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We prove uniqueness and continuous dependence on initial data of weak solutions of
the Navier-Stokes equations of compressible flow

(1) $\{$

$\rho_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho u)=0$

$(\rho u^{j})_{t}+\mathrm{d}\mathrm{i}\mathrm{v}(\rho u^{j}u)+P(\rho)_{x_{j}}=\mu\Delta u^{j}+\lambda \mathrm{d}\mathrm{i}\mathrm{v}u_{x_{j}}+\rho f^{j}$

for $x\in \mathbb{R}^{n},$ $n=2,3$ , and $t>0$ with initial data
(2) $(\rho, u)|_{t=0}=(\rho_{0}, u_{0})$ .
Here $\rho$ and $u=(u^{1}, \ldots, u^{n})$ are unknown functions of $x$ and $t$ representing density and
velocity, $P=P(\rho)$ is the pressure, $f$ is a given external force, $\mu>0$ and $\lambda\geq 0$ are viscosity
constants, and $\mathrm{d}\mathrm{i}\mathrm{v}$ and $\Delta$ are the usual spatial divergence and Laplace operators.

Our purpose is to compare solutions with only minimal regularity, including the generic
singular solutions of the Navier-Stokes system-solutions with codimension-one discontinu-
ities in density, pressure, and velocity gradient (see Hoff [4]). Our result extends that of
Danchin [1], which applies to solutions in certain Besov spaces of continuous functions.
Danchin makes a direct comparison by subtracting the equations satisfied by different so-
lutions and controlling the linearization errors by the assumed regularity. This regularity
is absent for solutions in the class considered here, however, and a different approach is
required.

Ideally, one would prove uniqueness and continuous dependence for solutions in the
largest class for which existence is known, that is, solutions with finite energies and non-
negative densities (see Feireisl [2] and [3] and Lions [9], for example). Such a result may
be unattainable, however, and may be in fact be false: it is known that certain anomalies
can arise in solutions of (1) when densities are zero on nonnegligible sets, and there are
examples of nonphysical solutions (see Hoff and Serre [7]). Moreover, it appears likely,
although it is not presently known, that large energies can force positive densities to zero,
so that the aforementioned anomalies may occur even when initial densities are strictly
positive. It thus remains an interesting open problem to select physical solutions from
the most general class of known weak solutions and to establish their uniqueness and con-
tinuous dependence on initial data. We shall discuss this issue in greater detail below.
For the time being we avoid these issues and difficulties by assuming that the solutions
being compared have strictly positive densities, which is known to hold for a large class of
solutions with positive initial densities and small initial energies (Hoff [5]).

To be more specific, the solutions we consider are weak solutions in a regularity class
which we shall call $C$ . Properties of solutions in $C$ are rather technical and are listed
in Hoff [6], $(1.4)-(1.12)$ . Rather than repeating these conditions here, we instead list the
hypotheses on the system parameters, initial data, and external force under which solutions
in the class $C$ are known to exist (Hoff [5]): if
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(3) $P(\rho)=K\rho,$ $K$ constant, $\mu>0$ , and $0<\lambda<5\mu/4$ ,

(4) $1.4$ $C^{-1}<\rho 0<C\mathrm{a}.\mathrm{e}$. for some constant $C$ ,

(5) $1.5$ $\int\rho_{0}|u_{0}|^{q}dx<\infty$ for some $q>6$ for $n=3$ and $q>2$ for $n=2$ ,

(6) $\int[\rho_{0}|u_{0}|^{2}+(\rho_{0}-\rho)^{2}\sim]dx<<1$ ,

where $\tilde{\rho}$ is a constant, positive reference density,

(7) $1.8$ $u_{0}\in H^{\alpha}(\mathbb{R}^{n})$ where $\alpha>0$ for $n=2$ and $\alpha>1/2$ for $n=3$ ,

(8) $f\in L^{\infty}([0, T];L^{2})$ and $\int_{0}^{T}(t^{7}|\nabla f|_{L^{4}}^{2}+t^{5}|f_{t}|_{L^{2}}^{2})dt<\infty$ ,

then there is a weak solution $(\rho, u)$ to the initial-value problem (1)$-(2)$ in the class $C$

defined on $\mathbb{R}^{n}\mathrm{x}[0, T],$ $T<\infty$ . The condition in (3) on $P$ can be relaxed considerably
and the strict positivity of $\rho_{0}$ in (4) and the condition (7) can be dropped entirely for the
general existence theory of [5]; all three are required here, however, for reasons which will
be explained later.

