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Abstract
We consider the location of each critical point of a cubic polynomial

map with a parabolic fixed point. We show that, for any given number
of iterations, there exists a cubic polynomial map with a parabolic
fixed point such that the immediate parabolic basin contains just one
of the critical points and the image of another critical point under the
specified number of iterations.

1 Introduction
Let $f$ be any cubic polynomial. If $f$ has a parabolic fixed point $\alpha$ , then a
cvcle of Fatou components of $f$ is called the immediate parabolic basin for
$\alpha$ if the cycle contains a parabolic petal for $\alpha$ .

Roughly speaking, in this note we consider the dynamically location of
$\mathrm{e}\mathrm{a}\mathrm{c},\mathrm{h}$ critical points of $f$ with a parabolic fixed point whose basin contains
both the critical points. We denote by $c_{0}$, and $c_{1}$, the critical points of $f$ .
Using the Haissinsky pinching deformation, we prove the following result:

Theorem 1.1. For any positive integer $n,$ , there exists a cubic polynomial
map $f$ with a parabolic fixed point such that the immediate parabolic basin
contains $c_{0}$ and $f^{\mathrm{o}n}(c_{1},)$ , and does not contain $f^{\mathrm{o}k}(c_{1})$ for any integer $k$ with
$0\leq k<n$ .

Now, suppose that $f$ has a parabolic fixed point, and the parabolic basin
contains $c_{0}$ and $c_{1}$ . By analogy with Milnor [3], we shall define the types
of this parabolic fixed point. For $j=0,1$ , we denote by $U_{j}$ the Fatou
component which contains $c_{j}$ . Without loss of generality, we may assume
that $U_{0}$ is contained in the immediate basin of the parabolic fixed point.
Following from [3], there exist four possibilities as follows.
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Case 1: The Fatou component is adjacent, i.e., $U_{0}=U_{1}$ .

Case 2: The Fatou component is bitransitive. Namely, $U_{0}\neq U_{1}$ , and more,-

over there exist the smallest positive integers $p,$ $q>0$ such that $f^{\mathrm{o}p}(U_{0})=$

$U_{1}$ and $f^{\mathrm{o}q}(U_{1})=U_{0}$ .
Case 3: The immediate parabolic basin captures $U_{1}$ . Namely, the immedi-

ate parabolic basin does not contain $U_{1}$ , but $f^{\mathrm{o}k}(U_{1})$ for some integer
$k\geq 1$ .

Case 4: Each of $U_{0}$ and $U_{1}$ is contained in the disjoint cycle of the immediate
parabolic basin. Namely, $U_{0}$ and $U_{1}$ is contained in the immediate
parabolic basin, and it follows that $f^{\mathrm{o}n}(U_{0})\cap f^{\mathrm{o}m}(U_{1})=\emptyset$ for any
integers $n,$ $m\geq 0$ .

We define the types of the parabolic fixed point $\alpha$ as follows:

Definition 1.2. In Case 1, 2, 3 or 4, we say that $\alpha$ is a parabolic fixed point
of an $a\dot{a}ja$cent, bitransitive, capture, or disjoint type, respectively.

We will consider the type of the parabolic fixed point a the cubic poly-
nomial map obtained by the Haissinsky pinching deformation, which is illus-
trated in the next section.

2 The Haissinsky Pinching deformation
Suppose that $f$ is any cubic polynomial map with an attracting fixed point
$\alpha$ . Let $B_{f}(\alpha)$ be the attracting basin for a. We consider the Haissinsky
pinching deformation of $f$ defined by pinching curves in $B_{f}(\alpha)$ .

Following from [1], for any integer $q\geq 1$ , there exist a smooth open arc
$\gamma$ and a neighborhood $U\subset B_{f}(\alpha)$ of $\gamma$ satisfying the following conditions.

$\bullet$ $\overline{\gamma}\backslash \gamma$ consists of the attracting fixed point a and a repelling periodic
point $\beta$ of period $q$ .

$\bullet$ $f^{\mathrm{o}q}(\gamma)=\gamma,$ $f^{\mathrm{o}q}(U)=U$ , and $f^{\mathrm{o}q}|_{U}$ is univalent.

$\bullet$ $f^{\mathrm{o}n}(U)\cap f^{\mathrm{o}m}(U)=\emptyset$ for any $0\leq n<m<q$ .
$\bullet$ There exist a number $\sigma>0$ and a conformal map $\Phi_{\sigma}$ : $Uarrow\{|z|<\pi\}$

such that $\Phi_{\sigma}\mathrm{o}f^{\mathrm{o}q}(z)=\Phi_{\sigma}(z)+\sigma$ for all $z\in U$ .

