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1. Introduction

This report is a summary of [17], [18] and [19], and a continuation of [21].
Throughout this note all spaces are assumed to be $T_{1}$ and the symbol $\gamma$ de-

notes an infinite cardinal. Moreover, the symbols $\mathrm{R},$
$\mathrm{N}$ and I denote the set of

real numbers, the set of natural numbers and the closed unit interval, respec-
tively. Let $\mathcal{T}_{2}$ (respectively, $\mathcal{T}_{3},$

$\mathcal{T}_{3\frac{1}{2}}$ ) be the class of all Hausdorff (respectively,
regular, Tychonoff) spaces.

A subspace $\mathrm{Y}$ is said to be l-(respectively, 2-) paracompact in $X$ if for every
open cover $\mathcal{U}$ of $X$ , there exists a collection $\mathcal{V}$ of open subsets of $X$ with $X=\cup \mathcal{V}$

(respectively, $\mathrm{Y}\subset\cup \mathcal{V}$ ) such that $\mathcal{V}$ is a partial refinement of $\mathcal{U}$ and $\mathcal{V}$ is locally
finite at each point of $\mathrm{Y}$ in $X$ . Here, $\mathcal{V}$ is said to be a partial refinement of $\mathcal{U}$

if for each $V\in \mathcal{V}$ , there exists a $U\in \mathcal{U}$ containing $V$ , and $\mathcal{V}$ of subsets of $X$ is
locally finite (respectively, discrete) at $y$ in $X$ if there exists a neighborhood $U_{y}$

of $y$ in $X$ which intersects at most finitely many members (respectively, at most
one member) of $\mathcal{V}([3])$ . $\mathrm{Y}$ is said to be 3-paracompact in $X$ if for every open
cover $\mathcal{U}$ of $X$ , there exists a locally finite (in Y) open cover $\mathcal{V}$ of $\mathrm{Y}$ such that $\mathcal{V}$

is a partial refinement of $\mathcal{U}([3])$ .
Yasui [35], [36] introduced 1- or 2-countable paracompactness of a subspace

in a space. Aull [6] defined a-paracompactness and a-countably paracompact-
ness of a subspace in a space. 1- and a-paracompactness need not imply each
other, but for a closed subspace $\mathrm{Y}$ of a regular space $X$ , these are mutually
equivalent ([25, Theorem 1.3], see also [21]). Meanwhile, 1- and a-countable
paracompactness do not imply each other even if $\mathrm{Y}$ is a closed subspace of a
regular space $X$ . Characterizations of absolute embeddings of 1-and a-countable
paracompactness were given in [27] and [17], respectively (see Theorems 2.1 and
2.2 below).

In [17], notions of relative expandability and relative discrete expandability
were introduced. In particular, the notions of 1- (respectively, $\alpha-$ ) expandabil-
ity lies between 1- (respectively, $\alpha-$ ) paracompactness and 1- (respectively, $\alpha-$ )
countable paracompactness ([17]). In Section 3, their absolute embeddings are
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considered. Moreover, 2- and strong expandability of $\mathrm{Y}$ in $X$ were defined in [18]
and results on relative discrete expandability are also given.

In Section 4, we discuss potential pseudocompactness and relative pseudo-
compactness. $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}1’ \mathrm{s}\mathrm{k}\mathrm{i}_{1}$ and Genedi [4] introduced the notions of strong pseu-
docompactness of a subspace in a space and potential pseudocompactness of a
space. They proved that under CH the discrete space of cardinality $\omega_{1}$ is po-
tentially pseudocompact (Corollary 3.2) and posed a problem whether the as-
sumption CH can be omitted or not. Answering this problem, Grarc\’ia-Ferreira
and Just [10] proved that for any uncountable cardinal $\kappa$ the discrete space
of cardinality $\kappa$ is potentially pseudocompact (Theorem 3.3). But their proof
of this theorem in [10] uses a set-theoretic technique (such as the Fichtenholz-
Kantorovich-Hausdorff theorem). In Section 4, an alternative simple proof of
this theorem is given. Moreover, we consider the relative versions of well-known
Scott-Watson theorem: every pseudocompact metacompact Tychonoff space is
compact ([30], [31]).

Recall that a Tychonoff space $X$ is dmost compa$\mathrm{c}t$ if $|\beta X\backslash X|\leq 1$ , where
$\beta X$ is the Stone-\v{C}ech compactification of $X$ .

For a subset $\mathrm{Y}$ of a space $X,$
$\overline{\mathrm{Y}}^{X}$ denotes the closure of $\mathrm{Y}$ in $X$ . Other

undefined notations and terminology are used as in [9] and [21].

2. Relative countable paracompactness and relative (dis-
crete) expandability

Yasui [35], [36] defined that a subspace $\mathrm{Y}$ of a space $X$ is 1- (respectively,
2-) countably paracompact in $X$ if for every countable open cover $\mathcal{U}$ of $X$ , there
exists a collection $\mathcal{V}$ of open subsets of $X$ with $X=\cup \mathcal{V}$ (respectively, $\mathrm{Y}\subset\cup V$)
such that $\mathcal{V}$ is a partial refinement of $\mathcal{U}$ and $\mathcal{V}$ is locally finite at each point of Y.
It is clear that if $Y$ is 1- (respectively, 2-) paracompact in $X$ , then $\mathrm{Y}$ is countably
1- (respectively, 2-) paracompact in $X$ .

