
On Escaping Sets of Entire FUnctions

Anand P. Singh $*$

Department of Mathematics
University of Jammu, Jammu-180006, INDIA

email: singhanandp@rediffmail.com

Abstract

We give a brief survey of results on the escaping sets of entire
functions, and mention some of the results obtained in this direction
jointly by the author and M. Taniguchi.

Let $f$ be a transcendental entire function. For $n\in \mathrm{N}$ , let $f^{n}$ denote the
n-th iterate of $f$ . Thus $f^{o}(z)=z,$ $f^{n}(z)=f(f^{n-1}(z))$ for all $n=1,2,$ $\ldots$ .
The set

$F(f)=$ { $z\in \mathbb{C}:\{f^{n}\}_{n\in \mathrm{N}}$ is normal in some neighbourhood of $z$}
is called the Fatou set of $f$ or the set of normality of $f$ and its complement
$J(f)$ is the Julia set of $f$ .

Fatou set is open and completely invariant: $z\in F(f)$ if and only if
$f(z)\in F(f)$ . If $U$ is a component of $F(f)$ , then $f(U)$ lies in some compo-
nent $V$ of $F(f)$ . If $U_{n}\cap U_{m}=\phi$ for $n\neq m$ where $U_{n}$ denotes the component
of $F(f)$ which contains $f$“ $(U)$ , then $U$ is called a wandering domain, else $U$

is either a pre-periodic domain or a periodic domain. If $U_{n}=U$ for some
$n\in \mathrm{N}$ , then $U$ is called periodic domain. For details, we refer the reader for
instance, to $[8, 9]$ .

Consider the functions

$f(z)=z+1+ \frac{1}{e^{z}}$ and $f(z)=a$ sin(z) (where $0<a<1$ ).
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Then clearly there are infinitely many curves $\gamma_{k},$ $(k\in \mathbb{Z})$ such that for $z\in\gamma_{k}$ ,
$f^{n}(z)arrow\infty$ as $narrow\infty$ . This was observed by Fatou [7], and he posed
whether this is always true. It is known to be true for certain families of
entire functions (see for instance [13]).

The problem of Fatou in a more general setting was studied by Eremenko
[6] who defined the escaping set:

$I(f):=$ { $z$ : $f$“ $(z)arrow\infty$ as $narrow\infty$}

and proved that
i) $I(f)\neq\emptyset$

ii) $J(f)=\partial I(f)$

iii) $I(f)\cap J(f)\neq\phi$

iv) $\overline{I(f)}$ has no bounded components.
Eremenko further conjectured that $I(f)$ itself has no bounded components.

Several subsets of $I(f)$ and their properties and their applications have
been obtained by various authors. We mention a few of them. A subset of
$I(f)$ in which the iterates of a transcendental entire function tend to infinity
relatively fast was considered by Bergweiler [3] who defined

$I_{o}(f):=$ {$z\in I(f)$ : $\frac{\log|f+1(z)|}{\log|f^{n}(z)|}"arrow\infty$ as $narrow\infty$}

and showed that $I_{o}(f)\neq\phi$ and also $J(f)=\partial I_{o}(f)$ , and used it to prove that
if $f$ is non constant and non linear entire function and $g$ is analytic self map
of $\mathbb{C}\backslash \{0\}$ and if $e^{f(z)}=g(e^{z})$ , then $\exp^{-}$

’ $J(g)=J(f)$ .
Rippon and Stallard [11] considered the set

$T(f)=$ {$z\in I(f)$ : $\frac{\log\log|f^{n}(z)|}{n}arrow\infty$ as $narrow\infty$}

which is described as the set of points which are “zipping towards infinity”.
They [11] showed that for a transcendental entire function $f,$ $\mathrm{b}\mathrm{o}\mathrm{t}\mathrm{h}\overline{I_{o}(f)}$ and
$\overline{T(f)}$ have no bounded components.

