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Abstract
We give a description of combinatorics of renormalizable polynomials in

terms of rational lamination, and study the set $\mathcal{R}_{d}(f_{0})$ of renormalizable poly-
nomials of degree $d$ with a given center $f\mathrm{o}$ , and prove that if $f\mathrm{o}$ is non-
contiguous, then $\mathcal{R}_{d}(f_{0})$ is compact.

Moreover, in the case of capture (or disjoint) renormalizations of cubic poly-
nomials, if $\mathcal{R}_{3}(f_{0})$ is compact, then the straightening map on it is bijective (or
homeomorphism). We also prove that we can always characterize the combi-
natorics of a renormalizable cubic polynomial of capture (or disjoint) type in
such a way.

1 Introduction
1.1 The case of quadratic polynomials

It is well-known that the Mandelbrot set $\mathcal{M}=$ { $c\in \mathbb{C};J(z^{2}+c)$ is connected}
contains infinitely many homeomorphic copies of itself, called baby Mandelbrot sets,
proved by Douady and Hubbard [Ha]. A baby Mandelbrot set corresponds to a
set of renormalizable parameters of given combinatorics. More precisely, consider a
quadratic polynomial $z^{2}+c_{0}$ such that the critical point $0$ is periodic. Then there
exists a homeomorphism $T_{c_{0}}$ : $\mathcal{M}arrow \mathcal{M}(c_{0})\subset \mathcal{M}$ such that $T_{\mathrm{c}_{0}}(0)=c_{0}$ and for
$d=T_{c_{\mathrm{O}}}(c),$ $z^{2}+d$ has a renormalization hybrid equivalent to $z^{2}+c$ except when
$c= \frac{1}{4}$ and $\mathcal{M}(c_{0})$ is of satellite type, that is, $T_{c_{0}}(c)$ is on the boundary of some
hyperbolic component other than the one containing $c_{0}$ .

Deflnition. Let $z^{2}+c_{0},$ $\mathcal{M}(\mathrm{c}_{0})$ and $T_{c0}$ be as above. We call $c_{0}$ the center and
$T_{\mathrm{c}0}( \frac{1}{4})$ the root of $\mathcal{M}(c_{0})$ . A homeomorphism $T_{c_{\mathrm{O}}}$ is the tuning map and its inverse
$S_{c_{\mathrm{O}}}=T_{\mathrm{c}_{0}}^{-1}$ is the straightening map for $\mathcal{M}(c_{0})$ .

If $\mathcal{M}(c_{0})$ is not of satellite type, then it is of primitive type.
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Here we consider another description of a baby Mandelbrot set, which is based on
the notion of rational laminations introduced by Thurston [Th] (see also [Ki]).

Deflnition. Let $f$ be a polynomial of degree $d\geq 2$ such that $J(f)$ is connected.
Consider a equivalence relation $\lambda_{f}$ on $\mathbb{Q}/\mathbb{Z}$ such that $\theta\sim_{\lambda_{\mathrm{c}_{0}}}\theta’$ if and only if the
external rays $R_{f}(\theta)$ and $R_{f}(\theta’)$ for $f$ land at the same point. It is called the rational
lamination of $f$ .

We can characterize $\mathcal{M}(c_{0})$ combinatorially as follows:

$\mathcal{M}(c_{0})=\{c\in \mathbb{C};\lambda_{z^{2}+c}\supset\lambda_{z^{2}+\mathrm{c}_{\mathrm{O}}}\}$ .
Here rational laminations are considered as subsets of $\mathbb{Q}/\mathbb{Z}\mathrm{x}\mathbb{Q}/\mathbb{Z}$ . In other words,
A $\subset\lambda’$ if $\lambda’$ is stronger relation than $\lambda$ ;

$\theta\sim_{\lambda}\theta’\Rightarrow\theta\sim_{\lambda}\theta’’$ .

Let $s$ be the period of $0$ for $z^{2}+c_{0}$ . Define

$\mathcal{R}(c_{0})=$ {$c\in \mathcal{M}(c_{0});z^{2}+c$ has a renormalization of period $s$}.

Then

$\mathcal{M}(c_{0})\backslash \mathcal{R}(c_{0})=\{$ $\emptyset\{\mathrm{r}\mathrm{o}\mathrm{o}\mathrm{t}\}$

for satellite case,
for primitive case.

In particular, $\mathcal{M}(c_{0})=\mathcal{R}(c_{0})$ if and only if it is of primitive case and it is equivalent
to $\mathcal{R}(c_{0})$ is compact.

1.2 The case of cubic polynomials
For $d\geq 2$ , let Poly$d$ be the family of monic centered polynomials of degree $d$ .