The following is our main result:

Theorem: Let $(\rho, u, f)$ and $(\overline{\rho},\overline{u}, \overline{f})$ be weak solutions of (1) in the regularity class $C$

corresponding to respective external forces $f$ and $\overline{f}$ satisfying (8). Assume also that $\overline{f}\in$

$L^{1}((0, T);L^{2r}(\mathbb{R}^{n}))$ and $\rho_{0}-\overline{\rho}0\in L^{2\mathit{0}}(\mathbb{R}^{n})$ , where $r$ and $s$ are H\"older conjugates in $[1, \infty]$ ,
and that

(9) $\nabla\Gamma*(\rho-\tilde{\rho}),$ $\nabla\Gamma*(\overline{\rho}-\tilde{\rho})\in L^{1}((0, T);W^{1,\infty}(\mathbb{R}^{n}))$ ,

where $\Gamma$ is the fundamental solution of the Laplace operator on $\mathbb{R}^{\mathrm{n}}$ . Then

$( \int_{0}^{T}\int_{\mathrm{R}^{n}}|u-\overline{u}|^{2}dxdt)^{1/2}+\sup_{0\leq t\leq T}||(\rho-\overline{\rho})(\cdot, t)||_{H^{-1}(\mathbb{R}^{n})}$

(10)

$\leq C[||\rho_{0}-\overline{\rho}_{0}||_{L^{2}\cap L^{2\epsilon}}+||\rho_{0}u_{0}-\overline{\rho}_{0}\overline{u}_{0}||_{L^{2}}+(\int_{0}^{T}\int_{\mathbb{R}^{n}}|f-\overline{f}\circ S|^{2}dxdt)^{1/2}]$
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(the notation $\overline{f}\circ S$ is explained below in (12)). The constant $C$ depends on the system
parameters $P,$ $\mu$ , and $\lambda$ , on $T$ , and on upper bounds for the norms of solutions and forces
occurring in the above hypotheses. If $\int_{0}^{T}t||\nabla\overline{f}(\cdot, t)||_{L\infty}dt<\infty,$ then $\overline{f}\circ S$ may be replaced

by $\overline{f}$ in (10).

Details of the proof are given in Hoff [6]. We describe here the main ideas by giving
an overview of the analysis and remarking on several of the hypotheses, particular the
condition in (3) that $P$ be the pressure of an ideal isothermal fluid and the condition (9)
concerning the Newtonian potentials of the densities. We first note that the smallness
condition in (6), while required for the existence of solutions in the class $C$ , plays no role
in the proof of uniqueness and continuous dependence.

The key point of the analysis is that solutions with minimal regularity are best com-
pared in a Lagrangean, rather than Eulerian framework. To describe this we first note
that (7) and (9) insure the existence of particle trajectories $X(y, t, s)$ satisfying

(11) $\{$

$\frac{\partial X}{\partial t}(y, t, s)=u(X(y, t, s), t)$

$X(y, s, s)=y$

and similarly for $\overline{X}$ . $X(y, t, s)$ is therefore the position at time $t$ of the fluid particle whose
position at time $s$ is $y$ . In particular, the fluid particle in $(\rho, u, f)$ at $(x, t)$ was at $X(x, 0, t)$

initially and so corresponds to the particle in $(\overline{\rho}, \overline{u}, \overline{f})$ which at time $t$ is at the point

(12) $1.3.4$ $\overline{X}(X(x, 0, t), t, \mathrm{O})\equiv S(x, t)$

(this is the $S$ appearing in (10)). The “Lagrangean” comparison therefore consists of an
estimate for $u-\overline{u}\circ S$ , where we abuse notation slightly and abbreviate $\overline{u}(S(x, t),$ $t)=$
$(\overline{u}\circ S)(x, t)$ . The advantages of the Lagrangean formulation may be understood briefly as
follows. First, from its definition, $S(X(y, t, 0), t)=\overline{X}(y, t, 0)$ , so that $S_{t}+\nabla Su=\overline{u}\circ S$ .
It then follows easily that, if $w=\overline{u}\circ S$ ,

$(\overline{u}_{t}+\nabla\overline{u}\overline{u})\circ S=w_{t}+\nabla wu$,

which shows that the convective time derivative in the evolution equation for $w$ will be
the same as that for $u$ . Given the form of the momentum equation, the comparison of $u$

with $w=\overline{u}\circ S$ therefore appears quite natural and proceeds in the usual way: bounds for
$u-\overline{u}\circ S$ are obtained by duality from estimates for solutions of the adjoint of the weak
equation satisfied by $u-\overline{u}\circ S$ . A bound for the Eulerian difference $u-\overline{u}$ can then be
derived via the regularity assumptions and a bound for $I-S$.