We call the union $S:= \bigcup_{k>0}f^{\mathrm{o}-k}(\overline{\gamma})$ the support of pinching, and define
$S_{0}:= \bigcup_{k\geq 0}f^{\mathrm{o}k}(\overline{\gamma})$ . It follows $\overline{\mathrm{f}\mathrm{r}}\mathrm{o}\mathrm{m}[1]$ that we have a sequence of quasicon-
formal maps $(h_{t})_{t\geq 0}\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\theta \mathrm{i}\mathrm{n}\mathrm{g}$ the following conditions.
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$\bullet$ $h_{t}$ converges uniformly on $\hat{\mathbb{C}}$ to a local quasiconformal map $h_{\infty}$ on $\hat{\mathbb{C}}\backslash S$ .

$\bullet$ $f_{t}:=h_{t}\circ f\circ h_{t}^{-1}$ converges uniformly on $\hat{\mathbb{C}}$ to a cubic polynomial $f_{\infty}$ .

$\bullet$ $h_{\infty}(\alpha)$ is a parabolic fixed point of $f_{\infty}$ .

$\bullet h_{\infty}(S_{0})=h_{\infty}(\alpha)$ .
For further details, see [1] or [2].

3 Proof of Theorem 1.1
We first prove the following lemma needed later.

Lemma 3.1. Let $n$ be any positive integer, and let A be any complex number
in $\mathrm{D}\backslash \{0\}$ . Then there exists a cubic polynomial $f$ , with $f^{\mathrm{o}n}(c_{1})=c_{0}$ , such
that $f$ has an attracting fixed point of multiplier $\lambda$ whose attracting basin is
simply connected.

Proof. Consider a monic and centered cubic polynomial

$P_{A,B}(z)=z^{3}-3Az+\sqrt{B},$ $(A, B)\in \mathbb{C}^{2}$ .

Suppose that $P_{A,B}$ has a fixed point of multiplier $\lambda$ . Then the fixed point is
$\alpha_{A,\lambda}:=\sqrt{A+\lambda}/3$ , and hence, $P_{A,B}$ is affine conjugate to the cubic polyno-
mial map

$Q_{A,\lambda}(z)=z^{3}+3\alpha_{A,\lambda}z^{2}+\lambda z$

with critical points $c_{A,\lambda}^{\pm}:=-\alpha_{A,\lambda}\pm\sqrt{A}$ .
Suppose that A $\in(-1,0)$ , and the parameter $A$ is any real number $>$

$-\lambda/3$ such that the attracting basin for zero is simply connected.
For each integer $k\geq 0$ , we denote by $z_{A,\lambda}(k)$ the unique point on $\mathrm{R}_{+}\mathrm{s}\iota \mathrm{l}\mathrm{c}\mathrm{h}$

that $Q_{A,\lambda}^{\mathrm{o}k}(z_{A,\lambda}(k))=c_{A,\lambda}^{+}$. For any integer $k>0$ and for any real number
$\mathrm{A}’$ with $A’>A$ , we have $z_{A,\lambda}(k)<z_{A,\lambda}(k+1)$ and $z_{A,\lambda}(k)>z_{A_{)}’\lambda}(k)$ . Thus
since $Q_{A,\lambda}(c_{A,\lambda}^{-})arrow+\infty$ as $Aarrow+\infty$ , for any integer $n>0$ there exists a
real number $A$ such that $Q_{A,\lambda}^{\mathrm{o}n}(c_{A,\lambda}^{-})=c_{A,\lambda}^{+}$ .

Let $\lambda’$ be any complex number in $\mathrm{D}\backslash \{0\}$ . Then it follows from [5] that
there exists a quasiconformal map $h$ such that the cubic polynomial map
$g:=h\circ Q_{A,\lambda}\circ h^{-1}$ has an attracting fixed point with multiplier X. $\square$

We use the Haissinsky pinching deformation of $f$ obtained from this
lemma.
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Proof of Theorem 1.1. Without loss of generality, we may assume that
$f(z)=z^{3}+3\alpha_{A,\lambda}z^{2}+\lambda z,$ $c_{0}=c_{A,\lambda}^{+}$ and $c_{1}=c_{\overline{A},\lambda}$ .

Suppose that $\lambda$ is any real number with $-1<\lambda<0$ , and $A$ is a real
number $>-\lambda/3$ such that the attracting basin for zero is simply connected.
Recall that $B_{f}(0)$ is the attracting basin for zero. Let $\varphi_{f}$ be the Koenigs map
such that $\varphi_{f}(0)=0$ , and $\varphi_{f}(z)=\lambda z$ for all $z\in B_{f}(0)$ . We may assume that
$\varphi_{f}(c_{0},)=1$ .