Aull [6] defined that a subspace $\mathrm{Y}$ of a space $X$ is $\alpha$-countably paracompact
in $X$ if for every countable collection $\mathcal{U}$ of open subsets of $X$ with $\mathrm{Y}\subset\cup \mathcal{U}$,
there exists a collection $\mathcal{V}$ of open subsets of $X$ such that $\mathrm{Y}\subset\cup \mathcal{V},$ $V$ is a
partial refinement of $\mathcal{U}$ and $\mathcal{V}$ is locally finite in $X$ . It is obvious that if $\mathrm{Y}$ is
a-paracompact in $X$ , then $\mathrm{Y}$ is a-countably paracompact in $X$ .

Recall that 1- and a-paracompactness do not imply each other in general,
but for a closed subspace $Y$ of a regular space $X,$ $\mathrm{Y}$ is 1-paracompact in $X$

if and only if $\mathrm{Y}$ is a-paracompact in $X$ ([25, Theorem 1.3], see also [21]). The
following results should be compared with [21, Corollary 3.7].

Theorem 2.1 (Matveev [27]). $A\mathcal{I}Uchonoff$ (respectively, regular) space $\mathrm{Y}$ is
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1-countably paracompact in every larger Tychonoff (respectively, regular) space
if and only if $Y$ is Lindel\"of.

Theorem 2.2 ([17]). A Tychonoff (respectively, regular) space $\mathrm{Y}$ is a-countably
paracompact in every larger Tychonoff (respectively, regular) space if and only if
$\mathrm{Y}$ is countably compact.

Krajewski [23] defined that a space $X$ is $\gamma$-expandable if for every locally
finite collection $\{F_{a}|\alpha<\gamma\}$ of closed subsets of $X$ , there exists a locally finite
collection $\{G_{a}|\alpha<\gamma\}$ of open subsets of $X$ such that $F_{\alpha}\subset G_{a}$ for every $\alpha<\gamma$ .
A space $X$ is $e\varphi andable$ if $X$ is $\gamma$-expandable for every $\gamma$ . It is known that
every paracompact or every countably compact space is expandable. Moreover,
it is also known that a space $X$ is countably paracompact if and only if $X$ is
$\omega$-expandable ([23]).

As relative notions of expandability, $Y$ is said to be $1-\gamma$-espandable in $X$ if
for each locally finite collection $\{F_{\alpha}|\alpha<\gamma\}$ of closed subsets of $X$ there exists a
collection { $G_{\alpha}$ I $\alpha<\gamma$} of open subsets of $X$ such that $F_{\alpha}\subset G_{\alpha}$ for each $\alpha<\gamma$

and $\{G_{\alpha}|\alpha<\gamma\}$ is locally finite at each point of $\mathrm{Y}$ in $X$ . If $Y$ is $1-\gamma$-expandable
in $X$ for every 7, $Y$ is said to be $1- e\varphi andable$ in $X$ . A subspace $\mathrm{Y}$ of a space
$X$ is said to be $\alpha-\gamma- e\varphi andable$ in $X$ if for each collection { $F_{\alpha}$ I $\alpha<\gamma$} of closed
subsets of $X$ which is locally finite at every point of $\mathrm{Y}$ in $X$ , there exists a
collection $\{G_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such that $F_{\alpha}\cap Y\subset G_{\alpha}$ for each
$\alpha<\gamma$ and $\{G_{a}|\alpha<\gamma\}$ is locally finite in $X$ . If $Y$ is $\alpha-\gamma$-expandable in $X$ for
every $\gamma,$

$\mathrm{Y}$ is said to be $\alpha$-expandable in $X([17])$ . Notice that if a subspace $\mathrm{Y}$

of a space $X$ is $\alpha$-paracompact in $X$ , then for every collection $\{F_{\alpha}|\alpha\in\Omega\}$ of
closed subsets of $X$ which is locally finite at every $y\in Y$ , $\{F_{\alpha}\cap \mathrm{Y}|\alpha\in\Omega\}$

is locally finite in $X$ . Note that 1-countable paracompactness and a-countable
paracompactness need not imply each other even if $\mathrm{Y}$ is a closed subspace of a
regular space $X([17])$ .
Theorem 2.3 ([17]). A Tychonoff (resPectively, regular) space $\mathrm{Y}$ is l-expanda-
ble in every larger $\Phi chonoff$ (respectively, regular) space if and only if $\mathrm{Y}$ is
compact.

Theorem 2.4 ([17]). A rchonoff (respectively, regular) space $Y$ is a-expanda-
ble in every larger $\Phi chonoff$ (respectively, regular) space if and only if $\mathrm{Y}$ is
countably compact.

Remark 2.5. Similarly to the proof of [20, Proposition 3.19], we have that a
Hausdorff space $Y$ is 1-expandable (or equivalently, 1-countably paracompact)
in every larger Hausdorff space if and only if $\mathrm{Y}=\emptyset$ .

