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1 Introduction

We consider the semiclassical Schr\"odinger operator

$P=-h^{2}\Delta_{x}+V(x)$ , (1)

where $h$ is a small parameter, and consider the equation

$Pu=zu$ , (2)

where $z$ is a spectral parameter. In this report, we restrict ourselves to a
model of two-dimensional and two-level Schr\"odinger operator whose potential
is given by

$V(x)=$ $x=(x_{1},x_{2})$ , (3)

and study the semicalssical distribution of the resonances of $P$ (see [2] for
more details).

A typical potential which generates resonances is a well in an island. This
potential has a well in a compact set but decays to $0$ at infinity. Then the
operator $P$ has no positive eigenvalues, but instead, it has resonances close to
the eigenvalues of the corresponding simple well operator, i.e. the operator
with $V(x,)$ modified suitably out of the compact set. In particular the reso-
nanccs at the non-degenerate minimurn of the potential well are exponentially
close to the real axis with respect to $h([6])$ and called shape resonances.

Another typical potential is a matrix valued potential. Suppose $V(x)$ is
a 2 $\mathrm{x}2$ matrix and let $v_{1}(x),$ $v_{2}(x)$ be its eigenvalues (which we often call
eigenpotentials) with $v_{1}(x)\leq v_{2}(x)$ . Suppose $v_{2}(x)$ has a well so that the
scalar operator $P_{2}=-h^{2}\Delta+v_{2}(x)$ has eigenvalues, while $v_{1}(x)$ decays, say
to-oo at infinity. Then $P$ has no eigenvalues but resonances. In case where
$v_{1}(x)<v_{2}(x)$ for all $x$ , these resonances are exponentially close to the real
axis with respect to $h([7])[8],$ $[1])$ .

Our potential (3) has eigen-potentials $v_{1}(x)=-|x|$ and $v_{2}(x)=|x|$ , inter-
secting conically at the origin $x=0$ . The spectrum of the single Schr\"odinger
operator $P_{2}=-h^{2}\Delta_{x}+|x|$ consists of countably many eigenvalues (of finite
multiplicity) tending $\mathrm{t}\mathrm{o}+\infty$ . while the spectrum of $P$ , however, does not have
any eigenvalue.

In this report, we fix a positive interval on the real axis of the complex
$z$-plane and look for resonances of $P$ near this interval.
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Let us consider the motion of the classical particle whose Hamiltonian is
$P2(x, \xi)=|\xi|^{2}+|x|$ . It is realized by a small ball on a table ( $x$-plane) connected
by a string to an$\mathit{0}$ther ball on the other extremity which is pendent through
a small hall $(x=0)$ of the table. If the ball has a small but positive angular
momentum, then it moves along an ellipse-like periodic orbit, while the other
ball moves up and down. The smaller the angular momentum is, the closer to
the hall the ball passes.

The quantum ball, however, falls down through the hall with some positive
probability by a quantum effect. The imaginary part of resonances represents
the inverse of the life span for the quantum ball to be on the table.

This situation is similar to the one-dimensional well in an island but at the
top of the lower barrier top, in the sensc that a trapped classical trajcctory is
connected to a non-trapped one through a stationary point. At the top of the
lower barrier top, the corresponding classical mechanics defined by the classical
Hamiltonian $p(x, \xi)=|\xi|^{2}+V(x)$ has a homoclinic traject$o\mathrm{r}\mathrm{y}([3])$ . Also in our
case, we will see in the next section that the reduced Hamiltonian $p_{l}(r, \rho, h)$

(5) for each angular momentum has a homoclinic orbit. The resonances are
created by this homoclinic orbit and, in particular, thier imaginary part, which
we expect to be no longer exponentially small, is governed by the behavior of
solutions near the stationary point.

