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Abstract
We consider the location of each critical point of a cubic polynomial
map with a parabolic fixed point. We show that, for any given number
of iterations, there exists a cubic polynomial map with a parabolic
fixed point such that the immediate parabolic basin contains just one
of the critical points and the image of another critical point under the
specified number of iterations.

1 Introduction

Let f be any cubic polynomial. If f has a parabolic fixed point «, then a
cycle of Fatou components of f is called the immediate parabolic basin for
« if the cycle contains a parabolic petal for a.

Roughly speaking, in this note we consider the dynamically location of
each critical points of f with a parabolic fixed point whose basin contains
both the critical points. We denote by ¢y and ¢; the critical points of f.
Using the Haissinsky pinching deformation, we prove the following result:

Theorem 1.1. For any positive integer n, there exists a cubic polynomial
map f with a parabolic fixed point such that the immediate parabolic basin
contains ¢y and f°"(c;), and does not contain f°*(c;) for any integer ¥ with
0<k<n.

Now, suppose that f has a parabolic fixed point, and the parabolic basin
contains ¢y and ¢;. By analogy with Milnor [3], we shall define the types
of this parabolic fixed point. For j = 0,1, we denote by U, the Fatou
component which contains ¢;. Without loss of generality, we may assume
that Up is contained in the immediate basin of the parabolic fixed point.
Following from [3], there exist four possibilities as follows.



Case 1: The Fatou component is adjacent, i.e., Uy = U;.

Case 2: The Fatou component is bitransitive. Namely, Uy # U}, and more-
over there exist the smallest positive integers p, ¢ > 0 such that f°P(Up) =
Ul and foq(Ul) = Uo.

Case 3: The immediate parabolic basin captures U;. Namely, the immedi-
ate parabolic basin does not contain Uy, but f°*(U;) for some integer
k>1.

Case 4: Each of U and U, is contained in the disjoint cycle of the immediate
parabolic basin. Namely, Uy and U, is contained in the immediate
parabolic basin, and it follows that f*(Up) N f™(U;) = 0 for any
integers n,m > 0. '

We define the types of the parabolic fixed point « as follows:

Definition 1.2. In Case 1, 2, 3 or 4, we say that « is a parabolic fixed point
of an adjacent, bitransitive, capture, or disjoint type, respectively.

We will consider the type of the parabolic fixed point a the cubic poly-
nomial map obtained by the Haissinsky pinching deformation, which is illus-
trated in the next section.

2 The Haissinsky Pinching deformation

Suppose that f is any cubic polynomial map with an attracting fixed point
a. Let Bg(a) be the attracting basin for . We consider the Haissinsky
pinching deformation of f defined by pinching curves in By ().

Following from [1], for any integer ¢ > 1, there exist a smooth open arc
« and a neighborhood U C By(a) of v satisfying the following conditions.

e 7 \ v consists of the attracting fixed point o and a repelling periodic
point 3 of period g.

o f(y) =1, f9U)=U, and f*|y is univalent.
o fo(U) ﬁf°“"(U) =Qforany0<n<m<aq.

e There exist a number ¢ > 0 and a conformal map ®, : U = {|z| < 7}
such that &, o f°9(2) = ®,(z) + o forall z € U.

We call the union S := | J;5 fo7*(¥) the support of pinching, and define
So := Up»o f¥(7). 1t follows from [1] that we have a sequence of quasicon-
formal maps (h:):>0 satisfying the following conditions.
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h; converges uniformly on C to a local quasiconformal map Ay, on @\S .

ft := hs o f o h;* converges uniformly on C to a cubic polynomial f..
¢ g

heo () is a parabolic fixed point of f..
For further details, see [1] or [2].

3 Proof of Theorem 1.1

We first prove the following lemma needed later.

Lemma 3.1. Let n be any positive integer, and let A be any complex number
in D\ {0}. Then there exists a cubic polynomial f, with f°*(c;) = ¢, such
that f has an attracting fixed point of multiplier A whose attracting basin is
simply connected.

Proof. Consider a monic and centered cubic polynomial
Pap(z) =2 - 342+ VB, (A,B) € C%.

Suppose that P4 g has a fixed point of multiplier A\. Then the fixed point is
gz = /A + A/3, and hence, P, p is affine conjugate to the cubic polyno-
mial map

Qar(z) =22 + 3aA,,\z2 + Az

with critical points cﬁ \ = o0t VA.

Suppose that A e’(—-l,O), and the parameter A is any real number >
—)/3 such that the attracting basin for zero is simply connected.

For each integer k > 0, we denote by z4 (k) the unique point on R, such
that Q% (24(k)) = ¢} ,. For any integer k > 0 and for any real number
A" with A’ > A, we have 24,(k) < zaa(k +1) and z42(k) > z4 2(k). Thus
since Qa(cyy) — 400 as A — +o0, for any integer n > 0 there exists a
real number A such that Q3"\(c ,) = ¢} .

Let A’ be any complex number in D \ {0}. Then it follows from [5] that
there exists a quasiconformal map h such that the cubic polynomial map
g:=hoQ4yoh~! has an attracting fixed point with multiplier )\'. O

We use the Haissinsky pinching deformation of f obtained from this
lemma.
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Proof of Theorem 1.1. Without loss of generality, we may assume that
f(z) = 22 +3aap2® + Az, co = ¢}, and ¢; = ¢ .

Suppose that A is any real number with —1 < A < 0, and A is a real
number > —\/3 such that the attracting basin for zero is simply connected.
Recall that By(0) is the attracting basin for zero. Let ¢ be the Kcenigs map
such that ¢;(0) = 0, and ¢(2) = Az for all z € Bf(0). We may assume that
ps(co) = 1.