We now discuss three of the estimates that go into the proof, beginning with a bound
for $I-S$ . Subtracting the equations (11) satisfied by $X$ and $\overline{X}$ and integrating in time,
we obtain

$|X(y, t, 0)- \overline{X}(y, t, 0)|\leq\int_{0}^{t}|(u\circ X)(y, s)-(\overline{u}\circ\overline{X})(y, s)|ds$
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so that
$|X( \cdot, t, 0)-\overline{X}(\cdot, t, 0)|_{L^{2}}^{2}\leq t\int_{0}^{t}|(u\mathrm{o}X)(\cdot, s)-(\overline{u}\circ\overline{X})(\cdot, s)|_{L^{2}}^{2}ds$ .

Assuming for the time being that $X$ is Lipschitz continuous with respect to $y$ , we can then
make the change of variables $x=X(y, t, 0)$ to obtain the bound

(13)2.2 $|I-S( \cdot, t)|_{L^{2}}^{2}\leq Ct\int_{0}^{t}|(u-\overline{u}\mathrm{o}S)(\cdot, s)|_{L^{2}}^{2}ds$ .

Next we apply this estimate to obtain a bound for $||(\rho-\overline{\rho})(\cdot, t)||_{H^{-1}}$ . First note that,
as a consequence of the conservation of mass,

(14) $\rho(X(y, t, s), t)\det\nabla_{y}X(y, t, s)=\rho(y, s)$

$\mathrm{a}.\mathrm{e}$ . (this is the precise formulation of the more intuitive statement that $\rho(\cdot, t)dX=$

$\rho(\cdot, s)dy.)$ Thus by (12) and (14),

$\det\nabla S(x, t)=\det(\nabla_{y}\overline{X}(X(x, 0, t), t, 0))\det(\nabla_{y}X(x, 0, t), t, 0))$

$=\rho(x, t)/\overline{\rho}(S(x, t),$ $t)$ .

Then for $\varphi\in D(\mathbb{R}^{n})$ and $t$ fixed,

$| \int(\rho-\overline{\rho})\varphi dx|=|\int[\rho\varphi-(\overline{\rho}\circ S)(\varphi\circ S)\det\nabla S]dx|$

$=| \int\rho[\varphi-\varphi\circ S]dx|$

$\leq C||\nabla\varphi||_{L^{2}}||I-S||_{L^{2}}$ .

It then follows from (13) that

(15) $\mathrm{z}.3$ $\sup_{0\leq t\leq T}||(\rho-\overline{\rho})(\cdot, t)||_{H}^{2}-1\leq CT\int_{0}^{T}\int|u-\overline{u}\circ S|^{2}dxdt$ .

To complete the proof we need to obtain a bound for the integral on the right side
of (15) in terms of the left side and differences in the initial data and forces. This is the
most difficult and technical part of the analysis, and, as indicated earlier, proceeds by
duality by subtracting the weak forms of the equations satisfied by the different solutions
and choosing the test function to satisfy a suitably mollified adjoint equation. Complete
details are given in Hoff [6]. We shall content ourselves here with the observation that the
momentum equation, which may be written

$[ \rho(\frac{\partial}{\partial t}+u\cdot\nabla)-\mu\Delta-\lambda \mathrm{d}\mathrm{i}\mathrm{v}]u=-\nabla P(\rho)+\rho f$ ,
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shows that $L^{2}$ differences in velocities $u$ are driven by $H^{-1}$ differences in pressures $P(\rho)$

and $L^{2}$ differences in forces $f$ . We therefore anticipate an estimate of the form

$\int_{0}^{T}\int|u-\overline{u}\circ S|^{2}dxdt\leq\ldots+CT.\sup_{0\leq t\leq T}||P(\rho(\cdot, t))-P(\overline{\rho}(\cdot, t)||_{H}^{2}-1$ ,

where the ellipsis indicates norms of differences in forces and initial data. This together
with (15) then completes the proof provided that $P=K\rho$ , which is the assumption required
to insure that $H^{-1}$ differences in pressures are equivalent to $H^{-1}$ differences in densities.
We remark that this is the only point in the analysis where this condition is required. More
general pressures could be included in this analysis, but only at the expense of having to
impose unreasonably strong conditions on the regularity of the solutions being compared.