Let $C_{d}=$ { $f\in \mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{d};J(f)$ is connected} be the connectedness locus of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{d}$ . We
notice that Poly$d$ can be considered as the parameter space of affine conjugacy class
of polynomial of degree $d$ with marked invariant external ray (which determines that
of “angle $0$”). In this paper, we always consider an polynomials (or a polynomial-like
map) has marked invariant external ray.

Now we consider the case $d=3$ . Milnor [Mi] classified hyperbolic cubic polynomials
into four cases:
Adjacent case One periodic Fatou component contains two critical points (with mul-

tiplicity).
Bitransitive case One periodic Fatou component $U$ contains a critical point and its

forward image $f^{n}(U)(\neq U)$ contains the other.
Capture case One periodic Fatou component $U$ contains a critical point and the other

critical point is contained in a strictly preperiodic Fatou component $U’$ , hence
$f^{N}(U’)=U$ for some $N\geq 1$ .
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Disjoint case There exist two disjoint periodic cycle of Fatou components. Each
contains one critical point.

We apply this classification also to renormalizations of cubic polynomials.

Definition. For $f\in C_{3}$ , a renormalization of $f$ is a polynomial-like restriction
$f^{s}$ : $U’arrow U$ of some iterate of $f$ with connected filled Julia set $K(f^{s}; U’, U)=$

$\bigcap_{n\geq 0}(f^{s}|_{U’})^{-n}(U’)$ such that every critical point $\omega$ of $f$ is contained in at most one
of $U’,$ $f(U$‘

$)$ , . . . , $f^{s-1}(U$‘ $)$ . We identify renormalizations of $f$ if they have the same
filled Julia set.

Adjacent case We say $f$ has an adjacent renormalization if $f$ has a renormalization
of degree 3.

Bitransitive case We say $f$ has an bitransitive renormalization if $f$ has a renormal-
ization of degree 4.

Capture case We say $f$ has an capture renormalization if $f$ has a renormalization $f^{s}$ :
$U’arrow U$ of degree two such that a critical point $\omega_{0}\in U’$ and the other critical
point $\omega$ (called the captured critical point) satisfied that $f^{N}(\omega)\in K(f^{s}; U’, U)$

for some $N>0$ . The $\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{U}\mathrm{e}\mathrm{s}\mathrm{t}$ such $N$ is called the capture time.
Disjoint case We say $f$ has disjoint renormalizations if $f$ has two renormalizations

$f^{s}$ : : U\’i-- $U_{i}$ of degree two such that critical points $\omega_{1},\omega_{2}$ of $f$ satisfies $\omega_{i}\in U_{i}’$ .
When $d\geq 4$ , we can similarly classify renormalizable polynomials whose renormal-

izations contain or capture all the critical points.
As in the case of quadratic polynomials, we would like to consider combinatorial

characterization of renormalizations.

Deflnition. We say $f\mathrm{o}\in C_{d}$ is a center if $f\mathrm{o}$ is hyperbolic and postcritically finite
(every critical point is eventually periodic).

Note that even if a critical point of a center $f\mathrm{o}$ is preperiodic, its periodic orbit is
superattracting.

For a center $f_{0}\in C_{d}$ , define

$C_{d}(f_{0})=$ { $f\in C_{d;}\lambda_{f}\supset$ A$f\mathrm{o}$ },

$\mathcal{R}_{d}(f_{0})=\{f\in C_{d}(f_{0});f\mathrm{h}\mathrm{a}s\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{l}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{a}1\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s})\mathrm{o}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{o}\mathrm{d}(\mathrm{s})\mathrm{a}\mathrm{s}f_{0}\}$

By definition, $C_{2}(z^{2}+c_{0})=\mathcal{M}(c_{0})$ and $\mathcal{R}_{2}(z^{2}+c_{0})=\mathcal{R}(c_{0})$ when $d=2$ .
Deflnition. Let $f_{0}\in C_{d}$ be a center. We say $f_{0}$ is contiguous if there exist Fatou
components $U_{1},$ $U_{2}$ such that $\overline{U_{1}}$ intersects $\overline{U_{2}}$ .

It is equivalent that there exist $pe$riodic Fatou components $U_{1},$ $U_{2}$ such that $\overline{U_{1}}$

intersects $\overline{U_{2}}$ .
The first theorem is valid for any degree:

Main Theorem 1. Let $f\mathrm{o}\in C_{d}$ be a center. If $f\mathrm{o}$ is contiguous, then $\mathcal{R}_{d}(f_{0})=C_{d}(f_{0})$
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and it is compact.