Define the half-line 4 := iR*, so that 4 is periodic of period two under the
iterates of the map L(z) := Az. We denoted by < the connected component
of the preimage of 4 under ¢y whose closure contains zero. Thus, we have
the support of pinching S := J;» f>*(7), and denote by fu the limit of
the Haissinsky pinching deformation of f defined by S.

Let n be any positive integer. From Lemma 3.1, we have a parameter A
such that f°(c;) = co. For each integer k > 1, we denote by a(k) the point
on R, such that f°*(a(k)) =0, and by S, the connected component of S
which contains a(k).

At first consider the case n > 2. Since for each integer k > 1 the compo-
nent S,(x) separates the origin and f°*(cy), it follows that f., has a parabolic
fixed point of a capture type.

Next, consider the case n = 1. Since no connected component of S
separates the origin and ¢y, it follows that f., has a parabolic fixed point of
a bitransitive type.

In order to obtain a polynomial with a parabolic fixed point of a capture
type, we will use the Branner-Hubbard deformation of f obtained by wringing
the almost complex structure on the attracting basin for zero (cf. {5]). In
particular, we consider the Branner-Hubbard deformation which does not
change the multiplier of the origin.

Let s = 1+ 2mi/log A, and let [ be the quasi-conformal map defined as
I(2) == z|2* " .

Recall that ¢y is the Kcenigs map defined on Bf(0). We define the holo-
morphic map ¥f : D — C as the inverse map of ¢ such that ¢;(0) = 0.

Let op be the standard almost complex structure of @, and let o be the
almost complex structure defined as follows:

oo on C \ B(0)
og=1 (loys)*(00) on ¢§(D) (1)
(lopgo f*)*(00) on f7*(%s(D)) \ f~*+(¢4(D)),

where k is an integer > 1.
From the Measurable Riemann Mapping Theorem, we obtain the quasi-
conformal map h such that h*oy = 0. Suppose that h(0) = 0, h(1) =1
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and h(oo) = oo. Then, we obtain a cubic polynomial map g = ho f o h~!
with the attracting fixed point zero. It follows from [5] that the multiplier is
¢'(0) = h()) = A|A]""" = ), and that the Koenigs map ¢, = [ o ;o b~

Following from the argument similar to the above discussion, we define
S’ C By(0) as the support of the pinching deformation, and denote by g
the limit of the pinching deformation of g defined by the support S’

There exists a cycle of connected components of Bs(0) \ A~!(S’) under
the iterates of f,

If ¢; is not contained in this cycle, then one of the critical points of g is
not contained in the immediate parabolic basin of g.. :

We consider the inverse image of iR under ¢ o h™!. We introduce a
preliminary definition as follows. For any point z of the backward orbit
of the origin, we denote by D;(z;r) the connected component of the set
{w : |¢s(w)| < r} which contains the point z.

Since f has no critical point in the open set Dy(0;|A|™") except cq, it
follows that f maps Df(0; |A| ™)\ {co} to Df(0;1)\ {co} in two-to-one corre-
spondence. Thus f has the unique preimage o of the origin such that o/ # 0
and o € Ds(0;|A|™") \ {co}

We extend 1) to the conformal map ¢, defined on D(0; |\ ™)\ [1, |A|™})
to a subset of D;(0; IA|™1). Moreover, we define Yy, as the conformal map
defined on D(0; [A|™") \ [1,|A\|™") such that ¢; o ¢;; = identity map and
’(,[) _f,l(O) =a.

The end points of the image of the set {yi | - A" <y < |A|”'} under
00k is contained in the boundary of v (D(0; A7)\ [1, IAI™")). Hence,
the connected component of the preimage of iR under ¢yoh~! which contains
zero passes through the boundary of 4, (D(0; |A|™") \ [1,|A™)), and does
not separate ¢y and ¢;. On the other hand, the connected component of
the preimage of iR under ¢; o h~! which contains o' separates ¢ and ¢;.
Therefore, the cycle of the Fatou components of g does not contain one of
the critical points of g, and hence g, has a parabolic fixed point of a capture
type. O

4 Notes

Consider the family of cubic polynomials P, p(2) := 2° — 34z + VB with
PA,B(-\/—A-) = v/A. We have B = A(1 — 2A)2. The connectedness locus of
the family of Py 4(1-24)2(2) = 2° — 342 + VA —2AVA, A € C, is showed in
Figure 2.
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Figure 1: Sketch for the pinching curves.

Figure 2: The connectedness locus of the family of cubic polynomials
Py a(-24y2, A€ C.



P4 a(1-24) is affine conjugate to the cubic polynomial map

FA(Z) = (PA,A(1—2A)2(\/:ZZ + \/Z) - \/Z)/\/Z = AZB + 3A22 — 4A.

Suppose that 0 < |A| < 1/4. Then the map F4 satisfies the inequality
|Fa(z) + 44| < |4A|, that is, F4 maps the disk of radius |F4(0)| centered at
F4(0) into itself. Hence F,4 has an attracting fixed point in the disk.

Let a4 be the attracting fixed point.

Proposition 4.1. If A turns around the origin once, then the multiplier of
the attracting fixed point of F4 turns around the origin twice.

Proof. Let D be the disk of radius |F4(0)| centered at F4(0). If A turns
around the origin once, then the center of D turns around the origin once.
Set 0 <r < 1/4,60 €[0,1], and A = re®™®. Since the radius of D is the
constant |F4(0)|, the attracting fixed point a4 also turns around the origin
once. Thus the multiplier F(a4) = 3Aaa(aa + 2) turns around the origin
twice. O
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