Define the half-line $\hat{\gamma}:=i\mathbb{R}^{+}$ , so that $\hat{\gamma}$ is periodic of period two under the
iterates of the map $L(z):=\lambda z$ . We, denoted by $\gamma$ the connected component
of the preimage of $\hat{\gamma}$ under $\varphi_{f}$ whose closure contains zero. Thus, we have
the support of pinching $S:= \bigcup_{k\geq 0}f^{\mathrm{o}-k}(\overline{\gamma})$ , and denote by $f_{\infty}$ the limit of
the Haissinsky pinching deformation of $f$ defined by $S$ .

Let $n$ be any positive integer. From Lemma 3.1, we have a parameter $A$

such that $f^{\mathrm{o}n}(c_{1})=c_{0}$ . For each integer $k\geq 1$ , we denote by $\alpha(k)$ the point
on $\mathbb{R}_{+}$ such that $f^{\mathrm{o}k}(\alpha(k))=0$ , and by $S_{\alpha(k)}$ the connected component of $S$

which contains $\alpha(k)$ .
At first consider the case $n\geq 2$ . Since for each integer $k\geq 1$ the compo-

nent $S_{a(k)}$ separates the origin and $f^{\mathrm{o}k}(c_{1})$ , it follows that $f_{\infty}$ has a parabolic
fixed point of a capture type.

Next, consider the case $n=1$ . Since no connected component of $S$

separates the origin and $c_{1}.$, it follows that $f_{\infty}$ has a parabolic fixed point of
a bitransitive type.

In order to obtain a polynomial with a parabolic fixed point of a capture
type, we will use the Branner-Hubbard deformation of $f$ obtained by wringing
the almost complex structure on the attracting basin for zero (cf. [5]). In
particular, we consider the Branner-Hubbard deformation which does not
change the multiplier of the origin.

Let $s=1+2\pi i/\log\lambda$ , and let $l$ be the quasi-conformal map defined as
$l(z):=z|z|^{s-1}$ .

Recall that $\varphi_{f}$ is the Kcenigs map defined on $B_{f}(0)$ . We define the holo-
morphic map $\psi_{f}$ : $\mathrm{D}arrow \mathbb{C}$ as the inverse map of $\varphi_{f}$ such that $\psi_{[}(0)=0$ .

Let $\sigma_{0}$ be the standard almost complex structure of $\hat{\mathbb{C}}$ , and let $\sigma$ be the
almost complex structure defined as follows:

$\sigma=\{$

$\sigma_{0}$ on $\hat{\mathbb{C}}\backslash B_{f}(0)$

$(l\mathrm{o}\varphi_{f})^{*}(\sigma_{0})$ on $\psi_{f}(\mathrm{D})$

$(l\mathrm{o}\varphi_{f}\mathrm{o}f^{\mathrm{o}k})^{*}(\sigma_{0})$ on $f^{-k}(\psi_{f}(\mathrm{D}))\backslash f^{-k+1}(\psi_{f}(\mathrm{D}))$ ,
(1)

where $k$ is an integer $\geq 1$ .
From the Measurable Riemann Mapping Theorem, we obtain the quasi-

conformal map $h$ such that $h^{*}\sigma_{0}=\sigma$ . Suppose that $h(\mathrm{O})=0,$ $h(1)=1$
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and $h(\infty)=\infty$ . Then, we obtain a cubic polynomial map $g=h\circ f\circ h^{-1}$

with the attracting fixed point zero. It follows from [5] that the multiplier is
$g’(\mathrm{O})=h(\lambda)=\lambda|\lambda|^{s-1}=\lambda$ , and that the Kcenigs map $\varphi_{g}=t\circ\varphi_{f}\circ h^{-1}$ .

Following from the argument similar to the above discussion, we define
$S’\subset B_{\mathit{9}}(0)$ as the support of the pinching deformation, and denote by $g_{\infty}$

the limit of the pinching deformation of $g$ defined by the support $S$‘.
There exists a cycle of connected components of $B_{f}(0)\backslash h^{-1}(S’)$ under

the iterates of $f$ ,
If $c_{1}$ is not contained in this cycle, then one of the critical points of $g_{\infty}$ is

not contained in the immediate parabolic basin of $g_{\infty}$ .
We consider the inverse image of $i\mathrm{R}$ under $\varphi \mathrm{o}h^{-1}$ . We introduce a

preliminary definition as follows. For any point $z$ of the backward orbit
of the origin, we denote by $D_{f}(z;r)$ the connected component of the set
$\{w:|\varphi_{f}(w)|<r\}$ which contains the point $z$ .

