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Abstract

We give a brief survey of results on the escaping sets of entire
functions, and mention some of the results obtained in this d1rect10n
jointly by the author and M. Taniguchi.

Let f be a transcendental entire function. For n € N, let f” denote the
n-th iterate of f. Thus f°(2) = z, f*(z) = f(f*'(2)) for alln =1,2,....
The set

F(f) = {z € C: {f*}nen is normal in some neighbourhood of z}
is called the Fatou set of f or the set of normality of f and its complement
J(f) is the Julia set of f.

Fatou set is open and completely invariant: z € F(f) if and only if
f(2) € F(f). If U is a component of F(f), then f(U) lies in some compo-
nent V of F(f). If U, NUp = ¢ for n 3 m where U, denotes the component
of F(f) which contains f*(U), then U is called a wandering domain, else U
is either a pre-periodic domain or a periodic domain. If U, = U for some
n € N, then U is called periodic domain. For details, we refer the reader for
instance, to [8, 9].

Consider the functions

f()=z+1+ -el; and f(z) = asin(z) (where0 <a <1).
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Then clearly there are infinitely many curves i, (k € Z) such that for z € 7,
f*(2z) = oo as n — oo. This was observed by Fatou [7], and he posed
whether this is always true. It is known to be true for certain families of
entire functions (see for instance [13]).

‘The problem of Fatou in a more general setting was studied by Eremenko
[6] who defined the escaping set:

I(f) :={z: f*(z) = o0 as n = o0}

and proved that

i) I(f) # ¢

ii) J(f) = 0I(f)

iii) 1(£) N J(f) # ¢

iv) I(f) has no bounded components.

Eremenko further conjectured that I(f) itself has no bounded components.

Several subsets of I(f) and their properties and their applications have
been obtained by various authors. We mention a few of them. A subset of
I(f) in which the iterates of a transcendental entire function tend to infinity
relatively fast was considered by Bergweiler [3] who defined

log | f"*1(2)|
log | f*(2)]

and showed that I,(f) # ¢ and also J(f) = 8I,(f), and used it to prove that
if f is non constant and non linear entire function and g is analytic self map
of C\ {0} and if e/®) = g(e?), then exp~ J(g) = J(f).

Rippon and Stallard [11] considered the set

L(f) = {z € I(f) :

— 00 a8 n — 00}

T(f)={z€I(f):k)—g—19—gl’lflM—+ooasn—>oo}

which is described as the set of points which are “zipping towards infinity”.
They [11] showed that for a transcendental entire function f, both I,(f) and
T(f) have no bounded components.

Another subset of I(f) in which the iterates of a transcendental entire
function tend to infinity arbitrarily fast was considered by Bergweiler and
Hinkkanen [4] who defined the set

A(f) == {z: there exists L € N such fha.t |f*(2)| > M(R, %) for n > L}
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where M(R, f) = max,=r | f(2)| and R is any value such that R > min, (s |2],

and proved that
i) A(f) # ¢
i) J(f) = 0A(f)
iif) A(H)NJI(f) # ¢
iv) A(f) = J(f) if f does not have wandering domains.

The properties of A(f) was also utilized by Bergweiler and Hinkkanen
[4] to prove that if f and g are two transcendental entire functions with
fog=go f, and further if both f and g have no wandering domains, then
J(f) = J(g). Thus this gave a partial answer in affirmative to the following
open question. .

Question. Let f and g be two permutable transcendental entire func-
tions, i.e. transcendental entire functions satisfying fog= go f. Thenis
J(f) = J(9)?

Note that if f and g are rational functions with fog = go f, then
J(f) = J(g) is a well known result.

Properties of escaping sets of permutable transcendental entire functions
have also been studied by Wang and Yang [16]. They proved the following.