Remark 2.6. The proof of Theorems 2.2 and 2.4 works to show that for a
Hausdorff space $\mathrm{Y}$ , the following statements are equivalent:
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$(a)\mathrm{Y}$ is a-expandable in every larger Hausdorff space.
$(b)\mathrm{Y}$ is $\alpha$-countably paracompact in every larger Hausdorff space.
$(c)\mathrm{Y}$ is countably compact.

Smith and Krajewski [29] defined that a space $X$ is discretely $\gamma- e\varphi andable$

if for every discrete collection $\{F_{a} 1 \alpha<\gamma\}$ of closed subsets of $X$ , there exists a
locally finite collection $\{G_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such that $F_{\alpha}\subset G_{\alpha}$ for
every $\alpha<\mathit{7}$ . A space $X$ is discretely expandable if $X$ is discretely 7-expandable
for every 7. It is easy to see that every expandable or every collectionwise normal
space is discretely expandable ([29]).

As relative version of these notions, we define that a subspace $\mathrm{Y}$ a space $X$

is l-discretely $\gamma$-expandable if for each discrete collection $\{F_{\alpha}|\alpha<\gamma\}$ of closed
subsets of $X$ there exists a collection $\{G_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such
that $F_{\alpha}\subset$ $G_{\alpha}$ for each $\alpha<\gamma$ and $\{G_{\alpha}|\alpha<\gamma\}$ is locally finite at each point
of $\mathrm{Y}$ in $X$ . Moreover, $\mathrm{Y}$ is said to be $\alpha$-discretely $\gamma$-expandable in $X$ if for each
collection $\{F_{\alpha}|\alpha<\gamma\}$ of closed subsets of $X$ which is discrete at every point of
$Y$ in $X$ , there exists a collection $\{G_{\alpha}|\alpha<\gamma\}$ of open subsets of $X$ such that
$F_{\alpha}\cap \mathrm{Y}\subset G_{\alpha}$ for each $\alpha<\gamma$ and $\{G_{\alpha}|\alpha<\gamma\}$ is locally finite in $X$ . Moreover,
1- and $a$-discretely expandability of a subspace in a space are now easy to be
understood. It is easy to see that if $Y$ is 1- (respectively, $\alpha-$ ) $\gamma$-expandable in $X$ ,
then $\mathrm{Y}$ is 1- (respectively, $\alpha-$ ) discretely $\gamma$-expandable in $X([17])$ . Notice that
1-discrete expandability and a-discrete expandability of $Y$ in $X$ do not imply
each other.

The proofs of Theorems 2.3 and 2.4 essentially show the following.
Theorem 2.7 ([17]). $A\infty chonoff$ (respectively, regular) space $Y$ is l-discretely
expandable in every larger $\Phi chonoff$ (respectively, regular) space if and only if

$\mathrm{Y}$ is compact.

Theorem 2.8 ([17]). A $\tau ychonoff$ (respectively, regular) space $\mathrm{Y}$ is a-discretely
expandable in every lafger $\tau ychonoff$ (respectively, regular) $\mathit{8}pace$ if and only if

$\mathrm{Y}$ is countably compact.

Remark 2.9. As in Remark 2.5, we have that a Hausdorff space $\mathrm{Y}$ is l-discretely
expandable in every larger Hausdorff space if and only if $\mathrm{Y}=\emptyset$ .
Remark 2.10. In Theorems 2.1, 2.2, 2.3, 2.4, 2.7 and 2.8, and Remarks 2.5,
2.6 and 2.9, “in every larger Tychonoff (respectively, regular, Hausdorff) space”
can be replaced by “in every larger Tychonoff (respectively, regular, Hausdorff)
space containing $\mathrm{Y}$ as a closed subspace”.
Remark 2.11. In [15], E. Grabner et. al. asked the following question; suppose
that $\mathrm{Y}$ is a closed subspace of a regular space $X$ . If $\mathrm{Y}$ is 1-discretely expandable
in $X$ and metacompact in itself, is $\mathrm{Y}1$-paracompact in $X$? In [17], a negative
answer to this question was given.
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We define that a subspace $Y$ is $2-\gamma$-expandable (respectively, 2-discretely
$\gamma$-expandable) in $X$ if for each locally finite (respectively, discrete) collection
$\{F_{\alpha}|\alpha<\gamma\}$ of closed subsets of $X$ there exists a collection $\{G_{\alpha}|\alpha<\gamma\}$ of open
subsets of $X$ such that $F_{\alpha}\cap \mathrm{Y}\subset G_{\alpha}$ for each $\alpha<\gamma$ and $\{G_{\alpha}|\alpha<\gamma\}$ is locally
finite at each point of $\mathrm{Y}$ in $X$ . If $\mathrm{Y}$ is $2-\gamma$-expandable (respectively, 2-discretely
7-expandable) in $X$ for every $\gamma,$

$\mathrm{Y}$ is said to be 2-expandable (respectively, 2-
discretely expandable) in $X$ ( $[19]$ , see also $[15]^{*}$ ).

