Branner-Hubbard-Lavaurs deformation of parabolic cubic polynomials

東京工芸大学 中根 静男 (Shizuo Nakane)
Tokyo Polytechnic University

Since the wring deformation (or the Branner-Hubbard deformation) changes nothing on the filled-in Julia set, it does not deform polynomials with connected Julia sets. For polynomials with parabolic cycles, the Lavaurs maps enable us to deform complex structures also in the parabolic basins. This deformation, the Branner-Hubbard-Lavaurs deformation, can deform such polynomials. We will show that this happens for real cubic polynomials with parabolic fixed points of multiplier one. This is closely related to the non-landing of stretching rays. We will also show that the real BHL-deformation set coincides with the accumulation set of a stretching ray.

1 Stretching rays for real cubic polynomials

We consider a family of real cubic polynomials of the form:

\[P_3 = \{P_{A,B}(z) = z^3 - 3Az + \sqrt{B}; \ A, B > 0\} \]

For \(P \in P_3 \), let \(\varphi_P \) be its Böttcher coordinate. For a positive number \(s > 0 \), put \(\ell_s(z) = z|z|^{s-1} \) and we define a \(P \)-invariant Beltrami form \(\mu_s \) by

\[\mu_s := \left\{ \begin{array}{ll} (\ell_s \circ \varphi_P)^* \mu_0 & \text{in a nbd of } \infty, \\ \mu_0 & \text{on } K(P). \end{array} \right. \]

Then, by the Measurable Riemann Mapping Theorem, \(\mu_s \) is integrated by a qc-map \(\chi_s \) and \(P_s := \chi_s \circ P \circ \chi_s^{-1} \in P_3 \). Thus we define a real analytic map \(W_P : \mathbb{R} \rightarrow P_3 \) by \(W_P(s) = P_s \). The Böttcher coordinate \(\varphi_{P_s} \) of \(P_s \) is equal to \(\ell_s \circ \varphi_P \circ \chi_s^{-1} \). Since \(P_s \) is hybrid equivalent to \(P \), it holds \(P_s \equiv P \) for \(P \in C_3 \), the connectedness locus. For \(P \in C_3 \), the escape locus, we define the stretching ray through \(P \) by

\[R(P) = W_P(\mathbb{R}_+) = \{P_s; s \in \mathbb{R}_+\}. \]

On the shift locus, where both critical points \(\pm \sqrt{A} \) are escaping, we define the Böttcher vector by

\[\eta(P) := \frac{1}{\log 3} \log \log |\varphi_P(-\sqrt{A})| - \frac{1}{\log 3} \log \log |\varphi_P(\sqrt{A})|. \]
Lemma 1.1. ([KN]) The Böttcher vector is constant on each stretching ray in the shift locus.

In the shift locus of our family P_3, stretching rays are level curves of the Böttcher vector map $P \mapsto \eta(P)$.

2 Branner-Hubbard-Lavaurs deformation

Consider the locus $Per_1(1) = \{ B = 4(A + 1/3)^3; 0 < A < 1/9 \}$ in P_3, where the map Q has a parabolic fixed point β_Q of multiplier one whose immediate basin B_Q contains both critical points. Let $\phi_{Q,-}$ and $\phi_{Q,+}$ denote the attracting and repelling Fatou coordinates respectively of the parabolic fixed point β_Q for $Q \in Per_1(1)$.

The Lavaurs map $g_{Q,\sigma} : B_Q \to \mathbb{C}$ with lifted phase $\sigma \in \mathbb{R}$ is defined by $g_{Q,\sigma} = \phi_{Q,+}^{-1} \circ T_{\sigma} \circ \phi_{Q,-}$, where $T_{\sigma}(z) = z + \sigma$. For $Q \in Per_1(1)$ and $\sigma \in \mathbb{R}$, we define a $<Q, g_{Q,\sigma}>$-invariant Beltrami form $\mu_{s,\sigma}$ by

$$\mu_{s,\sigma} := \begin{cases}
\mu_s \text{ in } \mathbb{C} - K(Q), \\
(g_{Q,\sigma})^n \mu_s \text{ in } B_Q \cap g_{Q,\sigma}^{-n}(\mathbb{C} - K(Q)), \\
\mu_0 \text{ otherwise.}
\end{cases}$$

Then, as before, there exists a qc-map $\chi_{s,\sigma}$ such that $\mu_{s,\sigma} = \chi_{s,\sigma}^* \mu_0$, $Q_{s,\sigma} := \chi_{s,\sigma} \circ Q \circ \chi_{s,\sigma}^{-1} \in Per_1(1)$.