Theorem. ([16]) Let f and g be two distinct permutable transcendental
entire functions and g(z) be a nonconstant polynomial. Suppose that g(g) =
aq(f) + b,a(# 0),b € C. Then the following conclusions hold:

i) L(f) = L(9)

ii) T(f) = T(9)

iii) J(f) = J(9)-

Theorem. ([16]) Let f and g be two distinct permutable transcendental
entire functions and ¢(z) be a non-constant polynomial. Suppose q(g) =
aq(f) +b,a(# 0),b € C. Then

i) if g(z) has atleast one fix-point, then A(f) C A(g)

ii) A(f?) = A(g*)

iii) A(f) C A(g) or A(g) C A(f).

They further conjectured that if f and g satisfy the conditions of the above
theorem then A(f) = A(g).
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Wang and Yang [17] also investigated when a Fatou component D is
contained in I(f), I(f),T(f) or A(f). They showed that if D is a Baker
domain of F(f), then D C I(f),D NI, (f) = é,D N A(f) = ¢ and also
DNT(f) =¢. And if D is a multiply connected wandering domain of F(f)
then D C I(f),D C I,(f),D C A(f), and D C T(f). Regarding simply
connected wandering domain they showed that there exists a transcendental
entire function g such that F'(g) contains a simply connected infinitely wan-
dering domain ( i.e., a wandering domain D in which f*(z) — oo as n — oo
for any z € D ) such that D C I,(g).

An alternate definition for A(f) was given by Rippon and Stallard [12]
who defined :

B(f) := {2z : there exists L € N such thatf"*“(z) g f~(D),n € N}

where D is an open disk meeting Julia set of f and U denotes the union
of U and its bounded complementary components, and proved the following
theorem.

Theorem. ([12]) Let f be a transcendental entire function. Let B(f)
be as defined above. Then '

(i) B(f) is independent of D

(ii) B(f) is completely invariant

(ii)) B(f?) = B(f),p=0,1,...

(iv) if g = h™1 o f o h where h(z) = az + b,a # 0, then B(f) = h(B(g))

(v) B(f) = A(f).

Note that the results (iii) and (v) immediately give an affirmative answer
to the conjecture of Yang and Wang mentioned above. The concept of B(f)
was utilized by Rippon and Stallard to prove also the following:

Theorem. ([12]) Let f be a transcendental entire function. Then each
Z, € A(f) lies in an unbounded closed connected subset of A(f). In particu-
lar A(f) has no bounded components.

Rippon and Stallard [12] also gave a positive answer to the conjecture of
Eremenko atleast when F(f) has a multiply connected Fatou component by

proving:
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Theorem. ([12]) Let f be a transcendental entire function and suppose
that F(f) has a multiply connected component. Then

(i) A(f) is connected and unbounded, and contains the closure of every
multiply connected component of F(f)

(ii) I(f) is connected and unbounded.

If f and g are transcendental entire functions, then so are fog and go f,
and the dynamics of f o g many times help in understanding the dynamics of
go f and vice-versa. For instance Bergweiler and Wang [5] and also indepen-
dently Poon and Yang [10] proved that if f and g are transcendental entire
functions then f o g has no wandering domains if and only if g o f has no
wandering domains. Bergweiler and Wang [5] also proved that if f and g are
non linear entire functions, then z € J(g o f) if and only if f(z) € J(f o g).
This gives an immediate solution to the following proposition.

Proposition 1. Let f and g be nonlinear entire functions such that
J(fog)=C. Then J(go f) =C.

Proof. If J(go f) # C then there exists a w € F(g o f) which implies
from the above, that f(w) € F(f o g), hence J(f o g) # C which proves the
proposition.

One would also be interested to know whether similar results hold for
escaping sets also. Also what other results can one get regarding the escap-
ing sets of composition of entire functions. The author and Taniguchi have
worked on this aspect in [14]. We start with an elementary observation.

Note that there exist transcendental entire functions whose Julia set is C.
However there does not exist any transcendental entire function f such that
B(f) = C\ A, where A is empty set or a finite set. For if such f exists then
O0B(f) = ¢ or &B(f) is a finite set, contradicting J(f) is non empty and has
infinitely many points. If B(h) = C\ A where A is an infinite set and h is a
composite transcendental entire function, we have the following result.