We now discuss briefly the requirement (9) concerning the Newtonian potentials of
the densities. As indicated above, we require at several points of the analysis that the
particle trajectories $X(y, t, s)$ be Lipschitz continuous functions of their initial positions
$y$ . This follows from (11) when the Lipschitz constants with respect to space of $u$ and $\overline{u}$

are integrable are time, that is, when $u,\overline{u}\in L^{1}((0, T);W^{1,\infty}(\mathbb{R}^{n}))$ . Now by adding and
subtracting ternis we obtain that

$(\mu+\lambda)\Delta u^{j}=((\mu+\lambda)\mathrm{d}\mathrm{i}\mathrm{v}u-P(\rho))_{x_{j}}+(\mu+\lambda)(u_{x_{k}}^{j}-u_{x_{j}}^{k})_{x_{k}}+(P(\rho)-P(\tilde{\rho}))_{x_{J}}$ ,

$\equiv(\mu+\lambda)\Delta u_{F,\omega}^{j}+(\mu+\lambda)\Delta u_{P}^{j}$

where $(\mu+\lambda)u_{P}^{j}=\Gamma_{x_{j}}*(P(\rho)-P(\tilde{\rho}))$ and summation over repeated indices is understood.
(The standard notation is that $F=(\mu+\lambda)\mathrm{d}\mathrm{i}\mathrm{v}u-P(\rho)$ and $\omega^{j,k}=u_{x_{k}}^{j}-u_{x_{\mathrm{j}}}^{k}.$ ) For the
solutions constructed in [5], $F$ and $\omega$ are more regular than the summands which define
them, this fact being a consequence of the cancellation of singularities predicted by the
Rankine-Hugoniot conditions applied to (1) (see the introduction to [4], for example). A
straightforward argument based on standard elliptic theory and Sobolev estimates ([6],
section 1) then shows that $\nabla u_{F,\omega}\in L^{1}((0, T);L^{\infty}(\mathbb{R}^{n}))$ , as required. (The hypotheses (7)
and (8) are needed here to insure that $||\nabla u_{F,\omega}(\cdot, t)||_{L\infty}$ is integrable in the initial layer
near $t=0.$ ) On the other hand, the relation $(\mu+\lambda)\Delta u_{P}^{j}=(P(\rho)-P(\tilde{\rho}))_{x_{j}}$ implies that
$||\nabla u(\cdot, t)||_{L^{\mathrm{p}}}\leq C_{p}||P(\rho)-P(\tilde{\rho})||_{L^{\mathrm{p}}}$ only for $1<p<\infty$ , not for $p=1$ or $p=\infty$ . We must
therefore impose (9) as an posteriori condition on the solutions being compared. We do
note, however, that a large class of piecewise smooth solutions exhibiting codimension-one
singularities and satisfying the condition (9) is constructed in Hoff [4].

We now turn to the question of uniqueness and continuous dependence for more gen-
eral, large-energy solutions (again see Feireisl [2] and [3] and Lions [9] for the corresponding
existence theory.) These solutions are much less regular than those in the class $C$ and con-
sequently are not amenable to the analysis outlined above. Additionally, it is known that
certain anomalies can arise in solutions in which densities vanish on nonnegligible sets,
and it appears likely, although it is not presently known, that large initial energies can
cause spontaneous cavitation even when the initial density is strictly positive. This raises
the possibility that the known set of large-energy weak solutions includes nonphysical
solutions, even when initial densities are strictly positive.