Moreover, $\mathrm{Y}$ is said to be strongly $\gamma$-expandable (respectively, strongly dis-
cretely $\gamma$-expandable) in $X$ if for each locally finite (respectively, discrete) collec-
tion $\{F_{\alpha}|\alpha<\gamma\}$ of closed subsets of $\mathrm{Y}$ there exists a collection $\{G_{\alpha}|\alpha<\gamma\}$ of
open subsets of $X$ such that $F_{\alpha}\subset$ $G_{\alpha}$ for each $a<\gamma$ and $\{G_{\alpha}|\alpha<\gamma\}$ is locally
finite at each point of $\mathrm{Y}$ in $X$ . If $Y$ is strongly (respectively, strongly discretely)
$\gamma$-expandable in $X$ for every $\gamma$ , we say that $\mathrm{Y}$ is strongly (respectively, strongly
discretely) expandable in $X$ .

We also define that $\mathrm{Y}$ is countably Aull-pamcompact in $X$ if for every count-
able collection $\mathcal{U}$ of open subsets of $X$ with $\mathrm{Y}\subset\cup \mathcal{U}$ , there exists a collection
$\mathcal{V}$ of open subsets of $X$ with $\mathrm{Y}\subset\cup V$ such that $V$ is a partial refinement of

$\mathcal{U}$ and $\mathcal{V}$ is locally finite at each point of Y. It is clear that if $\mathrm{Y}$ is countably
Aull-paracompact in $X$ , then $\mathrm{Y}$ is 2-countably paracompact in $X([19])$ .

If $\mathrm{Y}$ is 2-paracompact in $X$ , then $\mathrm{Y}$ is 2-expandable in $X([19]$ and see also
[15] assuming that all spaces are Hausdorff). Moreover, it is easy to see that $\mathrm{Y}$

is 2-countably paracompact (respectively, countably Aull-paracompact) in $X$ if
and only $\mathrm{Y}$ is $2-\omega$-expandable (respectively, strongly $\omega$-expandable) in $X$ . For
other basic properties of these notions, see [19].

Let $X_{\mathrm{Y}}$ denote the space obtained from the space $X$ , with the topology
generated by a subbase {$U|U$ is open in $X$ or $U\subset X\backslash \mathrm{Y}$ }. Hence, points in
$X\backslash \mathrm{Y}$ are isolated and $\mathrm{Y}$ is closed in $X_{\mathrm{Y}}$ . Moreover, $X$ and $X_{Y}$ generate the
same toPology on $\mathrm{Y}([9])$ . As is seen in [1] and [20], the space $X_{Y}$ is often useful
in discussing several relative topological properties. The following results should
be compared with [21, Lemmas 2.1, 2.2 and 2.3].

Lemma 2.12 ([19]). For a subspace $Y$ of a space $X$ , the following statements
are equivalent.

$(a)\mathrm{Y}$ is strongly (respectively, strongly discretely) 7-expandable in $X$ .
$(b)Y$ is 2-(respectively, 2-discretely) $\gamma$ -expandable in $G$ for every open subset

$G$ of $X$ with $\mathrm{Y}\subset G$ .
(c) $X_{Y}$ is (respectively, discretely) 7-expandable.
$(d)\mathrm{Y}$ is 2- (respectively, 2-discretely) 7-eapandable in $X_{\mathrm{Y}}$ .

’Note that E. Grabner, G. Grabner, K. Miyazaki and J. Tartir [15] called 2-discretely
expandability of $\mathrm{Y}$ in $X$ “discrete expandability of $\mathrm{Y}$ in $X$”.
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$(e)\mathrm{Y}$ is strongly (respectively, strongly discretely) $\gamma$ -expandable in $X_{Y}$ .

Corollary 2.13 ([19]). For a subspace $Y$ of a space $X$ , the following statements
are equivalent.

$(a)\mathrm{Y}$ is countably Aull-paracompact in $X$ .
$(b)Y$ is 2-counatbly paracompact in $G$ for every open subset $G$ of $X$ with

$Y\subset G$ .
$(c)X_{Y}$ is countably paracompact.
$(d)\mathrm{Y}$ is 2-countably paracompact in $X_{Y}$ .
$(e)\mathrm{Y}$ is countably Aull-paracompact in $X_{\mathrm{Y}}$ .

These results and definitions above admit the implications in Diagram 1
(see the next page) for a subspace $Y$ of a space $X$ ; for brevity “d-expandable”,
“st- (d-) expandable” and “c- (Aull-) paracompact” means “discrete expand-
able”, “strongly (discretely) expandable” and “countably (Aull-) paracompact”,
respectively.

Here, we characterize absolute embeddings of 2-, strong (discrete) expand-
ability and 2-, strong countable paracompactness for Hausdorff case as follows.

Proposition 2.14 ([19]). For a Hausdorff space $\mathrm{Y}$ , the following statements
are equivdent.

$(a)\mathrm{Y}$ is strongly $e\varphi andable$ in every larger Hausdorff space.
$(b)\mathrm{Y}$ is 2-expandable in every larger Hausdorff space.
$(c)\mathrm{Y}$ is strongly discretely expandable in every larger Hausdorff space.
$(d)Y$ is 2-discretely expandable in every larger Hausdorff space.
$(e)\mathrm{Y}$ is countably compact.

Proposition 2.15 ([19]). For a Hausdorff space $\mathrm{Y}$ , the following statements
are equivalent.