This theorem is a generalization of the results in [In2].
Remark 1. When $d\geq 3,$ $C_{d}(f_{0})$ is not compact in general. In fact, let $f_{0}(z)=z^{3}- \frac{3}{2}z$ .
The critical points of $f_{0}$ are $\omega\pm=\pm\frac{1}{\sqrt{2}}i$ and $f_{0}(\omega\pm)=-2\omega_{\pm}^{3}=\omega\pm\cdot$ Therefore, $f_{0}$

has two invariant Fatou components $U_{\pm}$ . It is easy to see that $\overline{U_{+}}\cap\overline{U_{-}}=\{0\}$ . Since
$f_{0}$ is real, the external rays of angle $0$ and $\frac{1}{2}$ land at $0$ . In other words, $0$ and $\frac{1}{2}$ are
$\lambda_{f\mathrm{o}}$ -equivalent.

It
$\mathrm{N}\mathrm{o}\mathrm{w}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{r}f(z)=z^{3}+\frac{11}{12,\mathrm{a}}z+\frac{1}{108,\mathrm{a}1}.\mathrm{I}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{a}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}1\mathrm{y}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{j}\mathrm{u}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{t}\mathrm{o}g(z)=z^{3}+\frac{1}{2}z^{2}+z\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{a}\mathrm{e}\mathrm{y}\mathrm{t}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}f\mathrm{a}\mathrm{n}\mathrm{d}g\mathrm{r}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{n}\mathrm{d}g(\mathrm{h}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}f)\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a}1\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{c}\mathrm{f}\mathrm{i}\mathrm{x}\mathrm{e}\mathrm{d}\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}$

.

of multiplier one and a real repelling fixed point. Therefore, $f\not\in C_{3}(f_{0})$ . However,
for small $\epsilon>0,$ $f+\epsilon\in C_{3}(f_{0})$ . Indeed, since $f$ is parabolic-attracting (following
Adam Epstein), $f+\epsilon$ must has attracting fixed point. However, $f+\epsilon$ has only one
real fixed point, which is repelling. Hence the other fixed points $x$ and $\overline{x}$ are both
attracting. This implies that their attractive basins both contains the real fixed point.
Thus $\lambda_{f+\epsilon}=\lambda_{f\mathrm{o}}$ and $f+\epsilon\in C_{3}(f_{0})$ .

Therefore, $C_{3}(f_{0})\ni f+\mathcal{E}arrow f\not\in C_{3}(f_{0})$ and $C_{3}(f_{0})$ is not compact.
In the following, we assume $d=3$ and consider only quadratic renormalizations

(i.e., capture or disjoint renormalizations).

Main Theorem 2. Consider a capture renormalization (or disjoint renormaliza-
tions) of $f\in C_{3}$ . Then there exists a center $f_{0}$ such that $f\in R_{d}(f_{0})$ and the given
renormalization$(s)$ of $f$ are the renormalization$(s)$ in the definition of $\mathcal{R}_{d}(f_{0})$ .

The Julia set of $f$ can be non-locally connected (such as the case $f$ has a Cremer
periodic point). However, we can still find enough landing relations which characterize
the renormalization(s).

Now we define the straightening map, which is based on the straightening theorem
by Douady and Hubbard [DH2].

Theorem 1.1 (Straightening theorem). Every polynomial-like map $f$ : $U’arrow U$ of
degree $d\geq 2$ is hybrid equivalent to a polynomial $g$ of the same degree.

$R\iota rthermore$, if $K(f;U’, U)$ is connected, then $g$ is unique up to affine conjugacy.

We say a polynomial-like map $f$ : $U’arrow U$ is hybrid equivalent to another
polynomial-like map $g$ : $V’arrow V$ (or polynomial $g$) if there exists a quasiconformal
map th defined near $K(f;U’, U)$ such that $\overline{\partial}\psi=0\mathrm{a}.\mathrm{e}$ . on $K(f;U’, U)$ and $g\mathrm{o}\psi=\psi \mathrm{o}f$ .
Such th is called a hybrid conjugacy between $f$ and $g$ .

As noticed before, we always consider polynomials and polynomial-like maps
with marked invariant external rays. Hence if $K(f;U^{j}, U)$ is connected, $g\in \mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{d}$

is uniquely determined. Furthermore, although $\psi$ is not uniquely determined,
$\psi|_{K(f;U’,U)}$ is uniquely determined.