2 Results

Making use of the particularity of the operator $P,$ (2) can be reduced to a
sequence of one-dimensional first order systems. Let

\^u $( \xi)=\frac{1}{2\pi h}\int_{\mathbb{R}^{2}}e^{-ix\xi/h}u(x)dx$

be the seirnclassical Fourier transform of $u$ , and using the polar coordinate
$(\xi_{1}, \xi_{2})=r(\cos\phi, \sin\phi)$ , we develop \^u to the Fourier series with respect to $\phi$ :

\^u $( \xi)=r^{-1/2}\sum_{l\in \mathrm{Z}}e^{-i(l+1/2)\phi}w_{l}(r)$ .

Then (2) is reduced to

$P_{l}(r, hD_{r}, h)w_{l}=zw_{l}$ $(l\in \mathrm{N})$ , (4)

where the symbol $p_{l}$ of the operator $P_{l}$ is

$p_{l}(r, \rho, h)=(h(l-\frac{1}{2})/rr^{2}-\rho$ $h(l- \frac{1}{2})/rr^{2}+\rho)$ . (5)

(4) is also written in the form

$\frac{h}{i}\frac{d}{dr}u=A(r, h)u$ , $A(r, h)=(-h(l- \frac{1}{2})/rr^{2}-z$ $h(l- \frac{1}{2,r})/rz-2)$ . (6)
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In this systern, $\mathrm{t}_{}\mathrm{h}\mathrm{e}$ origin $r=0$ is a regular singular point of indiccs
$\pm(l-\frac{1}{2})$ , and $r=\infty$ is a irregular singular point.

Let $u_{()}^{l},$ $f_{\pm}^{l}$ be the solutions to (4) defined by the following asymptotic
conditions respectively:

$u_{0}^{l}(r, h)\sim r^{l-1/2}$ , $(rarrow 0)$ ,

$f_{+}^{l}(r, h)\sim e^{i(\gamma^{3}-3zr)/3h}$ , $f_{-}^{l}(r, h)\sim e^{-i(r^{3}-3zr)/3h}$ $(rarrow+\infty)$ .

$u_{0}^{l}$ can be expressed as linear combination of $f_{+}^{l}$ and $f^{l}$ :

$u_{0}^{l}=c_{+}^{l}(z, h)f_{+}^{l}+c^{l}(z, h)f_{-}^{l}$ .

Then the resonances of $P$ are characterized as follows:

Proposition2.1 $z\in \mathbb{C}is\mathrm{a}reso\mathrm{n}\mathrm{a}\mathrm{n}\mathrm{c}e\mathrm{i}f\mathrm{a}\mathrm{n}\mathrm{d}o\mathrm{n}l\mathrm{y}ifth\mathrm{e}ree\mathrm{x}istsl\in \mathrm{N}s\mathrm{u}ch$

that $d_{+}(z, h)=0$ .
Let us fix a positive interval $I=[a, b],$ $a>0$ . For $z\in I$ and sufficiently

small $h$ , the Hamilton vector field $H_{p\downarrow}$ on the energy surface $\{(r, \rho);\det(p_{l}(r, \rho)-$

$z)=0\}$ has a periodic orbit $\gamma^{l}(z, h)$ . Indeed, the Hamilton flow $\exp tH_{\mathrm{P}l}$ co-
incides, as a set , with the energy surface itself, and it is given by

$\{(r, \rho);\rho=\pm\sqrt{(r^{2}-z)^{2}-\frac{h^{2}(l-\frac{1}{2})^{2}}{r^{2}}}\}$ .

Hence the periodic orbit exists inside the domain bounded by $\rho=r^{2}-Z$ ,
$\rho=-r^{2}+z$ and the $\rho-$-axis, and it converges to the boundary in the limit
$harrow 0$ .