Another subset of $I(f)$ in which the iterates of a transcendental entire
function tend to infinity arbitrarily fast was considered by Bergweiler and
Hinkkanen [4] who defined the set

$A(f):=$ { $z$ : there exists $L\in \mathrm{N}$ such that 1 $f^{\mathfrak{n}}(z)|>M(R,$ $f^{n-L})$ for $n>L$}
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where $M(R, f)= \max_{|z|=R}|f(z)|$ and $R$ is any value such that $R> \min_{z\in J(f)}|z|$ ,
and proved that

i) $A(f)\neq\emptyset$

ii) $J(f)=\partial A(f)$

iii) $A(f)\cap J(f)\neq\phi$

iv) $\overline{A(f)}=J(f)$ if $f$ does not have wandering domains.

The properties of $A(f)$ was also utilized by Bergweiler and Hinklonen
[4] to prove that if $f$ and $g$ are two transcendental entire functions with
$f\circ g=g\circ f$ , and further if both $f$ and $g$ have no wandering domains, then
$J(f)=J(g)$ . Thus this gave a partial answer in affirmative to the following
open question.

Question. Let $f$ and $g$ be two permutable transcendental entire func-
tions, i.e. transcendental entire functions satisfying $f\circ g=g\mathrm{o}f$ . Then is
$J(f)=J(g)$ ?

Note that if $f$ and $g$ are rational functions with $f\circ g=g\circ f$ , then
$J(f)=J(g)$ is a well known result.

Properties of escaping sets of permutable transcendental entire iictions
have ako been studied by Wang and Yang [16]. They proved the following.

Theorem. ([16]) Let $f$ and $g$ be two distinct permutable transcendental
entire functions and $q(z)$ be a nonconstant polynomial. Suppose that $q(g)=$

$aq(f)+b,$ $a(\neq 0),$ $b\in \mathbb{C}$ . Then the following conclusions hold:
i) $I_{o}(f)=I_{o}(g)$

ii) $T(f)=T(g)$
iii) $J(f)=J(g)$ .

Theorem. ([16]) Let $f$ and $g$ be two distinct permutable transcendental
entire functions and $q(z)$ be a non-constant polynomial. Suppose $q(g)=$

$aq(f)+b,$ $a(\neq 0),$ $b\in$ C. Then
i) if $g(z)$ has atleast one fix-point, then $A(f)\subset A(g)$

ii) $A(f^{2})=A(g^{2})$

iii) $A(f)\subset A(g)$ or $A(g)\subset A(f)$ .
They further conjectured that if $f$ and 9 satisfy the conditions of the above
theorem then $A(f)=A(g)$ .
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Wang and Yang [17] also investigated when a Fatou component $D$ is
contained in $I(f),$ $I_{o}(f),$ $T(f)$ or $A(f)$ . They showed that if $D$ is a Baker
domain of $F(f)$ , then $D\subset I(f),$ $D\cap I_{o}(f)=\phi,$ $D\cap A(f)=\phi$ and also
$D\cap T(f)=\phi$. And if $D$ is a multiply connected wandering domain of $F(f)$

then $D\subset I(f),$ $D\subset I_{o}(f),$ $D\subset A(f)$ , and $D\subset T(f)$ . Regarding simply
connected wandering domain they showed that there exists a transcendental
entire function $g$ such that $F(g)$ contains a simply connected infinitely wan-
dering domain (i.e., a wandering domain $D$ in which $f^{n}(z)arrow\infty$ as $narrow\infty$

for any $z\in D$ ) such that $D\subset I_{o}(g)$ .

An alternate definition for $A(f)$ was given by Rippon and Stallard [12]
who defined

$B(f):=$ { $z$ : there exists $L\in \mathrm{N}$ such that$f”+L(z)\not\in\overline{f^{n}(D)},$ $n\in \mathrm{N}$ }
where $D$ is an open disk meeting Julia set of $f$ and $\tilde{U}$ denotes the union
of $U$ and its bounded complementary components, and proved the folowing
theorem.

Theorem. ([12]) Let $f$ be a transcendental entire function. Let $B(f)$

be as defined above. Then
(i) $B(f)$ is independent of $D$

(ii) $B(f)$ is completely invariant
(iii) $B(f^{p})=B(f),p=0,1,$ $\ldots$

(iv) if $g=h^{-1}\circ f\mathrm{o}h$ where $h(z)=az+b,a\neq 0$, then $B(f)=h(B(g))$
(v) $B(f)=A(f)$ .

