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An example of J* for complex Hénon mappings
which is locally connected nowhere

Teisuke Jin

Abstract

It is known that J* for complex Hénon mappings is connected. We
give a sufficient condition so that J* is locally connected nowhere.

1 Introduction

In this paper we denote z = (x,y) € C2. Let p;(y) be monic polynomla]s of
degg;=dj >1forj=1,...,m. We call g;(z,y) = (v, pi(y) — d;z) generalized
Hénon mappings, where §; # 0. Moreover we define

f=fmo-ofi, =08, 8m, d=dj - dn.

Friedland and Milnor [5] classified polynomial automorphisms of C2 into three
types: affine mapping, elementary mapping, composite of generalized Hénon
mappings. The last one has complicated dynamical structures.

We define K* = {z € C? | {f*"(z) | n € N} is bounded}, J* = 8K*,
K =K*NK~ and J = Jt N J~. They are closed invariant sets.

Let d( , ) be the Euclidean dlstance in C2. For X C C?, define the sta-
ble set W?(X) and the unstable set W"(X ) as follows: W*(X) = {z € C? |
d(f*(2), /(X)) = 0 (n - oc0)}, W(X) = {z € C? | d(f™(2), f{(X)) —
0(n— —o0)}. .

Let a be a periodic point with the period ! such that the eigenvalues of

D(f*)(a) are A, and A, (JAs] < 1 < |Ay|). Such a periodic point is called
a saddle point. Then we call W*(a) a stable manifold and W*(a) an unstable
manifold since there are non-singular buectwe entire mappings H, : C — W*(a)
and H, : C - W*%(a) with f o H,(t) = H,(),t) and and fo Hy(t) = Hy(Aut). See
[9] for example. Bedford and Smillie [2] showed W*(a) = J*+ and W¥(a) =

We call K* = H;1(K) a stable slice and K* = = H;1(K) an unstable shce
We say Keis stably connected if K* has no compact connected components [4].
We say K*is bridged if the connected component of K* containing the origin is
‘not a point [7]. An unstable connectivity and a bridgedness for K* are defined
similarly. Note that a stable (unstable) connectivity implies a bridgedness and
that the following are equivalent [7):

o K is bridged,
e the connected component of K* containing the origin is unbounded,

e K* has an unbounded connected component.

In particular K* is not bridged if and only if each component of K*is compact.



2 Main theorems

Theorem 2.1. If K* is not unstably connected and K* is not bridged then J+
is not locally connected anywhere. )

Theorem 2.2. Assume K* is not unstably connected. Then there are at most
* finitely many periodic points py, .. .,pn such that J* is locally connected only at
the points.

Note that W#(a) = J* and hence J* is connected. It implies that Theorem
2.1 gives an example of a connected set which is not locally connected anywhere.
It was shown [7] if K* is bridged then the Yoccoz inequality holds. Therefore

if K* does not satisfy the inequality then it is not unstably connected, and if
K* does not then not bridged. Note that it is easy to give examples such that
either K* or K*® do not satisfy the inequality. It implies many Hénon mappings
satisfy the assumptions of Theorem 2.1.

3 Proofs of the main theorems

In this section we assume the unstable slice X is not unstably connected. For
X C C2 we define B(X,r) = {2 € C? | d(2,X) < r}. Recall that the Green
functions G* are defined [1] as:

G*(2) = Jim - log £+ (2]
and have the following properties:
e G* are nonnegative continuous plurisubharmonic functions,
e G*(z) =0 if and only if z € K+,
. Gilca\ K+ are positive pluriharmonic functions,
o Gfof=d*1.G*

It is well-known [9] that in a neighborhood of saddle point a, f is conjugate to
F(s,t) = (Aes + stals,t), Mt + stB(s, 1)), (3.1)

where a, B are holomorphic functions defined in a bidisk A centered at the
origin. We denote by ® the conjugation mapping whose domain is A. Define
A= @(A)

Proposition 3.1. Assume J* is locally connected at zy € J*. Then for any
r > 0, H71(B(zy,7)) has an unbounded connected component. Moreover we
have zqg € W*(a).

Proof. The local connectivity implies there is an open neighborhood V of z in
C2 such that V' N J* is connected and V' € B(zo, 7). Let V* be a component
of H71(V) and B® the component of H;1(B(z,r)) containing V*. We assume

B® is bounded and derive a contradiction.
We define B* = H, (B’) Choose n > 0 so that f"(B®) € ®({(s,0) € A})
end define B = f"(B*), B; = & 1(Bj). Let C be a simple closed curve in
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AN {t = 0} which surrounds Ef and does not intersect with ®~1(f!"(B(zg, 1)))-
Choose £ > 0 so small and decrease » > 0 slightly if necessary so that € =
{(s,t) € A (s,0) € C,|[t| < €} and &~ (f'™(B(29,7))) do not intersect.

On the other hand, take a compact component K7 of Hu(I? “) contained
in ®({(0,t) € A}) and define K1 = ®7'(K}). Let I' be a closed curve in
AN {s = 0} which surrounds K* and does not intersect with &~ 1(H,(K"))
[7, section 6]. Choose § > 0 so that I' = {(s,t) | (0,t) € T,|s| < 8} does not
intersect with ®~*(A N K*).. By properties of the Green function G*, for any
s; with |s;| < 8, ®1(K+) N {s = s} is not empty inside of I' [4].

By (3.1), f%(C) approaches {t = 0} uniformly and expand along {¢t = 0}
uniformly. Therefore if we take k large, I goes through f ’“(C’)

Let us return to the starting point. Then f~'"+¥)(&(T")) goes through
B(zy, ) and V if we take k large if necessary. Since K* runs through inside of
i+ ($(T)), we conclude that V N J+ is not connected, which is a contra-
diction.