Deflnition. Let $f_{0}\in C_{3}$ be a center of capture or disjoint type. Define the straight-
ening map $S_{f\mathrm{o}}$ as follows:
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Capture case For $f\in \mathcal{R}_{3}(f_{0})$ , let $f^{s}$ : $U’arrow U$ be the corresponding renormalization
and $\omega$ be the captured critical point and $N$ be the capture time. By the
straightening theorem, $f^{s}$ : $U’arrow U$ is hybrid equivalent to a unique quadratic
polynomial of the form $g(z)=z^{2}+c$ by a hybrid conjugacy $\psi$ . Denote $z=$
$\psi(f^{N}(\omega))$ (it is well-defined).
Define $S_{f\mathrm{o}}(f)=(c, z)$ . Then $S_{f\mathrm{o}}$ is defined as a map $S_{f\mathrm{o}}’$. R3 $(f_{0})arrow \mathcal{M}\mathcal{K}=$

$\bigcup_{c\in \mathcal{M}\{c\}\cross K(z^{2}+c)}$ .
Disjoint case For $f\in \mathcal{R}_{3}(f_{0})$ , let $f^{s_{i}}$ : $U_{i}’arrow U_{i}(i=1,2)$ be the corresponding

renormalizations. (We fix the order of renormalizations.) By the straightening
theorem, there exists a polynomial $z^{2}+c_{i}$ hybrid equivalent to $f^{s_{i}}$ : $U_{i}’arrow U_{i}$ .
Define $S_{f\mathrm{o}}(f)=(c_{1}, c_{2}):\mathcal{R}_{3}(f_{0})arrow \mathcal{M}^{2}$ .

$\mathbb{C}^{2}Re.m$

ark 2. By the upper semi-continuity of $K(z^{2}+c)$ on $c,$
$\mathcal{M}\mathcal{K}$ is a compact set in

Remark 3. For a quadratic-like family $(f_{\lambda} : U_{\lambda}’arrow U_{\lambda})_{\lambda\in\Lambda}$ , we can take a straightening
map $S:\Lambdaarrow \mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{2}(f_{\lambda}\sim_{hb}S(f_{\lambda}))$ to be continuous [DH2].

Hence if $f\mathrm{o}\in C_{3}$ is of capture type, $f\mapsto c$ is continuous. It is not known whether
$f\mapsto z$ is continuous or not.

If $f\mathrm{o}$ is of disjoint type, $S_{f\mathrm{o}}$ is continuous.

Main Theorem 3. Let $f_{0}\in C_{3}$ be a center of capture or disjoint type. If $\mathcal{R}_{d}(f_{0})$ is
compact, then the straightening map $S_{f\mathrm{o}}$ is bijective.

In $pa\hslash icular$, if $f_{0}$ is of disjoint type, then $S_{f_{0}}$ : $\mathcal{R}_{d}(f_{0})arrow \mathcal{M}^{2}$ is a homeomorphism.

Remark 4. Our proofs of Main Theorem 2 and Main Theorem 3 depends on the
continuous dependence of straightening maps of quadratic-like families (Remark 3).
Hence our proofs can be generalized only to quadratic renormalizations (of higher
degree polynomials), and we cannot apply them to renormalizations of higher degree.

2 Proof of Main Theorem 1
The proof of Main Theorem 1 depends on [In2, Theorem 1.1], which is the following

in our context.

Theorem 2.1. Let $f_{0}\in C_{d}$ be a center and $fiarrow f$ be a convergent sequence uyith
$f_{l}\in C_{d}(f_{0})$ .

If there exist more than $d-1$ disjoint sets $O_{k}(k=1, \ldots N\geq d-1)$ which consist
of $pe7’ iodic$ orbits and separate periodic Fatou components of $f_{0}$ , then $f\in C_{d}(f_{\mathit{0}})$ .

Here, we say a union $O$ of (repelling or parabolic) periodic orbits of $f_{0}$ separates
periodic Fatou components if there exists $n\geq 0$ such that different periodic Fatou
components lie in different components of

$\mathbb{C}\backslash \cup R_{f_{0}}(\theta)$

$\theta\in\ominus$
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where $$ be the set of landing angles of $f^{-n}(O)$ .
Hence it is sufficient to show the following two lemmas to prove Main Theorem 1:

Lemma 2.2. If $f_{0}\in C_{d}$ is a center of non-contiguous type, then there exist infinitely
many sets consisting of periodic orbits which separate periodic Fatou components of
$f_{0}$ .
Lemma 2.3. If $f_{0}\in C_{d}$ is a center of non-contiguous type, then $R_{d}(f_{0})=C_{d}(f_{0})$ .

The proof of Lemma 2.3 is a standard argument using Yoccoz puzzles. Compare
[In2, Proposition 5.6] (see also [Mc, \S 8.2] and [Inl, Lemma 4.1]).

To prove Lemma 2.2, we need the result of Poirier [Po]. First we introduce the
notion of Hubbard trees [DH1].

Definition. Let $f_{0}$ be a postcritically finite polynomial. A Jordan arc in the closure
of a bounded Fatou component of $f_{0}$ is regulated if it consists of (at most two) segments
of internal rays. More generally, a Jordan arc in $K(f_{0})$ is regulated if its intersection
with the closure of any Fatou component is regulated.