$(a)\mathrm{Y}$ is countably Aull-paracompact in every larger Hausdorff space.
$(b)Y$ is 2-countably paracompact in every larger Hausdorff space.
$(c)\mathrm{Y}$ is countably compact.

Remark 2.16. In Propositions 2.14 and 2.15, “in every larger Hausdorff space”
can be replaced by “in every larger Hausdorff space containing $Y$ as a closed
subspace”.

For the case of Tychonoff or regular spaces, see [19].
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$X$ is $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}-X$ is
$\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}-X\backslash$

is $\mathrm{d}$-expandable $-X$ is cw-normal

$\downarrow$
$\downarrow$ $X$ is $\mathrm{c}$-paracompact $\downarrow$

$|$

$1- \mathrm{p}\mathrm{a}\mathrm{r}_{\mathrm{i}\mathrm{n}X}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{Y}\mathrm{i}\mathrm{s}-1- \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}n\mathrm{d}\mathrm{a}\mathrm{b}1\mathrm{e}\frac{1}{\downarrow}\mathrm{i}\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}\backslash 1- \mathrm{d}- \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}$

$-1- \mathrm{c}\mathrm{w}- \mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}$

1 $\downarrow$

$1- \mathrm{c}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}i\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}$

$\downarrow$

$\downarrow$

$2- \mathrm{p}\mathrm{a}\mathrm{r}_{\mathrm{i}\mathrm{n}X}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}-\mathrm{Y}\mathrm{i}\mathrm{s}2- \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}1\mathrm{e}\frac{1}{\downarrow}\mathrm{i}\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}\backslash 2- \mathrm{d}- \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{i}\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}$

$-2- \mathrm{c}\mathrm{w}- \mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}$

$\mathrm{Y}|_{\mathrm{i}\mathrm{s}}$ $\mathrm{Y}$ $\mathrm{Y}\mathrm{i}\mathrm{s}|$

$\mathrm{A}\mathrm{u}\mathrm{u}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}-\mathrm{i}\mathrm{n}X\mathrm{s}\mathrm{t}-\exp_{\mathrm{i}\mathrm{n}X}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}1\mathrm{e}\frac{1}{1}\mathrm{s}\mathrm{t}- \mathrm{d}- \mathrm{e}_{\mathrm{i}\mathrm{n}X}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\backslash$

–
$\mathrm{s}\mathrm{t}- \mathrm{c}\mathrm{w}\sim \mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{n}X$

I $|$

$\mathrm{c}- \mathrm{A}\mathrm{t}\mathrm{l}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{n}X\mathrm{Y}\mathrm{i}\mathrm{s}$

$|$ I
$X_{\mathrm{Y}}$ is $\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}-X_{\mathrm{Y}}$ is expandable

$\underline{|}X_{\mathrm{Y}}$

is $\mathrm{d}- \mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}\iota_{\mathrm{e}}-X_{\mathrm{Y}}$ is cw-normal

$\downarrow$

$\downarrow X_{\mathrm{Y}}\mathrm{i}\mathrm{s}\mathrm{c}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{t}\backslash \downarrow\downarrow$

$\downarrow$

$\mathrm{Y}$ is paracompact– $\mathrm{Y}$ is
$\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}rightarrow|\mathrm{Y}$

is $\mathrm{d}-\exp\dot{\mathrm{a}}\mathrm{n}\mathrm{d}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}-\mathrm{Y}$ is cw-normal
$\backslash \downarrow$

$\mathrm{Y}$ is c-paracompact

DIAGRAM 1

Here, we list results on absolute embeddings discussed above as follows. All
results in the following Tables 1 and 2 can be referred to [21], and the results
mentioned in Section 2 are listed in Table 3.
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In the following tables, for each relative topological property $P$ and the class
$\mathcal{T}_{i}(i=2,3,3\frac{1}{2})$ , the corresponding property indicates characterizations of abso-
lute embedding of $P$ in the class 7/. In Table 1, for example, the property “normal
and almost compact” is the characterization of absolute 1-normality in the class
$\mathcal{T}_{3\frac{1}{2}}$ or $\mathcal{T}_{3}$ . That is, it means the following statement; a $\infty chonoff$ (respectively,
regular) space $\mathrm{Y}$ is 1-nofmal in every larger Tychonoff (respectively, regular)
space if and only if $\mathrm{Y}$ is normal and almost compact.

Moreover, since absolute embeddings of 3-paracompactness and 2- or 3-
metacompactness are trivial, these properties are omitted in the tables.

TABLE 1. Relative (collectionwise) normality

TABLE 2. Relative paracompactness
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TABLE 3. Relative countable paracompactness and
relative (discrete) expandability

TABLE 4. Other relative topological properties

3. Relative pseudocompactness

A space $X$ is said to be pseudocompact if every continuous real-valued func-
tion on $X$ is bounded. For a Tychonoff space $X$ , pseudocompactness of $X$ is
equivalent that every locally finite collection of non-empty open subsets of $X$ is
finite ([9], [26]); the latter condition is often called feeble compactness of $X$ .