Let show the last statement of the theorem. Take 25 € W*(a). Since W*(a)
is a 1-dimensional manifold, if we take » > 0 small, the connected component
of H;1(B(zg,r)) containing H, !(zy) is bounded. But an arbitrary open neigh-
borhood V' of z, intersects with the component, which is a contradiction. O

Proof of Theorem 2.1. By the assumption there is a closed curve -y surrounding
the origin and not intersecting with K* [7, section 6]. Since f~™ diverges in
C2 \ Kt locally uniformly as n — +o0, f~"(Hs(v)) = Hy(\;™y) diverges
uniformly.

Assume J7 is locally connected at zy € Jt. Then some component of
H;1(B(zg,r)) is unbounded. But if we choose n large, f~"(H,(v)) is far from
B(zy,r) and A\;™y intersects H;1(B(zg,)), which is a contradiction. O

Let us proceed to prove Theorem 2.2. For zy € J* \ W*(a) and n € Z, we
define
u(t) = log d(Hs(t), 0), un(t) = max{0,u(t) + n}.

For a nonnegative subharmonic function v on C we define the order of v as
follows:

. log max,s|—, v(t)
ordv = limsup
r—00 logr

Lemma 3.2. The functions u and u,, are continuous subharmonic functions
and we have
llogd

—log | .

Proof. Since log ||| is plurisubharmonic, u, u, are subharmonic functions.
If we set (hy, he) = H,, the orders of hy, hy are [7]:

p=ordu, =

1 1 _ lh(t
ord by = limsup oglog maxyj—r by (2)| _ _llogd ,
r—+00 logr —logIAaI

= |ho(t
ord hy = limsup loglogmaxs—r |h2(t)] _ llogd ,
r—00 logr —loglAal

since the period of a is | and the degree of f' is d'. It is easy to compute the
order of u,, using the above equations. ;)
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Lemma 3.3. Let v be a nonnegative bounded subharmonic function in an un-
bounded open set Q(C C) with an unbounded boundary. Let c be a bounded
subset of 0. Ifv =0 on 0Q )\ ¢, then v(t) converges O uniformly as |t| — oo
witht € Q.

Proof. We define

w1/ if1jreq,
w(r) = {0 if 1/r € QUE.

Then w is a nonnegative bounded subharmonic function for 1/7 ¢ €. Moreover
since w is bounded in a neighborhood of 7 = 0, Removable Singularity Theorem
[8, p. 53] implies w is subharmonic around the origin.

We may assume w is non-constant for any neighborhood of the origin. There-
fore we can apply Tsuji inequality [6, p. 548] to w. In fact, for e™! < x < 1 and
0 < r < k%R, we have

&R
B) S CmB(Rjexp { — [ 2O,
r/K P
where B(r) = max{w(t) | [t| = r}, Ca(k) = 6(1 — £)~3/2. In our case we can
set a(p) = 1/2 by the structure of Q2. We have

&R
B(r) < Cy(k)B(R)exp {—// ;—z} < Gy(k)B(R)y ;c%i

Therefore B(r) — 0 as r — 0, i.e., u(t) — 0 as |t| — oco. : O

Proof of Theorem 2.2. Assume J* is locally connected at zp € J*. The above
proposition implies zg € W*(a). In the following we will show that z is an
asymptotic point of H,. Once we obtain the fact, since each holomorphic func-
tion of finite order [7] has at most finitely many asymptotic values, the proof is
completed.

In general, let v be a nonnegative subharmonic function of complex one
variable. Each connected component of {s | v(s) > 0} is called tract. Then the
number of tracts of v is at most max{1,2ordv} [6, Chapter 8].

Therefore the number of tracts of u, is at most max{1,2p}. Take an ap-
propriate ng € Z such that the number of tracts of un, attains its maximum gq.
For each tract of u,, choose an asymptotic path ; : [0,00) = C (0 < j < q)
with un, (7(€)) > 0 and un,(¥(£)) — oo as £ — oo. Take sufficiently large
R > 0 and we may assume all paths «; intersect with {|t| = R} only at their
starting points. Then C\ (DrU~; U- - -U~,) consists of g-unbounded connected
components, where D = {[t| < R}.

Choose U which is one of the components such that the infimum of u is —o0
in the domain. Moreover choose large N so that

min{un(s) |t € DRUy U - U7} > 0.

For each j = 1,2,..., the above proposition implies we can take a point
s; € U such that the component of {s € U | u(s) < —N — j} containing s; is
unbounded.
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Let us show that we can draw a path joining s; and sy such that v < -N
on the path. By the construction, s; and s, are contained in the unbounded
components U; and Uz of {s € U | u(s) < =N — 1}, resp. Draw a smooth
curve ¢ in U joining s; and s;. We may assume U; N Uy # 0. Let us regard
U\(U2UU, U ¢g). Clearly the set is divided into two sides with respect to ¢;: one
can access dU, another cannot. We choose the open set which cannot and name
it 2. Then 0 consists of a part of 8U; and dU, and c¢;. Note that uy,1 =0
on dU; and dU,, and that Q is unbounded and that uy_; is bounded in Q. At
this point, we can apply the above lemma, and obtain that upyy; decrease to
0 uniformly as |s|] — oo in Q. Therefore we can draw a path I'; : [0,1] —» U
joining s; and s, such that u < —N on I'y.

Similarly we can draw paths I'; : [0,1] — U joining s; and s;;; such that
u<—N-—-j+1lonTjforj=23,.... If we define

D) =Ty(§-j+1) forj—1<E€<y,

I is an asymptotic path such that »(T'(¢)) — —oc as § — o0, i.e., Hs(I'(€)) — 2
as £ — oo, which implies z; is an asymptotic point of Hj. O
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