D$ is a $w.c.i$. of type $(a_{1}, \ldots, a_{c})$ in
$\mathrm{P}(e_{0}, \ldots, e_{N})$. Assume that

$(\uparrow)$ there exists a positive infeger $a$ such fhat $\theta_{M}(D)\otimes\theta_{D}\cong\theta_{D}(a)$.
Then $M$ is a $w.c.i$. oftype $(a_{1}, \ldots, a_{c})$ in $\mathrm{P}(e_{0}, \ldots, e_{N}, a)$ . In particular,

$i.rm\geq 4\square$
’

then the assumption (t) is $sat\dagger s.\beta ed$.

For a proof, see [15, Proposition 3.10]. Now, by combining (A) and (B), we see
that $X_{2}$ is a weighted hypersurface of degree 12 in $\mathrm{P}(4,3,1^{2})$ . And, by using
Fact 3.7, we obtain that $X_{3}$ is a weighted hypersurface of the same degree in
$\mathrm{P}(4,3,1^{3})$ since $a=1$ . Iterating to use Fact 3.7, we get the assertion.

From now on, we are going to outline the proofs of (A) and (B). For details
to [2, Proposition 3.1].

(A) We find the generators ofthe graded algebra $R(X_{1}, \mathscr{J}_{X_{1}})$ and the relations
among them.

The sectional genus $g(X, \ovalbox{\tt\small REJECT})=3$ implies that $K_{X_{1}}=4\mathscr{J}_{X_{1}}$ . Therefore, by
the Riemann-Roch theorem for $X_{1}$ , we obtain the formula

$h^{0}(i\ovalbox{\tt\small REJECT}_{X_{1}})=h^{0}((4-i)\mathscr{J}_{X_{1}})+i-2$ .

For all $i\geq 5$ , we see $h^{0}(i\ovalbox{\tt\small REJECT}_{X_{1}})=i-2$. For $i\leq 4$, we get the following table
because a smooth plane quartic has no $g_{\gamma}^{1}:\sim$
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Table 2.

Let $z$ be a basis ofthe vector space $H^{0}(\mathscr{J}_{X_{\mathrm{i}}})$ . Choose $y\in H^{0}(3\mathscr{J}_{X_{1}})$ such that
$H^{0}(3\mathscr{J}_{X_{1}})=\langle\gamma,z^{3}\rangle$. Similarly, choose $x\in H^{0}(4\mathscr{J}_{X_{1}})$ such that $H^{0}(4\mathscr{J}_{X_{\mathrm{I}}})=$

$\langle x,yz,z^{4}\rangle$ . Here we proceed in two steps.

Step 1 We show that $R(X_{1}, \ovalbox{\tt\small REJECT}_{X_{1}})$ is generated by three elements $x,y,z$. Indeed,
it suffices to show that there exist some monomials in $x,y,z$ which form a basis
of $H^{0}(i\mathscr{J}_{X_{1}})$ for $e$ach $i\geq 5$ .

The proof of Stepl needs the following fact in elementary number theory.

Let a, $b$ be coprime positive integers and $l$ an integer. Suppose that
$\mathit{1}\geq(a-1)(b-1)$ . Then the equation $ai+bj=\mathit{1}$ has at least one
solution $(i,j)$ ofnon-negative integers.

We apply this fact to our proofby letting $(a, b)=(4,3)$ and $l\geq 6$ .
Due to the result of Step 1, we have a surjective homomorphism

$\Phi:\mathrm{C}[x,y,z]arrow R(X_{1},\mathscr{J}_{X_{1}})$ .

Step 2 We show that there exists an irreducible homogeneous polynomial $F_{1_{\sim}}$,
of degree 12 in $\mathrm{C}[x,y,z]$ such that Ker(O) $=(F_{12})$ . Indeed, here we compare
$h^{0}(12\ovalbox{\tt\small REJECT}_{X_{1}})$ with the number ofmonomial $s$ in $x,y,z$ ofdegree 12 to find a relation
among generators of $H^{0}(12\ovalbox{\tt\small REJECT}_{X_{1}})$ . We can conclude that there exist a unique
generator ofKer$(\Phi)$ from that $\mathrm{h}\mathrm{t}(\mathrm{K}\mathrm{e}\mathrm{r}(\Phi))\leq\dim \mathrm{C}[x’,y,z]-\dim R(X_{1}, \ovalbox{\tt\small REJECT}_{X_{\mathrm{I}}})=1$ .
In this way, (A) is proved.

(B) We prove that $R(X_{2}, \ovalbox{\tt\small REJECT}_{X_{-}},)$ is Cohen-Macaulay. By doing so, we obtain the
surjectivity $\mathrm{o}\mathrm{f}\rho$ because the Cohen-Macaulayn$e\mathrm{s}\mathrm{s}$ yields $H^{1}(i\mathscr{L}_{X_{2}})=0$ for each
$i$ . In fact, we find a regular sequence oflength $\dim R(X_{\sim}\gamma,\mathscr{J}_{2})=3$ contained in
$R(X_{2},\mathscr{J}_{X}\underline,)_{+}:=\oplus_{i>0}H^{0}(X_{\sim},, i\mathscr{J}_{X_{2}})$ .