This orbit generates the resonanees. Let $S^{l}(z, h)= \int_{\gamma}\rho dr$ be the action
integral for this orbit. By Stokes theorem$i$ it is given by

$S^{l}(z, h)=2 \int_{r_{0}}^{r_{1}}\sqrt{r^{2}(r^{2}-z)^{2}-h^{2}(l-\frac{1}{2})^{2}}\frac{dr}{\mathrm{r}}$,

where $r_{0}$ and $r_{1}(0<r_{0}<r_{1})$ are the first two zeros of the function in the
square root, i.e. the intersections of the orbit with the $r$-axis. $S^{l}(z, h)$ has the
following asymptotic property:

Lemma 2.2 On$e$ has

$S^{l}(z, h)= \frac{4}{3}z^{3/2}+\pi(l-\frac{1}{2})h+O(h^{2}|\log h|)$ (7)

as $harrow \mathrm{O}$ uniformly Wtth respect to $z\in I$ .
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The following theorem is a $\mathrm{B}\mathrm{o}\mathrm{I}_{1}\mathrm{r}$-Sommerfeld type quantization condition
of resonances:

Theorem 2.3 Given $z_{0}\in I$ and $l\in \mathrm{N}$ , there exist $\epsilon>0,$ $h_{0}>0$ and
a function $\delta(z, h)$ defined in $\{(z, h)\in \mathbb{C}\cross \mathbb{R}_{+;}|z-z_{0}|<\epsilon, 0<h<h_{0}\}$ and
tending to $\mathit{0}$ as $harrow \mathrm{O}$ , such that the following $eq$uivalence holds for sufficiently
small $h$ :

$c_{+}^{\iota}(z, h)=0$ $\Leftrightarrow$
$e^{-i\pi/4} \sqrt{\frac{\pi h}{2}}(l+\frac{1}{2})z^{-3/4}e^{iS^{l}(z,h)/h}+1=\delta(z, h)$ . (8)

The right hand side of (8) can be written, roughly speaking, in the form
of the generalized Bohr-Sommerfeld quantization condition

$c(z, h)e^{iS(z)/h}=1$ , $c(z, h)\sim c_{0}(z)e^{i\pi\theta}h^{\alpha}$ ,

where $S(z),$ $\mathrm{c}_{0}(z)$ are real-valued functions and $\theta$ , a are real numbers. Let us
look for roots of this equation near a real point $z=z_{0}$ . Supposing that $S(z)$

is analytic near $z=z_{0}$ , we replace $S(z)$ by $S_{0}+S_{1}(z-z_{0})$ . Then by an easy
calculation, we see that the roots $z$ satisfy

$z-z_{0} \sim\frac{-S_{0}+(2k-\theta)\pi h}{S_{1}}-i\frac{\alpha}{S_{1}}h\log\frac{1}{h}$

for some integer $k$ . The set of roots make a complex sequence pararell to the
real axis, and the interval of the succesive roots is $2\pi h/S_{1}$ and the imaginary
part is $- \frac{\alpha}{s_{1}}h\log\frac{1}{h}$ . $\theta$ is called Maslov index. In the usual Bohr-Sommerfeld
condition for a simple perodic trajectory, $S_{0}$ is the action, $S_{1}$ is the period and
$c(z, h)=-1$ , i.e. $\theta=1$ and $\alpha=()$ .

In our case, we see from Lemma 2.2 and Theorem 2.3 that $S(z)= \frac{4}{3}z^{3/2}$ ,
$\theta=l+\frac{1}{4}$ and $\alpha=\frac{1}{2}$ . More precisely, we obtain the following corollary about
the semiclassical distribution of resonances. Here, we take $\lambda=z^{3/2}$ as spectral
parameter and, putting $\tilde{I}=I^{3/2}$ , look for resonances in { $\lambda\in \mathbb{C}_{-};$ ${\rm Re}$ A $\in$

$\tilde{I},$ ${\rm Im}\lambda=o(1)$ as $harrow \mathrm{O}$}. For each $k,$ $l\in \mathrm{N}$ , we put $\lambda_{k1}=\frac{3\pi}{8}(8k-4l-1)$ and

$\Gamma_{\iota}(h)=\{\lambda_{k\mathrm{t}}h-\frac{3}{8}i(h\log\frac{1}{h}-h\log\frac{\pi(l+_{2})^{2}\mathrm{l}}{\lambda_{kl}h});k\in \mathbb{Z}\mathrm{s}.\mathrm{t}. \lambda_{kl}h\in\overline{I}\}$.