Arhangel’skii and Genedi [4] defined that a subspace $\mathrm{Y}$ of a space $X$ is
strongly pseudocompact in $X$ if every collection $\mathcal{U}$ of open subsets of $X$ which
is locally finite at every $y\in \mathrm{Y}$ in $X$ and such that $U\cap \mathrm{Y}\neq\emptyset$ for all $U\in \mathcal{U}$

is finite. $\mathrm{Y}$ is said to be pseudocompact in $X$ if every locally finite collection of
open subsets of $X$ which satisfies $U\cap Y\neq\emptyset$ for all $U\in \mathcal{U}$ is finite. In [26],
pseudocompactness of $Y$ in $X$ is called feeble compactness of $\mathrm{Y}$ in $X$ . Strong
pseudocompactness of $Y$ in $X$ clearly implies its pseudocompactness in $X$ .

Recall that a subspace $\mathrm{Y}$ of a space $X$ is compact in $X$ if every open cover
of $X$ has a finite subcollection which covers $\mathrm{Y}([3])$ . $Y$ is said to be countably
compact in $X$ if every infinite subset of $Y$ has an accumulation point in $X$ . It
is well-known that $\mathrm{Y}$ is countably compact in $X$ if and only if every countable
open cover of $X$ has a finite subcollection which covers Y. It is also known
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that $Y$ is compact in $X$ if and only if every infinite subset of $Y$ has a complete
accumulation point in $X([\mathit{2}\mathit{2}])$ .

Let $P$ be some class of spaces. A space $Y$ is said to be potentially pseudocom-
pact in the class $\mathcal{P}$ if there exists a space $X\in P$ containing $\mathrm{Y}$ such that $\mathrm{Y}$ is
strongly pseudocompact in $X$ . In particular, if $\mathrm{Y}$ is potentially pseudocompact
in the class $\mathcal{T}_{3},$

$\mathrm{Y}$ is said to be potentially pseudocompact ([4]). $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{l}’ \mathrm{s}\mathrm{k}\mathrm{i}\iota$

and Genedi [4] proved that the discrete space of cardinality $\omega$ is not potentially
pseudocompact. They also proved the following.

Theorem 3.1 ( $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}1’ \mathrm{s}\mathrm{k}\mathrm{i}_{1}$ and Genedi [4]). The discrete space of cardi-
nality $\mathrm{c}$ is potentially pseudocompact.

Corollary 3.2 (Arhangel’ $\mathrm{s}\mathrm{k}\mathrm{i}_{1}$ and Genedi [4]). Assuming $CH$, the discrete
space of cardinality of $\omega_{1}$ is potentially pseudocompact.

In [4], a problem was posed whether it is possible to drop the assumption
$\mathrm{C}\mathrm{H}$ . Garc\’ia-Ferreira and Just [10] gave an affirmative answer to this problem in
ZFC as follows.

Theorem 3.3 (Garcia-Ferreira and Just [10]). Let $\kappa$ be an uncountable
cardinal. Then the discrete space of cardinality $\kappa$ is potentially pseudocompact.

Although the proof in [10] of Theorem 3.3 needs an involved construction
making a sort of $\Psi$-spaces and uses a set-theoretic technique, we give an alter-
native simple proof to this theorem.

The following is a key lemma.

Lemma 3.4 ([18]). Let $\kappa$ be an uncountable cardinal and define $A(\kappa)=D(\kappa)\cup$

$\{\infty\}$ is the one-point compactification of the discrete space $D(\kappa)$ of cardinality
$\kappa$ . Put $X=A(\kappa)\cross A(\kappa)\backslash \{\langle\infty, \infty\rangle\}$ and $\mathrm{Y}=(D(\kappa)\cross\{\infty\})\cup(\{\infty\}\cross D(\kappa))$ .
Then $\mathrm{Y}$ is strongly pseudocompact in $X$ .

Proof. Let $\mathcal{U}$ be a collection of open subsets of $X$ which is locally finite at every
$y\in Y$ in $X$ and such that $U\cap Y\neq\emptyset$ for all $U\in \mathcal{U}$ . Suppose $\mathcal{U}$ is infinite. Put
$\mathcal{U}’=\{U\in \mathcal{U}|U\cap(D(\kappa)\cross\{\infty\})\neq\emptyset\}$ . Without loss of generality, we may assume
$\mathcal{U}’$ is countably infinite. For each $U\in \mathcal{U}’$ , take $\langle d_{U}, \infty\rangle\in U\cap(D(\kappa)\cross\{\infty\})$ . Then,
there is a finite subset $F_{U}$ of $D(\kappa)$ such that $\langle d_{U}, \infty\rangle\in\{d_{U}\}\cross(A(\kappa)\backslash F_{U})\subset U$.
Note that for each $d\in D(\kappa)$ , the collection $\{U\in \mathcal{U}’|d=d_{U}\}$ is at most finite.
$\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{e}\cup\{F_{U}|U\in \mathcal{U}’\}$ is countable, we can pick a $d’\in D(\kappa)\backslash \cup\{F_{U}|U\in \mathcal{U}’\}\square$

.
Then, $\mathcal{U}$ is not locally finite at $\langle$ $\infty$ , d’ $\rangle$ , a contradiction.