158



To be more specific, we say that a solution $(\rho, u)$ is locally momentum conserving if,
whenever $E$ and $V$ are bounded open sets in $x$-space with $\overline{E}\subset V$ and with $\rho=0\mathrm{a}.\mathrm{e}$ .
in $(V-E)\cross[t_{1}, t_{2}]$ , then the change in the momentum of the fluid in $E$ from time $t_{1}$ to

time $t_{2}$ should be the impulse $\int_{t_{1}}^{t_{2}}\int_{E}\rho fdxdt$ applied by the external force to the fluid in
$E$ . Weak solutions violating this condition do in fact exist, one such being constructed
in Hoff and Serre [7]: initial data $(\rho 0, u_{0})$ is given corresponding to two fluids initially
separated by a vacuum; it is shown that, if $\rho_{0}$ is replaced by $\rho 0+\delta$ , then the limit as
$6\downarrow 0$ of the corresponding perturbed solutions exists and is a weak solution in the entire
physical space, but fails to be locally momentum conserving. This failure is a consequence
of the fact that the momentum equation in (1) determines a velocity $u$ even in open sets
in which $\rho=0$ , or, stated differently, the model posits nonzero viscous forces generated
from the motion of nonexistent fluid particles. It is also shown in [8] for the above example
that there is a different solution corresponding to the same initial data which $is$ locally
momentum conserving, but this solution is defined only on the support of the density and
cannot be extended as a weak solution to the entire physical space.

These observations suggest a remedy: the viscous force terms in (1) should be made
to vanish when the density vanishes and the momentum equation should be imposed only
on the support of the density. We recall that kinetic theory predicts that, to first order,
$\mu$ and $\lambda$ are functions of temperature $\theta$ . If it is assumed that the entropy of each fluid
particle is fixed, that is, that the flow is isentropic, then $\theta$ will be a function of $\rho$ , and
under reasonable assumptions on the functional relationships, $\mu$ and $\lambda$ will be zero when
$\rho$ is zero. Whether or not the isentropic assumption is consistent with the presence of
viscosity is in some doubt, however. If we instead regard $\mu$ and $\lambda$ as functions of 9 but
assume that $\theta$ is constant, that is, that the flow is isothermal, then $\mu$ and $\lambda$ are effectively
constant. This is the case we consider, and for this case we propose that the second
equation in (1) should be modified by replacing the terms $\mu u_{x_{k}x_{k}}^{j}+\lambda u_{x_{j}x_{k}}^{k}$ on the right
side by $(\chi\mu u_{x_{k}}^{j})_{x_{k}}+(\chi\lambda u_{x_{j}}^{k})_{x_{k}}$ , where $\chi(\rho)$ is one or zero according as $\rho$ is positive or zero.

To be more specific, we propose that, for viscous, isothermal flow governed by the
Navier-Stokes system (1), there should be established an existence, uniqueness, continuous
dependence theory as follows: given initial density $\rho_{0}$ and momentum density $m_{0}$ which
vanishes when $\rho_{0}=0$ ($m$ is a surrogate for $\rho u$), both defined, let us say, on $\mathbb{R}^{3}$ , there should
exist a unique pair $(\rho, m)$ with $\rho,$ $m\in C([0, \infty);L_{loc}^{1}(\mathbb{R}^{n}))$ and $m^{2}/\rho\in L_{loc}^{1}(\mathbb{R}^{n}\mathrm{x}[0, \infty))$

satisfying the weak form of the mass equation

$\int\rho\varphi dx|_{t_{1}}^{t_{2}}=\int_{t_{1}}^{t_{2}}\int_{\mathrm{R}^{n}}(\rho\varphi_{t}+m\cdot\nabla\varphi)dxdt$

for Lipschitz test functions $\varphi$ having compact support; for each $t>0$ there should be an
open set $G_{t}$ such that $\rho(\cdot, t)>0\mathrm{a}.\mathrm{e}$ . on $G_{t}$ and $\rho(\cdot, t)=0\mathrm{a}.\mathrm{e}$ . on the complement of $G_{t}$ ;
the set $G=\{(x, t):x\in G_{t}, t>0\}$ should be open and $u\equiv m/\rho$ should be in $L_{loc}^{1}(G)$ , so
that $\nabla u\in D’(G)$ ; finally, the weak form of the momentum equation should hold on $G$ in
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the sense that
(16)2.4

$\int_{\mathrm{R}^{n}}m\cdot\psi dx|_{t_{1}}^{t_{2}}=\int_{t_{1}}^{t_{2}}\int_{\mathrm{N}^{n}}[m\cdot(\psi_{t}+\nabla\psi u)+(P(\rho)-\tilde{P})\mathrm{d}\mathrm{i}\mathrm{v}\psi$

$-\chi c\mu\nabla u^{j}\cdot\nabla\psi^{j}-\chi_{G}\lambda(\mathrm{d}\mathrm{i}\mathrm{v}u)(\mathrm{d}\mathrm{i}\mathrm{v}\psi)+\rho f\cdot\psi]dxdt$

where $\chi_{G}$ is the characteristic function of $G$ and $\psi\in D(\mathbb{R}^{n}\mathrm{x}(-\infty, \infty))^{n}$. It is easy to
check that solutions in this sense are locally momentum conserving.