Theorem 1. ([14]) Let f and g be transcendental entire functions. Let
B(go f) =C\ Aand B(fog) =C\E where A and E are infinite sets.
Then

E C f(A)U{a} and A C g(E) U {8}
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where o and 3 are Picard exceptional values of f and g respectively.

Corollary. Let f and g satisfy the conditions of Theorem 1. Then A
and g(F) differ by atmost two points.
Proof of Corollary. By Theorem 1,

E C f(A)U{a} and A C g(E) U {8}
and so by complete invariance of B(g o f) it follows that

9(E) C 9(f(4)) U{g(e)} Cc AU{g(e)} C g(E) U{B} U {g(x)}

And so
9(E)U{B}U{g(a)} = AU{B}U{g(a)}.

A general relation between B(go f) and B(f o g) is the following.
Theorem 2. ([14]) Let f and g be transcendental entire functions.

Then
9(B(fog)) =B(go f)
except possibly for two points.

With regard to the composition and its factors, we have:

Theorem 3. ([14]) Let f and g be transcendental entire functions with
fog= gof. Then
B(f og) C B(f)n B(g).

For our next result, we need the concept of order and lower order. An
entire function f is said to be of order p and lower order u respectively if

. log logM (r, f)
=1 —_—
p ﬂsololp logr

and

4 = lim inf loglog M(r, f)
r—00 logr
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Baker [1] proved that if p = 0 with sufficiently small growth condition
then F(f) has no unbounded Fatou component. Infact he showed that if f
is an entire function with

log M(r, f) = O{(logr)’}

as r — oo where 1 < t < 3, then every component of F(f) is bounded, and
further conjectured that every entire function of order p < 1 will have only
bounded Fatou components.

Stallard {15] improved the result of Baker and proved that for a transcen-
dental entire function f, if for some € € (0,1),

(logr)#
M A S - LV A
loglog M(r, f) < Toglogr)*
for large values of r, then every component of F(f) is bounded.
By imposing a condition on the regularity of the growth, Stallard [15]
also proved that if_ a transcendental entire function f of order p < % is such

that

log M(2r, f)

log M(r, f)
as r — oo where c is a finite constant that depends only on f, then every
component of F(f) is bounded.

Results on the boundedness of the Fatou components was also obtained
by Wang [18] who proved that if f is an entire function of order p < ; and
if its lower order y > 0, then every component of F(f) is bounded.

Thus the case with # = 0 remains open. Recently the author and
Taniguchi [14] have further improved the result of Wang. We defined a
new class of entire functions as follows. For k > 1, let F; be the set of tran-
scendental entire functions f such that loglog M(r, f) > (logr)Y/* for every
sufficiently large r. Let F = Ug>1Fx. We proved the following.

Theorem 4. ([14]) Let f € F have an order p < 1. Then every com-
ponent of F(f) is bounded.

Thus we observe that the result mentioned in Wang hold even for func-
tions of zero lower order, however with some extra conditions. The general
case however is still open.
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As an application of the above theorem we have proved

Theorem 5. ([14]) Let f be a transcendental entire function in F. Let
C be any component of B(f). Then

) CnJ(f)#¢

(ii) every z, in C N F(f) lies in some wandering component of the Fatou
set of f.

We have also shown the following .

Theorem 6. ([14]) Let f be a transcendental entire function with
mr f) _

lim SUp,_, 00 r
where m(r, f) = miny,—, | f(2)|. Let C be any component of B(f). Then

() CnJ(f) #¢

(ii) every z, in C' N F(f) lies in some wandering component of the Fatou
set of f. ‘

The proof Theorem 6 uses the theorem of Zheng [19] which states that if
f is a transcendental entire function with limsup, _, ﬂ;-ﬁ = o0, then F(f)

has no unbounded pre-periodic or periodic component.
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