ALTERNATIVE PROOF OF THEOREM 3.3. Let $D(\kappa)$ be the discrete space of
cardinality $\kappa$ and let $\mathrm{Y},$ $Z$ be subspaces of $D(\kappa)$ satisfying $|Y|=|Z|=\kappa$ and
$D(\kappa)=\mathrm{Y}\oplus Z$ . Let $X=A(\mathrm{Y})\cross A(Z)\backslash \{\langle\infty_{Y}, \infty z\rangle\}$ , where $A(Y)=Y\cup$
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$\{\infty_{Y}\}$ and $A(Z)=Z\cup\{\infty z\}$ are the one-point compactifications of $\mathrm{Y}$ and $Z$ ,
respectively. Since $D(\kappa)$ are homeomorphic to $E=(Y\cross\{\infty z\})\cup(\{\infty_{\mathrm{Y}}\}\cross Z)$ ,
$X$ is a larger Tychonoff space of $D(\kappa)$ (containing $D(\kappa)$ as a closed subspace).
By Lemma 3.4, $D(\kappa)$ is strongly pseudocompact in X. $\square$

Next we consider other applications of Lemma 3.4. First, let us recall Propo-
sition 3.5 below which are relative versions of the Scott-Watson theorem; every
pseudocompact metacompact Tychonoff space is compact ([30], [31]). In the
Proposition 3.5, $(a),$ $(b)$ and $(c)$ follow from [22], [3] and [34], respectively. Note
that Theorem 3.5 $(c)$ also follows from Ko\v{c}inac [22, 1.5 Theorem]. Moreover,
Theorem 3.5 $(c)$ has been proved by $\mathrm{A}\mathrm{r}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{l}’ \mathrm{s}\mathrm{k}\mathrm{i}\mathrm{l}$ [$2$ , Theorem 8.20] in case $\mathrm{Y}$ is
1-paracompact in $X$ and $X$ is regular. Notice that each of three facts does not
cover the others.

Proposition 3.5 ([22], [3], [34]). For a subspace $\mathrm{Y}$ of a space $X$ , the following
hold.

$(a)$ If $Y$ is countably compact (in itselfl and 3-metacompact in $X$ , then $\mathrm{Y}$ is
compact in $X$ .

$(b)$ If $Y$ is strongly pseudocompact in $X$ and 2-paracompact in $X$ , then $\mathrm{Y}$ is
compact in $X$ .

$(c)$ If $\mathrm{Y}$ is countably compact in $X$ and 1-metacompact in $X$ , then $Y$ is com-
pact in $X$ .

In view of these results, it is natural to ask “if $\mathrm{Y}$ is strongly pseudocompact in
$X$ and 1-metacompact in $X$ , then is $\mathrm{Y}$ compact in $X?$” The answer is no. Indeed,
let $X=A(\omega_{1})\cross A(\omega_{1})\backslash \{\langle\infty, \infty\rangle\}$ and $\mathrm{Y}=(\{\infty\}\cross D(\omega_{1}))\cup(D(\omega_{1})\cross\{\infty\})$.
Then by Lemma 3.4, $\mathrm{Y}$ is strongly pseudocompact in $X$ . Moreover, $\mathrm{Y}$ is 1-
metacompact in $X$ but not compact in $X$ . It should be noted that even if $\mathrm{Y}$ is
2-paracompact in $X$ and countably compact in $X,$ $\mathrm{Y}$ need not compact in $X$

$([18])$ .
Here, the following slightly generalizes Proposition 3.5 $(c)$ .

Theorem 3.6 ([18]). Let $\mathrm{Y}$ and $Z$ be subspaces of a space X. If $Y$ is countably
compact in $X$ and $Z$ is 1-metacompact in $X$ , then $\mathrm{Y}\cap Z$ is compact in $X$ .

Proposition 3.5 $(c)$ and Theorem 3.6 affirmatively answer to [2, Problem
8.21]. Moreover, Theorem 3.6 clearly contains the following fact [14, Corollary
23] that for subspaces $\mathrm{Y}$ and $Z$ of a regular space $X,$

$\mathrm{i}\mathrm{f}\overline{\mathrm{Y}}^{X}$ is countably compact
and $Z$ is 1-metacompact in $X$ , then $\mathrm{Y}\cap Z$ is compact in $X$ . On the other hand,
we cannot generalize either of Proposition 3.5 $(a)$ and $(b)$ in a similar manner
(see [18]).
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A space $X$ is said to be weakly-normal if for every disjoint closed subsets
$A,$ $B$ of $X$ , one of which is countable and discrete, there exist disjoint open
subsets $U,$ $V$ of $X$ such that $A\subset U$ and $B\subset V$ (cf. [8]). It is known that a
Tychonoff space $X$ is countably compact if and only if $X$ is weakly-normal and
pseudocompact ([8]). In the following proposition, $(a)$ and $(b)$ were proved in
Arhangel’skii and Genedi [3] and Gordienko [12], respectively.

Proposition 3.7 ([3], [12]). For a subspace $\mathrm{Y}$ of a regular space $X$ , the fol-
lowing hold.

$(a)$ If $\mathrm{Y}$ is normd in $X$ and strongly pseudocompact in $X$ , then $\mathrm{Y}$ is countably
compact in $X$ .