A version of this program has been carried out in the simplest case that $\Omega=(0,1)\subset \mathbb{R}^{1}$

with the obvious modifications required to accommodate no-slip boundary conditions. The
hypotheses on the initial data are that $\rho 0$ is nonnegative and bounded, that there is an
open set $G_{0}\subset(0,1)$ with $\rho_{0}>0\mathrm{a}.\mathrm{e}$. on $G_{0}$ and $\rho 0=0\mathrm{a}.\mathrm{e}$. on the complement of $G_{0}$ ,

that the initial energy $\int_{G_{\mathrm{O}}}\rho_{0}u_{0}^{2}dx$ is finite, and that there exists a constant $\overline{u}^{2}$ such that

$\int_{E}[\frac{1}{2}\rho_{0}u_{0}^{2}+(\rho_{0}-\tilde{\rho})^{2}]dx\leq\frac{1}{2}\overline{u}^{2}\int_{E}\rho_{0}dx$

for all measureable sets $E\subset G_{0}$ . The latter condition insures that the there are no fluid
particles of fixed energy and vanishingly small mass, and the second condition disallows
data with mass concentrated on Cantor-like sets.

Complete details of this work will be presented elsewhere. We do note, however, that
locally momentum conserving solutions in this sense are in fact not unique: an additional
condition, which might be called “maximal Lagrangean structure” is required. Rather than
giving precise technical details here, we instead describe an example which illustrates the
issue in a fairly simple way. First recall the result of Serre [10] showing that, given a fluid
initially occupying a one-dimensional interval $(a(\mathrm{O}), b(\mathrm{O}))$ surrounded entirely by vacuum,
there is a weak solution $(\rho, u)$ of (1) defined on the set $\{(x, t) : a(t)<x<b(t), t>0\}$ ,
where $a(t)$ and $b(t)$ are fluid particle paths satisfying $\dot{a}=u(a, t)$ and $\dot{b}=u(b, t)$ defining
the free boundaries of the fluid, subject to the weak form of momentum conservation
boundary conditions $(\mu+\lambda)u_{x}-P=0$ at $x=a(t)$ and $b(t)$ . It is easily checked that
this solution is locally momentum conserving in the sense described above. We can apply
this result to demonstrate the nonuniqueness of locally momentum conserving solutions
as follows. First apply Serre’s result to a fluid with strictly positive density initially
occupying $(a(\mathrm{O}), b(\mathrm{O}))=(0,1)$ , perform a Galilean translation of the $x$-axis to transform
the resulting solution to one for which $a(t)>0$ for all $t>0$ , then reflect about the t-axis
to obtain a locally momentum conserving solution $(\rho_{1}, u_{1})$ with $\rho_{1}$ even in $x,$ $u_{1}$ odd in
$x$ , and $G_{t}=(-b(t), -a(t))\cup(a(t), b(t))$ and $G_{0}=(-1,1)$ . A second solution $(\rho_{2}, u_{2})$

can be obtained more simply by applying Serre’s result directly to the same initial data
$(\rho_{1}(0), u_{1}(0))$ on $(-1,1)$ . For this second solution, $G_{t}=(-c(t), c(t))$ for a free boundary
function $c$ , and since $\rho_{2}(\cdot, t)$ is strictly positive on $G_{t},$ $(\rho_{1}, u_{1})\neq(\rho_{2}, u_{2})$ . Our theory picks
out $(\rho_{2}, u_{2})$ as the unique momentum conserving solution having the property that there is
a unique particle trajectory emanating from each point of $\overline{G}_{0}$ . Observe that this condition
fails for $(\rho_{1}, u_{1})$ since there are two distinct particle trajectories for this solution emanating
from $x=0$ .
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We conclude by remarking that the extension of this program to three space dimen-
sions promises to be an especially interesting and challenging mathematical project, owing
to the increased complexity of the geometry of the set $G$ and to the fact that spontaneous
cavitation may be possible after the initial time, a phenomenon which cannot occur for
one-dimensional flows (Hoff and Smoller [8]).
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