Any two points $z_{1},$ $z_{2}\in K(f_{0})$ can be joined uniquely by a regulated arc, which we
denote by $[z_{1}, z_{2}]_{f_{0}}$ .
Deflnition. A set $X\subset K(f_{0})$ is regulated connected if for any $z_{1},$ $z_{2}\in X$ , we have
$[z_{1}, z_{2}]_{f\mathrm{o}}\subset X$ . A regulated hull $[X]_{f\mathrm{o}}$ of $X\subset K(f_{0})$ is the minimal closed regulated
connected subset of $K(f_{0})$ containing $X$ .

The Hubbard tree $\tau_{f\mathrm{o}}$ of $f_{0}$ is the regulated hull of the postcritical set of $f_{0}$ .
The following result is proved by Poirier [Po, Theorem $\mathrm{B}$].

Theorem 2.4. Let $f\mathrm{o}$ be a postcritically finite polynomial. Let $v\in\tau_{f\mathrm{o}}\cap J(f_{0})$ be a
periodic point. Then The number of rays land at $v$ is equal to the number of incident
edges of $\tau_{f\mathrm{o}}$ at $v$ . Furthermore, there is exactly one ray landing between each pair of
consecutive edges.

Proof of Lemma 2.2. Let $f_{0}$ is a center of non-contiguous type. Consider an edge $e$

of $\tau_{f\mathrm{o}}$ . Then there exist some $n\geq 0$ , and $p>0$ such that $f_{0}^{n+p}(e)\supset f_{0}^{n}(e)$ .
Since $f_{0}$ is non-contiguous, $e$ is not contained in a union of the closure of periodic

Fatou components. This implies that $f_{0}^{n}(e)$ contains infinitely many repelling periodic
points.

Therefore we can take $O$ by choosing one periodic point for each edge $e$ and taking
the union of their orbits. Clearly, there exist infinitely many such choices.

3 Proofs of Main Theorem 2 and Main Theorem 3
For simplicity, we only treat capture renormalizations in this section. The case of

disjoint renormalizations is similar.
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3.1 Proof of Main Theorem 3, part 1: injectivity
Here we prove the injectivity of the straightening map. Let $f_{0}$ be a center of capture

type and let $f_{1},$ $f_{2}\in C_{d}$ . Assume $S(f_{1})=S(f_{2})=(c_{0}, z_{0})$ . Take a set $O$ consists of
periodic orbits of $f_{0}$ which separates periodic Fatou components of $f_{0}$ and let $\mathrm{e}$ be
the set of landing angles of $O$ .

Consider a sequence A $=$ $(\lambda_{k})_{k\geq 0}$ of equivalence relations on $\mathbb{Q}/\mathbb{Z}$ by
$\lambda_{k}=\lambda_{f_{0}}|_{f_{0}^{-n}(O)}$ . For each $k\geq 0$ , we say $\theta,$ $\theta’\in \mathrm{R}/\mathbb{Z}$ are $\lambda_{k}$ -unlinked if for
any $\theta_{1}\sim_{\lambda_{k}}\theta_{2},$

$\theta$ and $\theta’$ lie in the same component of $\mathbb{R}/\mathbb{Z}\backslash \{\theta_{1}, \theta_{2}\}$ . It is an
equivalence relation and let $\mathcal{P}_{k}(\Lambda)$ be the set of $\lambda_{k}$-unlinked classes. For each
$L\in \mathcal{P}_{k}(\Lambda)$ , we can define the corresponding Yoccoz puzzle $P_{f_{i}}(L)$ of depth $k$ for $f_{i}$

(see [In2] for more details). Denote $P_{k}(f_{1},\Lambda)$ the set of Yoccoz puzzles of depth $k$ for
$f_{i}$ .

Then $P_{k}(f_{i}, \Lambda)$ has the following properties:

(i) $P_{k}(f_{i}, \Lambda)$ is a partition of $K(f_{i})$ ; the interiors of each puzzle piece of depth $k$

are disjoint and $\bigcup_{P\in P_{\mathrm{k}}(f*}.,{}_{\Lambda)}P\supset K(f_{i})$ .
(ii) For any $P\in \mathcal{P}_{k+1}(f_{i}, \Lambda)$ , there exists some $P’\in \mathcal{P}_{k}(f_{i}, \Lambda)$ such that $P’\supset P$ .
(iii) For any $P\in P_{k+1}(f_{i}, \Lambda),$ $f(P)\in P_{k}(f_{i}, \Lambda)$ .
(iv) $\theta\in L\in \mathcal{P}_{k}(\Lambda)$ is equivalent that $R_{f:}(\theta)$ intersects the interior of $P_{f_{l}}(L)$ .
Define a quasiconformal homeomorphism $\varphi_{0}$ : $\mathbb{C}arrow \mathbb{C}$ such that for each $P_{f_{1}}(L)\in$