We fix our notation: Let $\mathrm{s}=\{s_{0}, \ldots, s_{N}\}$ be a minimal set of generators of
the graded algebra $R(X_{2}, \mathscr{J}_{X_{2}})$ . Then one has an isomorphi $s\mathrm{m}$

$R(X_{2}, \mathscr{J}_{X_{2}})\cong \mathrm{C}[s_{0}, \ldots, s_{N}]/I_{\mathrm{s}}$ ,

where $I_{\mathrm{s}}$ denotes the (homogeneous) defining ideal $\mathrm{o}\mathrm{f}X_{2}$ .
First, we find a regular sequence of length 2 contained in $R(X_{2}, \mathscr{J}_{X_{2}})_{+}$ . In

fact, ifwe take sections $s,$ $t\in H^{0}(\ovalbox{\tt\small REJECT}_{X_{2}})$ such that
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$H^{0}(\ovalbox{\tt\small REJECT}_{X_{2}})=\langle s, t\rangle$ with $\rho(s)=z$ and $(t)_{0}=X_{1}$ ,

we can easily prove that $s,$ $t$ form the regular sequence. We may assume that $\mathrm{s}$

contains these two elements.
Next, we find an $R(X_{2}, \ovalbox{\tt\small REJECT}_{X_{2}})/(t, s)$-regular element. One needs some infor-

mation about generators of $I_{\mathrm{s}}$ . For every $i\geq 0$ , let
$\rho_{i}$ : $H^{0}(i\ovalbox{\tt\small REJECT}_{X_{2}})arrow H^{0}(i\ovalbox{\tt\small REJECT}_{X_{2}})/\langle t\ranglearrow H^{0}(i\ovalbox{\tt\small REJECT}_{X_{1}})$ .

denote the restriction map. We proceed in two steps.

Step 1 We show that the ideal $I_{\mathrm{s}}$ has no generators in degrees $\leq 4$ .
The crucial point is to show that

${\rm Im}(\rho_{4})=H^{0}(4\ovalbox{\tt\small REJECT}_{X_{2}})$ .
In order to show this, we need the following:

$\bullet$ The very ampleness of $4\ovalbox{\tt\small REJECT}$ ; and
$\bullet$ $X_{1}$ is embedded by $\varphi_{4\swarrow\swarrow\lambda_{1}}.$ , and its image is a plane quartic curve.

By using the restriction map$s\rho_{i}$ , we argue whether there exist relations among
fixed generators of $H^{0}(i\mathscr{J}_{X_{-}},)$ for each $i\leq 4$ .
Step 2 We claim that there exists an $R(X_{?,\sim}, \mathscr{J}_{X_{2}})/(t, s)$ -regular element. Let
$u$ denote a section of $H^{0}(4\ovalbox{\tt\small REJECT}_{X_{2}})$ such that $p_{4}(u)=x$ . We assert that $u$ is
$R(X_{\sim},, \ovalbox{\tt\small REJECT}_{X_{-}},)/(t, s)$ -regular. Indeed, Proj $(R(X_{2}, \llcorner\ovalbox{\tt\small REJECT}_{X_{-}},)/(t, s))$ is an integral $s$cheme
$p$ because ofthe assumption $\ovalbox{\tt\small REJECT}_{X_{2}}^{2}=1$ . Thus we see that $(R(X_{2}, \ovalbox{\tt\small REJECT}_{X_{2}})/(t, s))_{+}$ has
no zero-divisors. Moreover, by Step 1, $u$ is $(R(X_{\underline{)}}’, \ovalbox{\tt\small REJECT}_{X_{2}})/(t, s))_{0}$ -regular. Thus
we get the claim.

Consequently, since we obtain (A) and (B), Proposition 3.5 is proved. $\blacksquare$

3.4 Sketch of proof of Proposition 3.6

In this case, note that $K_{X}=(2-n)\mathscr{J}$ . We prove by contradiction. We are able
to regard $X_{2}$ as a surface in $\mathrm{P}^{4}$ as follows: We can obtain that

$h^{0}(X_{\wedge}\gamma,2\ovalbox{\tt\small REJECT}_{X_{-}},)=h^{0}(X_{1},2\ovalbox{\tt\small REJECT}_{X_{1}})+2=5$

by using the fact that $H^{1}(X_{3}, i\ovalbox{\tt\small REJECT}_{X_{3}})=0$ for all $i$ . Here we assume that $L=2\mathscr{J}$

is very ample. Then we see that $L_{X_{2}}$ gives an embedding $\mathrm{o}\mathrm{f}X_{2}$ into $\mathrm{P}^{4}$ .
We use the double point formula for surfaces (see [4, Lemma 8.2.1])

$L_{X_{-}}^{2},(L_{X_{-}}^{2}, -5)-10(g(X_{2},L_{X_{2}})-1)+12\chi(\theta_{X_{2}})-2K_{X_{2}}^{2}=0$.
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Note that $K_{X_{-}},$ $=\mathscr{J}_{X_{2}}$ . Thus the fonnula implies $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}-7+3p_{g}(X_{2})=0$ , which is
absurd. $\blacksquare$

Therefore we see that this case cannot occur, which completes the proof of
Theorem 3.6.
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