Note that the results (iii) and (v) immediately give an affirmative answer
to the conjecture of Yang and Wang mentioned above. The concept of $B(f)$

was utilized by Rippon and Stalard to prove also the following:

Theorem. ([12]) Let $f$ be a transcendental entire function. Then each
$z_{o}\in A(f)$ lies in an unbounded closed connected subset of $A(f)$ . In particu-
lar $A(f)$ has no bounded components.

Rippon and Stallard [12] also gave a positive answer to the $\mathrm{c}\mathrm{o}\mathrm{q}|\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ of
Eremenko atleast when $F(f)$ has a multiply connected Fatou component by
proving:
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Theorem. ([12]) Let $f$ be a transcendental entire function and suppose
that $F(f)$ has a multiply connected component. Then

(i) $A(f)$ is connected and unbounded, and contains the closure of every
multiply connected component of $F(f)$

(ii) $I(f)$ is connected and unbounded.

If $f$ and $g$ are transcendental entire functions, then so are $f\mathrm{o}g$ and $g\circ f$ ,
and the dynamics of $f\circ g$ many times help in understanding the dynamics of
$g\mathrm{o}f$ and vice-versa. For instance Bergweiler and Wang [5] and also indepen-
dently Poon and Yang [10] proved that if $f$ and $g$ are transcendental entire
functions then $f\circ g$ has no wandering domains if and only if $g\circ f$ has no
wandering domains. Bergweiler and Wang [5] also proved that if $f$ and $g$ are
non linear entire functions, then $z\in J(g\circ f)$ if and only if $f(z)\in J(f\circ g)$ .
This gives an immediate solution to the following proposition.

Proposition 1. Let $f$ and $g$ be nonlinear entire iictions such that
$J(f\mathrm{o}g)=\mathbb{C}$ . Then $J(g\circ f)=\mathbb{C}$ .

Proof. If $J(g\circ f)\neq \mathbb{C}$ then there exists a $w\in F(g\circ f)$ which implies
$\mathrm{h}\mathrm{o}\mathrm{m}$ the above, that $f(w)\in F(f\circ g)$ , hence $J(f\circ g)\neq \mathbb{C}$ which proves the
proposition.

One would also be interested to know whether similar results hold for
escaping sets also. Also what other results can one get regarding the escap-
ing sets of composition of entire functions. The author and Taniguchi have
worked on this aspect in [14]. We start with an elementary observation.

Note that there exist transcendental entire functions whose Julia set is C.
However there does not exist any transcendental entire function $f$ such that
$B(f)=\mathbb{C}\backslash A$, where $A$ is empty set or a finite set. For if such $f$ exists then
$\partial B(f)=\phi$ or $\partial B(f)$ is a finite set, contradicting $J(f)$ is non empty and has
infinitely many points. If $B(h)=\mathbb{C}\backslash A$ where $A$ is an infinite set and $h$ is a
composite transcendental entire function, we have the folowing result.

Theorem 1. ([14]) Let $f$ and $g$ be transcendental entire functions. Let
$B(g\mathrm{o}f)=\mathbb{C}\backslash A$ and $B(f\mathrm{o}g)=\mathbb{C}\backslash E$ where $A$ and $E$ are finite sets.
Then

$E\subset f(A)\cup\{\alpha\}$ and $A\subset g(E)\cup\{\beta\}$

28



wfere $\alpha$ and $\beta$ are Picard exceptional values of $f$ and $g$ respectively.

Corollary. Let $f$ and $g$ satisfy the conditions of Theorem 1. Then $A$

and $g(E)$ differ by atmost two points.
Proof of Corollary. By Theorem 1,

$E\subset f(A)\cup\{\alpha\}$ and $A\subset g(E)\cup\{\beta\}$

and so by complete invariance of $B(g\mathrm{o}f)$ it follows that

$g(E)\subset g(f(A))\cup\{g(\alpha)\}\subset A\cup\{g(\alpha)\}\subset g(E)\cup\{\beta\}\cup\{g(\alpha)\}$

And so
$g(E)\cup\{\beta\}\cup\{g(\alpha)\}=A\cup\{\beta\}\cup\{g(\alpha)\}$ .