$P_{0}(f_{1}, \mathrm{A}),$ $\varphi_{0}(P_{f_{1}}(L))=P_{f_{2}}(L)$ and $\varphi_{0}\circ f_{1}=f_{2}\circ\varphi_{0}$ on $\partial P$ (for any $P\in \mathcal{P}_{0}(f_{1},$ $\Lambda)$),
$\partial U’$ and $\bigcup_{n=0}^{\epsilon-1}f_{1}^{n}(K(f_{1}^{\epsilon};U_{1}’, U_{1}))$ . Since $f_{1}^{s}$ : $U_{1}’arrow U_{1}$ and $f_{2}^{s}$ : $U_{2}’arrow U_{2}$ are hybrid
equivalent, such a homeomorphism $\varphi_{0}$ exists.

For each $k>0$ , define $\varphi_{k}$ : $U_{1}arrow U_{2}$ inductively as follows. Let $\varphi_{k}=\varphi_{k-1}$

outside $\bigcup_{P\in P_{k}(f_{1}},{}_{\Lambda)}P$ . For $P\in \mathcal{P}_{k}(f_{1}, \Lambda)$ , take the corresponding puzzle piece $P’\in$

$P_{k}(f_{2}, \Lambda)$ . We can define a quasiconformal homeomorphism $\varphi_{k}$ : $Parrow P’$ such that
$\varphi_{k-1}\circ f_{1}=f_{2}\mathrm{o}\varphi_{k}$ . Indeed, it is trivial if $f_{1}$ : $Parrow f_{1}(P)$ is conformal. Assume $P$

contains a critical point. Then it is $\omega_{0}\in K(f_{1}^{s};U_{1}’, U_{1})$ or the captured critical point
$\omega$ . If $\omega_{0}\in P$ , then since $\omega_{0}\in K(f_{1}^{s}; U_{1}’, U_{1})$ , define $\varphi_{k}=\varphi_{k-1}$ on $K(f_{1}^{s}; U_{1}’, U_{1})$ and
it can be extend quasiconformally on $P$ . If $\omega\in P$ , then since $\varphi \mathrm{o}(f_{1}^{N}(\omega))=f_{2}^{N}(\omega$

‘
$)$ ,

where $\omega’\in P’$ is the captured critical point of $f_{2}$ . Therefore, we can lift $\varphi_{k-1}$ by $f_{1}$

and $f_{2}$ and define $\varphi_{k}$ on $P$ .
By construction, $\varphi_{k}$ is a quasiconformal homeomorphism and the maximal dilat&

tion of $\varphi_{k}$ does not depend on $k$ . Therefore, passing to a subsequence, $\varphi_{k}$ converges
to a quasiconformal homeomorphism $\varphi$ . It is a conjugacy between $f_{1}$ and $f_{2}$ and since
$\bigcup_{k>0}f^{-k}(K(f_{i}^{\epsilon}; U_{i}’, U_{i}))=K(f_{i})\mathrm{a}.\mathrm{e}.$, it is a hybrid conjugacy. Since $f_{1}$ and $f_{2}$ are
$\mathrm{c}\mathrm{u}\mathrm{b}\overline{\mathrm{i}}\mathrm{c}$ polynomials with connected Julia set, they are affinely conjugate.

Therefore, the straightening map $S:C_{3}(f_{0})arrow \mathcal{M}\mathcal{K}$ is injective.
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3.2 Proof of Main Theorem 2
A basic tool for the proofs of Main Theorem 2 and the surjective part of Main

Theorem 3 is the following (cf. [DH2, Proposition 12]):

Lemma 3.1. Let $f_{n}$ : $U_{n}’arrow U_{n}$ be a sequence of quadratic-like maps and let $z_{n}\in$

$K(f_{n};U_{n}^{j}, U_{n})$ . Assume

(i) $f_{n}$ converges to a quadratic-like map $f$ : $U’arrow U,$ $i.e.,$ $f_{n}arrow f$ uniformly on
some neighborhood of $K(f;U’, U)$ .

(ii) $z_{n}arrow z\in K(f;U’, U)$ .
(iii) $f_{n}$ is $hyb$rid equivalent to $g_{n}(z)=z^{2}+c_{n}$ and $f$ is $hybr\dot{\tau}d$ equivalent to $g(z)=$

$z^{2}+c$ .
(iv) $c_{n}arrow \mathrm{c}$ .
(v) $K(f_{n})arrow K(f)$ in the Hausdorff topology.

Then $g_{n}$ converges to $g$ and passing to a subsequence, $\psi_{n}$ converges to a hybrid
conjugacy $\psi$ between $f$ and $g$ .