Corollary 2.4 For any $N\in \mathrm{N}$ , there exists $h_{0}(N)>0$ such that for any
$h\in(0, h_{0}(N))$ and $\lambda\in\bigcup_{\mathrm{t}\leq N}\Gamma_{l}(h)$ there is a resonance $z$ of the operator $P$

with $\lambda-z^{3/2}=o(h)$ uniformly for all $\lambda\in\bigcup_{l\leq N}\Gamma_{\iota}(h)$

Notice that $\lambda_{kl}h\in\overline{I}$ , and hence the second term of the imaginary part
of A $\in\Gamma_{l}(h)$ is of $O(h)$ and smaller than the first term. Thus, $\Gamma_{l}(h)$ is an
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almost horizontal sequence of complex points in the $\lambda$-plane, and $\mathrm{U}_{l\leq N}\Gamma_{l}(h)$

is a lattice which consists of $N$ horizontal sequences. Theorem 2.4 means that
for a fixed positive interval $I$ , we can find as many horizontal sequences of
resonances as we want for sufficiently small $h$ , whose imaginary part increases
as the angular momentum number does.

3 Methods

The resonances are created by the periodic orbit $\gamma^{l}(z, h)$ arid roughly speak-
ing, the quantization condition (8) is the condition that any WKB solution
microlocally defined on a point on $\gamma^{l}$ coincides with the one obtained after a
continuation along this orbit.

In this section, we briefly review two technical elements.
One is the exact WKB method for $2\cross 2$ systems, which is a natural ex-

tension of the method of G\’erard and Grigis [4] applied to single Schr\"odinger
operators.

The other is the microlocal reduction to a normal form of our operator at
the point $(r, \rho)=(\sqrt{z}, 0)$ , which is a hyperbolic stationary point of $\det p_{l}$ in
the limit $harrow \mathrm{O}$ .

In the following subsoctions, we will use thc notation $(x, \xi)$ instcad of $(r, \rho)$ .

3.1 Exact WKB solution

Here, the WKB solution is the solution of (6), which is of the form

$u(x, h)=e^{i\phi(x,h)/h}Q(x)u’(x, h)$ , (9)

$w(x, h)\sim$ $(harrow 0)$ ,

where the phase function $\phi(x, h)$ is a primitive of an eigenvalue of $A$ , and the
principal symbol $Q(x, h)$ is a matrix which diagonalize $A$ . In our case, $\mathrm{t}\mathrm{r}A=0$

and hence
$\phi(x)=\pm\int^{x}\sqrt{\det A(t)}dt$ . (10)

Let us take, say, the plus one here. Moreover, we can choose $Q$ such that
$Q^{-1}MQ$ is off-diagonal (this choice is unique up to multiplication by a diagonal
constant matrix):

$Q^{-1}AQ=($ $\sqrt{\det A}0$
$-\sqrt{\mathrm{d}e\mathrm{t}A}0$ ), (11)

$Q^{-1}Q’=-$ . (12)
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Then the function $w$ in (9) satisfies

$\frac{dw}{dx}+w=w$ . (13)

We can construct asolution of this system in the form

$w(x, h)= \sum_{n=0}^{\infty}$ , (14)

by determining inductively the functions $w_{n}(z, h)$ by

$w_{-1}\equiv 0$ , $w_{0}\equiv 1$ , (15)

and for $n\geq 1$ ,

$\{$

$\frac{d}{dx}w_{2n}$ $=c^{-}w_{2n-1}$ ,

$( \frac{d}{dx}+\frac{2i\phi’}{h})w_{2n-1}$ $=c^{+}w_{2n-2}$ ,
(16)

Let $x_{0}$ be a point where $A$ is holomorphic and regular (i.e. $\det A\neq 0$).
Then $c_{+}$ and $c$-are holomorphic at $x_{0}$ and the differential equations (16) with
initial conditions at $x=x_{0}$