A general relation between $B(g\mathrm{o}f)$ and $B(f\mathrm{o}g)$ is the following.
Theorem 2. ([14]) Let $f$ and $g$ be transcendental entire functions.

Then
$g(B(f\mathrm{o}g))=B(g\circ f)$

except possibly for two points.

With regard to the composition and its factors, we have:

Theorem 3. ([14]) Let $f$ and $g$ be transcendental entire functions with
$f\circ g=g\circ f$ . Then

$B(f\mathrm{o}g)\subset B(f)\cap B(g)$ .

For our next result, we need the concept of order and lower order. An
entire function $f$ is said to be of order $\rho$ and lower order $\mu$ respectively if

$\rho=\lim_{farrow}\sup_{\infty}\frac{\log\log M(r,f)}{\log \mathrm{r}}$

and
$\mu=\lim\inf\frac{\log\log M(r,f)}{\log r}rarrow\infty$ .
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Baker [1] proved that if $\rho=0$ with sufficiently small growth condition
then $F(f)$ has no unbounded Fatou component. Infact he showed that if $f$

is an entire function with

$\log M(r, f)=O\{(\log r)^{t}\}$

as $rarrow\infty$ where $1<t<3$ , then every component of $F(f)$ is bounded, and
further conjectured that every entire function of order $\rho<-$ will have only
bounded Fatou components.

Stallard [15] improved the result of Baker and proved that for a transcen-
dental entire function $f$ , if for some $\epsilon\in(0,1)$ ,

$\log\log M(r, f)<\frac{(\log r)^{\frac{1}{2}}}{(\log\log r)^{\epsilon}}$

for large values of $r$ , then every component of $F(f)$ is bounded.
By imposing a condition on the regularity of the growth, Stallard [15]

also proved that if a transcendental entire function $f$ of order $\rho<\frac{1}{2}$ is such
that

$\frac{\log M(2r,f)}{\log M(r,f)}arrow c$

as $rarrow\infty$ where $c$ is a finite constant that depends only on $f$ , then every
component of $F(f)$ is bounded.

Results on the boundedness of the Fatou components was also obtained
by Wang [18] who proved that if $f$ is an entire function of order $\rho<\frac{1}{2}$ and
if its lower order $\mu>0$ , then every component of $F(f)$ is bounded.

Thus the case with $\mu=0$ remains open. Recently the author and
Taniguchi [14] have further improved the result of Wang. We defined a
new class of entire functions as follows. For $k\geq 1$ , let $F_{k}$ be the set of tran-
scendental entire functions $f$ such that $\log\log M(r, f)\geq(\log r)^{1/k}$ for every
sufficiently large $r$ . Let $F= \bigcup_{k\geq 1}\mathcal{F}_{k}$ . We proved the following.

Theorem 4. ([14]) Let $f\in \mathcal{F}$ have an order $\rho<\frac{1}{2}$ . Then every com-
ponent of $F(f)$ is bounded.

Thus we observe that the result mentioned in Wang hold even for func-
tions of zero lower order, however with some extra conditions. The general
case however is still open.
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As an application of the above theorem we have proved
Theorem 5. ([14]) Let $f$ be a transcendental entire function in .1‘. Let

$C$ be any component of $B(f)$ . Then
(i) $C\cap J(f)\neq\emptyset$

(ii) every $z_{o}$ in $C\cap F(f)$ lies in some wandering component of the Fatou
set of $f$ .

We have also shown the following.

Theorem 6. ([14]) Let $f$ be a transcendental entire function with

$\lim\sup_{rarrow\infty^{\frac{m(r,f)}{r}=\infty}}$

where $m(r, f)= \min_{|z|=\mathrm{r}}|f(z)|$ . Let $\mathrm{C}$ be any component of $B(f)$ . Then
(i) $C\cap J(f)\neq\emptyset$

(ii) every $z_{o}$ in $C\cap F(f)$ lies in some wandering component of the Fatou
set of $f$ .

The proof Theorem 6 uses the theorem of Zheng [19] which states that if
$f$ is a transcendental entire function with $\lim\sup_{farrow\infty}\frac{m(r,f)}{f}=\infty$ , then $F(f)$

has no unbounded pre-periodic or periodic component.
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