Since $f$ has no critical point in the open set $D_{f}(0;|\lambda|^{-1})$ except $c_{\{)}$ , it
follows that $f$ maps $D_{f}(0;|\lambda|^{-1})\backslash \{c_{0}\}$ to $D_{f}(0;1)\backslash \{c_{0}\}$ in two-to-one corre-
spondence. Thus $f$ has the unique preimage $\alpha’$ of the origin such that $\alpha’\overline{\tau}^{\angle}$. $0$

and $\alpha’\in D_{f}(0;|\lambda|^{-1})\backslash \{c_{0}\}$ .
We extend $\psi_{f}$ to the conformal map $\psi_{f,0}^{}$ defined on $\mathrm{D}(0_{\backslash }|\lambda|^{-1})\backslash [1$ , I $\lambda|^{-1}$ )

to a subset of $D_{J}(\mathrm{O};|\lambda|^{-1})$ . Moreover, we define $\psi_{f,1}$ as the conformal map
defined on $\mathrm{D}(\mathrm{O};|\lambda|^{-1})\backslash [1, |\lambda|^{-1})$ such that $\varphi_{f}0\psi_{f,1}\equiv$ identity map and
$\psi_{f,1}(0)=\alpha’$ .

The end points of the image of the set $\{yi|-|\lambda|^{-1}<y<|\lambda|^{-1}\}$ under
$\psi_{f,0}\circ h^{-1}$ is contained in the boundary of $\psi_{f,1}(\mathrm{D}(\mathrm{O};|\lambda|^{-1})\backslash [1, |\lambda|^{-1}))$ . Hence,
the connected component of the preimage of $i\mathbb{R}$ under $\varphi_{f}\circ h^{-1}$ which contains
zero passes through the boundary of $\psi_{f,1}(\mathrm{D}(\mathrm{O};|\lambda|^{-1})\backslash [1, |\lambda|^{-1}))$, and does
not separate $c_{0}$ and $c_{1}$ . On the other hand, the connected component of
the preirnage of $i\mathbb{R}$ under $\varphi_{f}\mathrm{o}h^{-1}$ which contains $\alpha’$ separates $c_{0}$ and $c_{1}$ .
Therefore, the cycle of the Fatou components of $g$ does not contain one of
the critical points of $g$ , and hence $g_{\infty}$ has a parabolic fixed point of a capture
type.

4 Notes
Consider the family of cubic polynomials $P_{A,B}(z):=z^{3}-3Az+\sqrt{B}$ with
$P_{A,B}(-\sqrt{A})=\sqrt{A}$. We have $B=A(1-2A)^{2}$ . The connectedness locus of
the family of $P_{A,A(1-2A)^{\underline{\circ}}}(z)=z^{3}-3Az+\sqrt{A}-2A\sqrt{A},$ $A\in \mathbb{C}$ , is showed in
Figure 2.
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Figure 1: Sketch for the pinching curves.

Figure 2: The connectedness locus of the family of cubic polynomials
$P_{A,A(1-2A)^{2}},$ $A\in \mathbb{C}$ .
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$P_{A,A(1-2A)^{2}}$ is affine conjugate to the cubic polynomial map

$F_{A}(\nearrow.):=(P_{A,A(1-2A)^{2}}(\sqrt{A}z+\sqrt{A4})-\sqrt{A})/\sqrt{A}=Az^{3}+3Az^{2}-4\mathrm{A}$.

Suppose that $0<|A|<1/4$ . Then the map $F_{A}$ satisfies the inequality
$|F_{A}(z)+4A|<|4A|$ , that is, $F_{A}$ maps the disk of radius $|F_{A}(0)|$ centered at
$F_{A}(0)$ into itself. Hence $F_{A}$ has an attracting fixed point in the disk.

Let $\alpha_{A}$ be the attracting fixed point.

Proposition 4.1. If $A$ turns around the origin once, then the multiplier of
the attracting fixed point of $F_{A}$ turns around the origin twice.

Proof. Let $D$ be the disk of radius $|F_{A}(0)|$ centered at $F_{A}(0)$ . If $A$ turns
around the origin once, then the center of $D$ turns around the origin once.

Set $0<r<1/4,$ $\theta\in[0,1]$ , and $A=re^{2\pi i\theta}$ . Since the radius of $D$ is the
constant $|F_{A}(0)|$ , the attracting fixed point $\alpha_{4}$. also turns around the origin
once. Thus the multiplier $F_{A}’(\alpha_{A})=3A\alpha_{A}(\alpha_{A}+2)$ turns around the origin
twice.
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