$(b)$ If $\mathrm{Y}$ is supernornal in $X$ and pseudocompact in $X$ , then $\mathrm{Y}$ is countably
compact in $X$ .

Here, $\mathrm{Y}$ is said to be supemormal in $X$ if for every disjoint closed subsets
$A,$ $B$ of $X$ , at least one of which is contained in $\mathrm{Y}$ , there exist disjoint open
subsets $U,$ $V$ of $X$ such that $A\subset U$ and $B\subset V([12])$ .

To refine Proposition 3.7, the following notions of relative weak-normality
were introduced in [18]. $\mathrm{Y}$ is weakly-normal in $X$ if for every disjoint closed
subsets $A,$ $B$ of $X$ , one of which is countable and discrete, there exist disjoint
open subsets $U,$ $V$ of $X$ such that $A\cap Y\subset U$ and $B\cap Y\subset V$ . Furthermore, $\mathrm{Y}$ is
said to be strongly weakly-normal in $X$ if for every disjoint closed subsets $A,$ $B$

of $\mathrm{Y}$ , one of which is countable and discrete, there exist disjoint open subsets
$U,$ $V$ of $X$ such that $A\subset U$ and $B\subset V$ . We say that $\mathrm{Y}$ is super-weakly-nomal
in $X$ if for every disjoint closed subsets of $X$ , one of which is countable discrete
in $X$ and contained in $\mathrm{Y}$ , there exist disjoint open subsets $U,$ $V$ of $X$ such that
$A\subset U$ and $B\subset V$ .

The proof in [3] of Proposition 3.7 $(a)$ essentially shows that the theorem
also holds if we replace “

$\mathrm{Y}$ is normal in $X$” $\mathrm{b}\mathrm{y}‘(\mathrm{Y}$ is weakly-normal in $X$”.
Clearly, normality of $Y$ in $X$ implies its weakly-normality in $X$ . It is also

obvious that strong normality of $\mathrm{Y}$ in $X$ implies its strong weakly-normality in
X. Moreover, supernormality of $Y$ in $X$ implies its super-weakly-normality in
$X$ , and the latter implies its superregularity in $X$ . Note that if $\mathrm{Y}$ is strongly
weakly-normal in $X$ or super-weakly-normal in $X$ , then $\mathrm{Y}$ is weakly-normal in
$X([18])$ . It is obvious that if a space $\mathrm{Y}$ is feebly compact (in itself), then $\mathrm{Y}$ is
strongly pseudocompact in every space $X$ which contains $Y$ as a subspace ([4]).

Theorem 3.8 ([18]). Let $\mathrm{Y}$ be a subspace of a space X. Then, $\mathrm{Y}$ is strongly
weakly-normal in $X$ and strongly pseudocompact in $X$ if and only if $\mathrm{Y}$ is regular
in $X$ and countably compact (in itself).
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Theorem 3.9 ([18]). Let $\mathrm{Y}$ be a subspace of a space X. Then, $Y$ is super-
weakly-normal in $X$ and pseudocompact in $X$ if and only if $Y$ is superregular in
$X$ and countably compact in $X$ .

Notice that for a subspace $\mathrm{Y}$ of a space $X,$ $Y$ is countably compact (in itself)
if and only if every collection $\mathcal{U}$ of (not necessarily open) subsets of $X$ which is
locally finite at every $y\in \mathrm{Y}$ in $X$ and such that $U\cap \mathrm{Y}\neq\emptyset$ for all $U\in \mathcal{U}$ is finite.
Hence, Theorems 3.8 and 3.9 extend Proposition 3.7 $(a)$ and $(b)$ , respectively.

We conclude this note by showing some results on relative DFCC. Recall
that a space $X$ satisfies the discrete finite chain condition (DFCC, for short) if
every discrete collection of non-empty open subsets of $X$ is finite (see [26], for
example). A subspace $Y$ of a space $X$ is said to be DFCC in $X$ if every discrete
collection of open subsets of $X$ , which satisfies $U\cap Y\neq\emptyset$ for all $U\in \mathcal{U}$ , is
finite. It is known pseudocompactness of $Y$ in $X$ implies its DFCC-ness in $X$ ,
and conversely for regular spaces $X([26])$ . More generally, we have

Theorem 3.10 ([18]). Let $Y$ be a subspace of a space X. Suppose that $\mathrm{Y}$ is
superregular in X. Then $\mathrm{Y}$ is pseudocompact in $X$ if and only if $\mathrm{Y}$ is DFCC in
X.

Remark 3.11. Notice that by Theorem 3.10, “
$\mathrm{Y}$ is pseudocompact in $X$” $\mathrm{c}\mathrm{a}\mathrm{n}$

be replaced by “$Y$ is DFCC in $X$” $\mathrm{i}\mathrm{n}$ Proposition3.7 $(b)$ and Theorem 3.9.

Remark 3.12. Consider that a Tychonoff space $\mathrm{Y}$ is strongly pseudocompact
(equivalently, pseudocompact, DFCC) in every larger Tychonoff space. This
means, however, nothing but that $\mathrm{Y}$ is pseudocompact.
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