In particular, $\psi_{n}(z_{n})$ converges to $\psi(z)$ .
Proof of Main Theorem 2. Assume $f\in C_{3}$ has a renormalization $f^{\epsilon}$ : $U’arrow U$ of
capture type hybrid equivalent to $Q(z)=z^{2}+c$ . Let $\omega$ be the captured critical point
and let $N>0$ be the capture time.

The case when $f$ is locally connected (in particular, when $f$ is hyperbolic) is easy
because $J(f)$ is homeomorphic to $S^{1}./\lambda_{f}$ .

Consider the case $c\in\partial \mathcal{M}$ . There exists an open set $\mathcal{U}\subset \mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{3}$ such that there exists
a holomorphic family of quadratic-like restriction $(g^{s} : U_{g}’arrow U_{g})_{g\in \mathcal{U}}$ and $U_{f}’=U’$ and
$U_{f}=U$ . Then $E=$ { $g\in \mathcal{U};g^{s}$ : $U_{g}’arrow U_{g}$ is hybrid equivalent to $Q$} is an analytic
set of $\mathcal{U}$ [$\mathrm{D}\mathrm{H}2,$ \S II.6, Corollary 2].

Lemma 3.2. $E$ has dimension one.
Before we prove the lemma, we introduce the notion of active critical points for a

family of polynomials with marked critical points.

Definition. For an analytic family of polynomial $(g_{\lambda},\omega_{\lambda})_{\lambda\in\Lambda}$ with marked critical
points, we say $\omega_{\lambda}$ is active at $\lambda_{0}$ (or simply, $\omega_{\lambda_{0}}$ is active) if $(\lambdarightarrow g_{\lambda}^{n}(\omega_{\lambda}))$ does not
form a normal family at $\lambda_{0}$ .
Proof. If $E$ has dimension two ( $E$ is an open set in U), then $S$ : $Earrow \mathcal{M}\mathcal{K}$ is
continuous by Lemma 3.1 and $S(g)=(Q, z(g))$ for any $g\in E$ . Let $g^{\epsilon}$ : $U_{\mathit{9}}’arrow U_{g}$

be the corresponding renormalization for $g,$ $\omega(g)$ be the captured critical point and
$\omega_{0}(g)\in U_{g}’$ be the other critical point. Then $\omega_{0}$ is not active because $g^{n}(\omega_{0}(g))\in$

$K(g^{s}; U_{g}’, U_{g})$ . On the contrary, if $\omega$ is also not active, then $f$ is structurally stable
in $E$ and this implies $f$ carries an invariant line field on $J(f)$ . But since $J(f)\backslash$

$\bigcup_{n\geq 0}f^{-n}(J(f^{\theta};U’, U))$ has measure zero, it follows what $Q$ also carries an invariant
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line field, which contradicts the assumption $c\in\partial M$ . Therefore, $\omega$ is active. Hence
there exists some $g_{1}$ arbitrarily close to $f$ such that $\omega(g_{1})$ is preperiodic. Take an
analytic subset $A$ of $E$ containing $g_{\mathrm{i}}$ where $\omega(g)$ is preperiodic. Then $\omega(g)$ is not
active on $A$ and repeating the above argument, $Q$ carries an invariant line field and
it is a contradiction.

Similar argument shows that $\omega_{0}$ is not active and $\omega$ is active on $E$ . Take a sequence
$x_{n}arrow f^{N}(\omega)$ such that $x_{n}\in K(f^{s}; U’, U)$ is periodic. For $g\in E$ , let $x_{n}(g)\in$

$K(g^{s};U_{g}^{j}, U_{\mathit{9}})$ be the continuation of $x_{n}$ . Since for any $g\in E,$ $g^{\theta}$ : $U_{g}’arrow U_{g}$ is
a quadratic-like map hybrid equivalent to $Q,$ $x_{n}$ is defined a neighborhood of $E$

(independent of $n$). If $g^{N}(\omega(g))-x_{n}(g)$ converges uniformly to zero as $narrow\infty$ , then
this implies that $g^{n}(\omega(g))\in K(g^{s}; U_{g}’, U_{g})$ for all $g\in E$ near $f$ and $n\geq N$ , which
contradicts that $\omega$ is active on $E$ . Hence $g^{N}(\omega(g))-x_{n}(g)$ converges to a non-constant
holomorphic function $h$ with $h(f)=0$. This implies that for sufficiently large $n$ , there
exists some $g_{2}$ such that $g_{2}^{N}(\omega(g_{2}))-x_{n}(g_{2})=0$ . In other words, there exists some
$g_{2}$ arbitrarily close to $f$ such that it has a capture renormalization of the same period
and capture time as $f$ such that the captured critical point is preperiodic.