$w_{n}|_{x=x_{0}}=0$ $(n\geq 1)$ (17)

uniquely determine the sequence of holomorphic functions $\{w_{n}(x, h;x_{0})\}_{n=-1}^{\infty}$

and the sum (14) converges in a neighborhood of $x_{0}$ .
A WKB solution (9) is said to be defined microlocally on the Lagrangian

manifold $\Lambda=\{(x, \xi);\xi=\phi’(x)\}$ . In our case, $\gamma^{l}$ consists of two Lagrangian
Inanifolds and two points

$\gamma^{l}=\Lambda_{+}\cup \mathrm{A}_{-}\mathrm{U}$ $\{(r_{0},0)\}\cup\{(r_{1},0)\}$ ,

where $\Lambda\pm=\{(x, \xi)’:\xi=\pm\sqrt{\det A}\}$ . $\{(r_{0},0)\}$ and $\{(r_{1},0)\}$ are the point which
tends as $harrow \mathrm{O}$ to the singularity $(0,0)$ and the stationary point $(\sqrt{z}, 0)$ of $p_{1}$

respectively.
Thc main problcrn reduces to the connection between the WKB solutions

defined microlocally on $\Lambda_{+}$ and that defined of A-at the points $(r_{0},0)$ and
$(r_{1},0)$ . In the next section, we focus to the study at $(r_{1},0)$ , which indeed
governs the imaginary part of resonances (see Introduction).

3.2 Normal form

In this section, we reduce the operator $P$ near $(r_{1},0)$ to a simpler one. More
precisely, we transform the equation (6) to a simple microlocal normal form

$Qw=\mathrm{t})$ , $Q=$ ,
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microlocall.y near the point $(x, \xi)=(\sqrt{z}\mathfrak{y}0)$ , whcre $\gamma=\gamma(z, h)$ is a constant
satisfying

$\gamma(z, h)=\frac{l-1/2}{\sqrt{2}}z^{-3/4}h+O(h^{2})$ . (18)

This reduction is carried out in three steps.
First, by the change of variable $y=\phi(x)$ with

$\phi(x)=(x-\sqrt{z})(\frac{2}{3}(x-\sqrt{z})+2\sqrt{z})^{1/2}$ ,

(6) bccomes

$hD_{y}v(y)=v(y)$ ,

where $v(y)=v(\phi(x))=u(x)$ and

$\psi(y)=\psi(\phi(x))=(l-\frac{1}{2})\frac{(\frac{2}{3}(x-\sqrt{z})+2\sqrt{z})^{1/2}}{x(x+\sqrt{z})}$ . (19)

The second step makes the off-diagonal entries constant modulo $O(h^{\infty})$ .
We can construct a matrix-valued $C^{\infty}$-symbol satisfying $M(y, h)=\mathrm{I}\mathrm{d}+O(h)$

such that
$\overline{w}(y, h)=M(y, h)v(y, h)$ ,

satisfies
$\overline{w}(y, h)=r(y, h)\overline{w}(y, h)$ (20)

where $\gamma$ satisfies (18) and $r(y, h)=O(h^{\infty})$ uniformly in an interval around
$y=0$ together with all its derivatives.

The last step is to rotate the operator by the angle $\pi/4$ in the phase space
by the integral operator

$Rg(y)=c \int_{\mathrm{R}}e^{-_{\overline{2h}}(y^{2}-2\sqrt{2}xy+x^{2})}.g(x)dx$ ,

where $c=e^{i\pi/8}(\sqrt{2}\pi h)^{-1/2}$ is a normalizing constant. This operator satisfies
the relations

$R(hD_{y}-y)=-\sqrt{2}yR$ , $R(hD_{y}+y)=\sqrt{2}hD_{y}R$. (21)

Multiplying a cut off function $\chi\dot{c}1\mathrm{J}\mathrm{l}\mathrm{d}$ then opcrating $R$ from the left to equation
(20), we obtain from (21)

$Qw(y, h)=- \frac{1}{\sqrt{2}}R(\chi(y)r(y, h)\tilde{w}(y, h)-ih\chi’(y)\tilde{w}(y, h))$ .

The right hand side is of $O(h^{\infty})$ uniformly in a nieghborhood of $y=0$ together
with its all derivatives.
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