Lemma 2.1. The map $\chi_{s,\sigma} \circ g_{Q,\sigma} \circ \chi_{s,\sigma}^{-1}$ is a Lavaurs map of $Q_{s,\sigma}$ with some lifted phase $\sigma(s)$.

We call $(Q_{s,\sigma}, \sigma(s))$ the Branner-Hubbard-Lavaurs deformation of (Q, σ). We also define the BHL-ray $L(Q, \sigma)$ through (Q, σ) by

$$L(Q, \sigma) = \{(Q_{s,\sigma}, \sigma(s)) \in Per_1(1) \times \mathbb{R}; s \in \mathbb{R}_+\}$$

and the Böttcher-Lavaurs vector by

$$\eta(Q, \sigma) := \frac{1}{\log 3} \log \log \varphi_Q(g_{Q,\sigma}(-\sqrt{A})) - \frac{1}{\log 3} \log \log \varphi_Q(g_{Q,\sigma}(\sqrt{A})).$$

Note that this is well defined because $\varphi_Q(g_{Q,\sigma}(\pm\sqrt{A})) > 1$. It satisfies $\eta(Q, \sigma + 1) = \eta(Q, \sigma)$. By the same argument as in the proof of Lemma 1.1, we have the following.

Lemma 2.2. The Böttcher-Lavaurs vector $\eta(Q, \sigma)$ is constant on each BHL-ray.

For $Q \in Per_1(1)$, we define the Fatou vector by $\tau(Q) := \phi_{Q,-}(-\sqrt{A}) - \phi_{Q,-}(\sqrt{A})$.

Lemma 2.3. The Fatou vector gives a real analytic parametrization of the locus $Per_1(1)$.

It easily follows that $Q_{s,\sigma} = Q$ if $\tau(Q) \in \mathbb{Z}$, that is, if Q has a critical orbit relation.
Theorem 2.1. (Non-trivial BHL-deformation)
If $\tau(Q) \notin \mathbb{Z}$, then the map $s \mapsto Q_{s,\sigma}$ is not constant for any σ.

Such a map is first obtained in Willumsen [W] in the region $A < 0$. See also Tan Lei [T]. Once we get such a non-trivial deformation, the following corollary is essentially due to [W].

Corollary 2.1. (Discontinuity of wring operation)
Suppose $\tau(Q) \notin \mathbb{Z}$. Then the map $(P, s) \mapsto W_P(s)$ is discontinuous at (Q, s) if $Q_{s,\sigma} \neq Q$ for some σ.

The region $R_0 := \{B > 4(A + 1/3)^3\}$ is contained in the shift locus. Stretching rays in R_0 are uniquely labelled by the Böttcher vector. Let $R(\eta)$ denote the ray with level η.

Theorem 2.2. ([KN], Non-landing of stretching rays)
If $\eta \in \mathbb{Z}$, then $R(\eta)$ lands at $Q \in \text{Per}_1(1)$ with $\tau(Q) = \eta$. If $\eta \notin \mathbb{Z}$, then $R(\eta)$ has a non-trivial accumulation set on $\text{Per}_1(1)$.

The following theorem suggests that stretching rays are obtained from the rescaling of BHL-rays and seems to explain the regular oscillation of stretching rays.

Theorem 2.3. Suppose $\tau(Q) \notin \mathbb{Z}$. Then the BHL-deformation set $\{Q_{s,\sigma}; s > 0\}$ of Q coincides with the accumulation set of the stretching ray $R(\eta)$, where $\eta = \eta(Q, \sigma)$.

References