Let $F$ be an one-dimensional analytic set containing $g_{2}$ such that the marked critical
point $\omega(g)$ is preperiodic. Then, the straightening map $S$ satisfies that $\pi_{1}\mathrm{o}S$ is not
constant, where $\pi_{1}$ : $\mathbb{C}^{2}arrow \mathbb{C}$ is the projection to the first coordinate. Hence there
exists some $g_{3}$ arbitrarily close to $g_{2}$ such that $\pi_{1}\circ S(g_{3})$ is hyperbolic. Hence there
exists some $f\mathrm{o}$ such that $g_{3}\in C_{3}(f_{0})$ . Since for a given $s,$ $N>0$ , there exist only
finitely many center $f\mathrm{o}$ of capture type of period $s$ and capture time $N$ , hence we
may assume there exists a center $f\mathrm{o}$ such that we choose such $g_{3}$ arbitrarily close to
$f$ and $g_{3}\in C_{3}(f_{0})$ . Taking a limit $g_{3}arrow f$ , we can verify that $f$ also lies in $C_{3}(f_{0})$ ,
this implies that $f\in \mathcal{R}_{3}(f_{0})$ .

Finally, consider the case $c$ lies in a queer component (non-hyperbolic component
of the interior of M). Then $f$ is infinitely renormalizable. In particular, all periodic
points are repelling. Therefore, we can find many biaccessible points (e.g., there exists
exactly $d$ fixed points and $d-1$ invariant landing angles. Hence there exists a fixed
point with non-invariant landing angles, which implies that it is biaccessible), and we
can construct $f_{0}$ by using the result of Kiwi [Ki].

3.3 $\mathrm{P}\mathrm{r}o$of of Main Theorem 3, part 2: surjectivity
Let $(c, z)\in \mathcal{M}\mathcal{K}$ . We want to find $f\in C_{3}(f_{0})$ such that $S(f)=(c, z)$ .
If $z^{2}+c$ is hyperbolic and $z$ lies in the interior of $K(z^{2}+c)$ , then we can construct

$f$ by constructing a rational lamination (“combinatorial tuning”) $\lambda$ from $\lambda_{f\mathrm{o}}$ and
$\lambda_{z^{2}+\mathrm{c}}$ , realizing it by a cubic polynomial [Ki] and perturbing it by the standard
quasiconformal deformation technique.

Taking a limit on $z$ , we can also construct $f$ for the case $z^{2}+c$ hyperbolic and
$z\in J(z^{2}+c)$ by Lemma 3.1.
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Consider the case $c\in\partial \mathcal{M}$ . If $z^{2}+c$ does not has a Siegel disk, then $K(z^{2}+c)=$
$J(z^{2}+c)$ has no interior and $c\mapsto K(z^{2}+c)$ is continuous at $c$ . Since $z^{2}+c$ can be
approximated by hyperbolic polynomials, we can similarly find $f$ by Lemma 3.1. If
$z^{2}+c$ has a Siegel disk, then taking a radial limit from the hyperbolic component $H$

with $c\in\partial H$ , we can obtain a sequence $c_{n}arrow c$ with $K(z^{2}+c_{n})arrow K(z^{2}+c)$ . Hence
this case is also similar.

The last case is when $c$ lies in a queer component $A$ . First take $c’\in\partial A$ and
(eventually) periodic $z’\in K(z^{2}+d)$ . Then there exists $f’\in C_{3}(f_{0})$ such that $S(f’)=$
$(d, z’)$ . The captured critical point $\omega’$ for $f’$ is preperiodic. Hence it is contained in a
one-dimensional subspace $E$ of $\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y}_{3}$ , where one marked critical point is preperiodic.
The straightening map $S$ is defined a neighborhood $\mathcal{U}$ of $z$ in $E$ . Since $S$ is injective,
$S$ is non-constant. Hence $S$ is an open map [$\mathrm{D}\mathrm{H}2,$ \S III.3]. This implies that there
exists a map $f”\in E$ such that $S(f”)=(c”, z”)$ with $d’\in A$ and $z”$ is (eventually)
periodic for $z^{2}+d’$ .

Since $z^{2}+c’’$ carries an invariant line field on its Julia set, we can deform quasi-
conformally $z^{2}+c’’$ and $f”$ at the same time, and obtain an open set $\mathcal{U}’\subset E\cap C_{3}(f_{0})$

such that $\pi_{1}\circ S(\mathcal{U}’)=A$ .
This proves that for any $(c, z)$ with $c\in A$ and (eventually) periodic $z$ , there exists

some $f\in C_{3}(f_{0})$ such that $S(f)=(c, z)$ . Since such points are dense in $\mathcal{M}\mathcal{K}\cap(A\mathrm{x}\mathbb{C})$ ,
this holds for any $(c, z)\in \mathcal{M}\mathcal{K}\cap(A\cross \mathbb{C})$ (note that the interiors of $K(f)$ and $K(z^{2}+c)$

are empty).
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